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Abstract. A subset of vertices in a graph is called a dissociation set if it induces a
subgraph with a vertex degree of at most 1. The maximum dissociation set problem, i.e.,
the problem of finding a dissociation set of maximum size in a given graph is known to
be NP-hard for bipartite graphs. We show that the maximum dissociation set problem is
NP-hard for planar line graphs of planar bipartite graphs. In addition, we describe several
polynomially solvable cases for the problem under consideration. One of them deals with
the subclass of so-called chair-free graphs. Furthermore, the related problem of finding a
maximal (by inclusion) dissociation set of minimum size in a given graph is studied, and
NP-hardness results for this problem, namely for weakly chordal and bipartite graphs, are
derived. Finally, we provide inapproximability results for the dissociation set problems
mentioned above.
2000 Mathematics Subject Classification: 68Q25; 68Q17; 05C69; 05C70.

1. Introduction

In this paper, we consider finite undirected simple graphs and use standard graph-
theoretic terminologies, see for example Bondy and Murty [5]. For the concepts related
to approximability, we follow Ausiello et al. [3].

Let G be a graph with the vertex set V = V (G) and the edge set E = E(G). For a
subset of vertices X ⊆ V (G), the subgraph of G induced by X is denoted by G(X). As
usual NG(x), or simply N(x), denotes the neighborhood of a vertex x ∈ V , i.e., the set of
all vertices that are adjacent to x in G. If y ∈ N(x), then y is called a neighbor of x in G.
The degree of x is defined as deg x = |N(x)|. The maximum vertex degree of G is denoted
by ∆(G). Km,n denotes the complete bipartite graph with partition classes of cardinalities
m and n; Kn is the complete graph on n vertices; Cn and Pn are the chordless cycle and
the chordless path on n vertices, respectively. The graph K1,n is also called a star, and
K3 = C3 is called a triangle. At the same time, the star K1,3 is known as a claw. K4 − e
is a graph obtained from the complete graph K4 by deleting an edge.

We denote by G2 the square of graph G, i.e., the graph on V (G) in which two vertices
are adjacent if and only if they have a distance of at most 2 in G. For a graph G, the
line graph L(G) is defined as follows: the vertices of L(G) bijectively correspond to the
edges of G, and two vertices of L(G) are adjacent if and only if the corresponding edges
of G are adjacent. A graph H is called a line graph if there exists a graph G such that
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H = L(G). For vertex-disjoint graphs G1 and G2, the disjoint union G1 ∪G2 denotes the
graph with the vertex set V (G1)∪ V (G2) and the edge set E(G1)∪E(G2). For a positive
integer n, the disjoint union of n copies of a graph G is denoted by nG. For example, the
graph mK2 consists of m pairwise disjoint edges. A graph G is weakly chordal (also called
weakly triangulated) if neither the graph G nor the complement G of this graph has an
induced cycle on five or more vertices.

A class of graphs is called hereditary if every induced subgraph of a graph in this class
also belongs to the class. For a set H of graphs, a graph G is called H-free if no induced
subgraph of G is isomorphic to a graph in H. In other words, H-free graphs constitute a
hereditary class defined by H as the set of forbidden induced subgraphs.

For a graph G, a subset D ⊆ V (G) is called a dissociation set if it induces a subgraph
with a vertex degree of at most 1, i.e., ∆(G(D)) 6 1. A dissociation set D is maximal if no
other dissociation set in G contains D. Let DS(G) be the set of all maximal dissociation
sets in G. Define the minimum maximal dissociation number as

diss−(G) = min{|D| : D ∈ DS(G)}
and the maximum dissociation number (also known as 1-dependence number [19, 20]) as

diss+(G) = max{|D| : D ∈ DS(G)}.
A maximum dissociation set is a dissociation set that contains diss+(G) vertices. A
minimum maximal dissociation set is a maximal dissociation set that contains diss−(G)
vertices.

For example, all maximal dissociation sets (up to symmetry) for the path P5 are shown
in Fig. 1 as the sets of encircled vertices. In this case, diss+(P5) = 4 and diss−(P5) = 3.

Fig. 1. Maximal dissociation sets of graph P5.

Consider the following two decision problems associated with the parameters diss+(G)
and diss−(G). We will refer to these problems as dissociation set problems.

Maximum Dissociation Set
Instance: A graph G and an integer k.
Question: Is there a dissociation set D in G such that |D| > k? In other words, is

diss+(G) > k?

This problem has been introduced by Yannakakis [58] and was shown to be NP-complete
for the class of bipartite graphs. Boliac, Cameron and Lozin [6] strengthened the result of
Yannakakis by showing that the problem is NP-complete for K1,4-free bipartite graphs as
well as for C4-free bipartite graphs with a maximum vertex degree of 3. It is also known
that the problem is NP-complete for planar graphs with a maximum vertex degree of 4,
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see Papadimitriou and Yannakakis [53]. On the other hand, the problem is polynomially
solvable for chordal and weakly chordal graphs, asteroidal triple-free (AT-free) graphs [11],
(Pk,K1,n)-free graphs (for any positive k and n) [42] and for some other hereditary classes
of graphs [6, 11, 42].

The second problem has not been introduced before. We define it in the following way.

Minimum Maximal Dissociation Set
Instance: A graph G and an integer k.
Question: Is there a maximal dissociation set D in G such that |D| 6 k? In other

words, is diss−(G) 6 k?

The Maximum Dissociation Set problem is related to the well-known maximum
independent set and maximum induced matching problems.

For a graph G, a subset S ⊆ V (G) of vertices is called an independent set if no two
vertices in S are adjacent. In other words, the degrees of all vertices of the subgraph
of G induced by S are equal to 0, i.e., the subgraph G(S) is 0-regular. The maximum
cardinality of an independent set of G is the independence number, and it is denoted by
α(G). For a graph G, a subset M ⊆ E(G) of edges is called an induced matching if (i)
the set M is a matching in G (a set of pairwise nonadjacent edges) and (ii) there is no
edge in E(G) \M connecting two edges of M . In other words, the degrees of all vertices
of the subgraph of G induced by the end-vertices of the edges of M are equal to 1, i.e.,
the subgraph G(V (M)) is 1-regular. The maximum cardinality of an induced matching of
G is the induced matching number, and it is denoted by Σ(G).

Consider the following two decision problems associated with the parameters α(G) and
Σ(G).

Maximum Independent Set
Instance: A graph G and an integer k.
Question: Is α(G) > k?

Maximum Induced Matching
Instance: A graph G and an integer k.
Question: Is Σ(G) > k?

The optimization version of the Maximum Independent Set (the Maximum Indu-
ced Matching) problem consists in finding an independent set (an induced matching)
of maximum size in a graph G.

The Maximum Independent Set problem is known to be NP-complete for general
graphs [21]. Moreover, it remains NP-complete even for graphs having a specific structure,
such as K3-free graphs [50], planar graphs with a maximum vertex degree of at most 3 [21],
and graphs with a large girth [45]. On the other hand, the problem can be solved in
polynomial time for some hereditary classes of graphs, such as perfect graphs [25], K1,3-
free graphs [44, 46, 51], mK2-free graphs (for any fixed m > 2) [1, 4], AT-free graphs [8],
chair-free graphs [2], circular-arc graphs [43], and for some subclasses of P5-free graphs [41].
Various papers such as [27, 28, 30, 59] deal with the hardness of approximating the Maxi-
mum Independent Set problem. It is known that in general graphs with n vertices,
the problem cannot be approximated within a factor of n1−ε for any fixed ε > 0 unless
P = NP [59], see also [30].
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The Maximum Induced Matching problem is NP-complete for bipartite graphs [9, 55]
and bipartite graphs with a maximum vertex degree of 3 [39], C4-free bipartite graphs [39],
line graphs [37] and for planar graphs with a maximum vertex degree of 4 [36], but on
the other hand, it is polynomially solvable for chordal [9] and weakly chordal graphs [12],
circular-arc graphs [24], AT-free graphs [10, 14], (Pk,K1,n)-free graphs (for any positive k
and n) [42], and graphs where a maximum matching and a maximum induced matching
have the same size [13, 37]. Regarding polynomial-time approximability, it is known that
the Maximum Induced Matching problem is APX-complete on r-regular graphs for all
r > 3, and bipartite graphs with a maximum vertex degree of 3 [18]. Moreover, for r-re-
gular graphs it is NP-hard to approximate the Maximum Induced Matching problem
within a factor of r/2O(

√
ln r) [15]. In general graphs with n vertices, the problem cannot

be approximated within a factor of n1/2−ε for any constant ε > 0 unless P = NP [47].
Notice that the Maximum Dissociation Set problem asks whether in a given graph,

there exists a maximum induced subgraph with any vertex degree equal to 0 or 1, while
the Maximum Independent Set problem asks whether there exists a maximum induced
subgraph with any vertex degree equal to 0 and the Maximum Induced Matching
problem asks whether there exists a maximum induced subgraph with any vertex degree
equal to 1.

Since independent sets and induced matchings are (by definition) dissociation sets, the
following inequalities hold for any graph G: α(G) 6 diss+(G) and 2Σ(G) 6 diss+(G).
In fact, both differences diss+(G)− α(G) and diss+(G)− 2Σ(G) can be arbitrarily large.
Indeed, for any positive integer r, let Hr be the graph formed by identifying one vertex from
r copies of cycle C7. We have diss+(Hr)−α(Hr) = r since diss+(Hr) = 4r and α(Hr) = 3r.
For graph K1,r+2, we have diss+(K1,r+2) − 2Σ(K1,r+2) = r since diss+(K1,r+2) = r + 2
and Σ(K1,r+2) = 1.

Table 1 compiles available results on the complexity of the Maximum Dissociation
Set problem (MDS), the Maximum Independent Set problem (MIS) and the Maxi-
mum Induced Matching problem (MIM) by indicating classes of graphs for which the
problems are polynomially solvable (P), NP-complete (NP-c) or the complexity status of
which is open (?). For the definitions of the graph classes in this table, see e.g. Brandstädt
et al. [7].

Table 1. Complexity of MDS, MIM and MIS.

Graph classes / Problems MDS MIM MIS
Planar graphs NP-c [53] NP-c [36] NP-c [21]
Triangle-free graphs NP-c [58] NP-c [9, 55] NP-c [50]
Bipartite graphs NP-c [6, 58] NP-c [9, 39, 55] P [25]
Claw-free graphs ? NP-c [37] P [44, 46, 51]
Line graphs ? NP-c [37] P [44, 46, 51]
Chordal graphs P [11] P [9] P [25]
Weakly chordal graphs P [11] P [12] P [25]
Circular-arc graphs P [11] P [24] P [43]
AT-free graphs P [11] P [10, 14] P [8]
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The rest of this paper is organized as follows. In Section 2, it is shown that the Maxi-
mum Dissociation Set problem is NP-complete for line graphs and therefore for claw-
free graphs. In Section 3, we consider some polynomially solvable cases of the Maximum
Dissociation Set problem. In Section 4, we show that the Minimum Maximal Dissoci-
ation Set problem is NP-complete for weakly chordal graphs. Finally, inapproximability
results for the dissociation set problems under consideration are given in Section 5.

2. Complexity of the maximum dissociation set problem for line graphs

An interesting special case of the Maximum Dissociation Set problem arises when
the input graph is a line graph. We show that this special case is NP-complete (Theorem 1)
by a polynomial-time reduction from a variant of the following decision problem.

Partition into Isomorphic Subgraphs
Instance: Graphs G and H with |V (G)| = q|V (H)| for some positive integer q.
Question: Does G have a partition into subgraphs H, i.e., is there a partition ∪q

i=1Vi of
V (G) such that G(Vi) contains a subgraph isomorphic to H for all i = 1, 2, . . . , q?

It is well-known that this problem is NP-complete for any fixed graph H that contains
a connected component of three or more vertices (Kirkpatrick and Hell [34, 35], see also
Garey and Johnson [21]).

Consider the special case of Partition into Isomorphic Subgraphs when H is the
graph P3: problem Partition into Subgraphs Isomorphic to P3. Recall that P3 is
a 3-path, i.e., a graph with the vertex set {u, v, w} and the edge set {uv, vw}.
Theorem 1. Maximum Dissociation Set is an NP-complete problem for line graphs.

Proof. Let G be a graph with |V (G)| = 3q for some positive integer q. To prove the
theorem, it suffices to show the following.

Claim 1. Graph G has a partition into subgraphs P3 if and only if the graph H = L(G)
has a dissociation set of a size of at least 2q.

Proof. It is easy and straightforward to verify that a set of q mutually vertex-disjoint
3-paths of the graph G corresponds precisely to an induced matching of size q in the line
graph H = L(G). Clearly, any induced matching is also a dissociation set. Thus, if G has
a partition into subgraphs P3, then H has a dissociation set of a size of at least 2q.

Conversely, suppose that the graph H = L(G) has a dissociation set D ⊆ V (H) of a size
of at least 2q. Let the induced subgraph H(D) consist of the disjoint union of the induced
matching M = {e1, e2, . . . , ea} of size a and the independent set S = {v1, v2, . . . , vb} of
size b, i.e., |D| = 2a + b. Notice that one of the sets M or S may be empty. The induced
matching M in the graph H corresponds precisely to a set M∗ = {p1, p2, . . . , pa} of mu-
tually vertex-disjoint 3-paths (not necessarily induced) in G. Let V (M∗) be the vertex
set of the 3-paths of M∗. Moreover, an independent set S in H corresponds precisely to
a matching S∗ = {l1, l2, . . . , lb} in G. Let V (S∗) be the vertex set of the edges of S∗.
Since D is a dissociation set, the sets V (M∗) and V (S∗) are disjoint. Indeed, if any two
vertices, one from the path pi ∈ M∗ (1 6 i 6 a) and the other one from the edge lj ∈ S∗
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(1 6 j 6 b) are identical, then an end-vertex of ei ∈ M would be adjacent to vertex vj ∈ S.
This contradicts the fact that ei and vj are a part of the dissociation set D.

Let c = |V (G) \ (V (M∗) ∪ V (S∗))|. Assume on the contrary that G does not have a
partition into subgraphs P3. In this case, either b > 0 or c > 0 holds. Thus, we have

|V (G)| = 3a + 2b + c < 3a + 2b + c + (b + 2c) = 3(a + b + c).

Since |V (G)| = 3q, we obtain q < a + b + c. This, in turn, implies that

|D| = 2a + b = 3a + 2b + c− (a + b + c) < 3q − q = 2q,

i.e., |D| < 2q. Hence, we arrive at a contradiction to the condition that the dissociation
set D has a size of at least 2q. ¤

This finishes the proof of the theorem. ¤
The results of Orlovich et al. [47] (see Lemma 1 with Remark 2 and Theorem 2 in [47])

imply the following lemma.

Lemma 1 ([47]). Partition into Subgraphs Isomorphic to P3 is an NP-complete
problem for planar bipartite graphs of a maximum vertex degree of 4 in which every vertex
of degree 4 is a cut-vertex.

Sedláček [54] proved that the line graph L(G) of a planar graph G is planar if and only
if the maximum vertex degree of G is at most 4 and every vertex of degree 4 is a cut-
vertex. Thus, combining the proof of Theorem 1 with Lemma 1, we immediately obtain
the following result.

Theorem 2. Maximum Dissociation Set is NP-complete for planar line graphs of
planar bipartite graphs with a maximum vertex degree of 4.

Obviously, Theorem 2 holds for the class of line graphs of bipartite graphs. This class
can be characterized in terms of forbidden induced subgraphs: a graph G is the line graph
of a bipartite graph if and only if G does not contain K1,3, K4 − e and C2n+1 (n > 2)
as induced subgraphs, see Harary and Holzmann [29]. Thus, Theorem 2 shows that the
Maximum Dissociation Set problem is NP-complete for (K1,3, K4 − e, C2n+1 : n > 2)-
free graphs.

Corollary 1. Maximum Dissociation Set is NP-complete for (K1,3,K4 − e, C2n+1 :
n > 2)-free graphs.

3. Some polynomially solvable cases

In this section, we describe new polynomially solvable cases of the Maximum Dissoci-
ation Set problem. The first of them deals with the subclass of chair-free graphs, namely
(G1, G2, G3)-free graphs (see Fig. 2). A chair is the graph consisting of the vertices a, b1,
b2, b3, c and the edges ab1, ab2, ab3, cb3 (see the graph G1 in Fig. 2).

Remind that the Maximum Weight Independent Set problem (in optimization
form) is the following. Given a graph G and a nonnegative weight function w on V (G),
determine an independent set of G having a maximum weight (where the weight of an
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independent set S is given by the sum of the weights w(v) of each v ∈ S). Let αw(G)
denote the weight of a maximum weight independent set of G.

Fig. 2. Graphs G1 (chair), G2 and G3.

Consider the following construction due to Lozin and Rautenbach [42]. For a graph G,
let G∗ denote the graph with the vertex set V (G∗) = V (G)∪E(G) such that two vertices
u, v ∈ V (G∗) are adjacent in G∗ if and only if either

1. u, v ∈ V (G) and uv ∈ E(G) or
2. u ∈ V (G), v = xy ∈ E(G) and NG(u) ∩ {x, y} 6= ∅ or
3. u = xy ∈ E(G), v = zt ∈ E(G) and (NG(x) ∪NG(y)) ∩ {z, t} 6= ∅.
An example of a graph G∗ is shown in Fig. 3 for G = P5. Here V (P5) = {1, 2, 3, 4, 5}

and E(P5) = {12, 23, 34, 45}. Notice that the subgraph of G∗ induced by V (G) coincides
with G, while the subgraph of G∗ induced by E(G) coincides with (L(G))2 [42].

Fig. 3. Graphs P5 and P ∗5 .

Assign to each vertex v of G∗ such that v ∈ V (G) the weight w(v) = 1 and to each of
the remaining vertices of G∗ the weight 2. Lozin and Rautenbach [42] showed that the
following statement holds.

Lemma 2 ([42]). An independent set of maximum weight in G∗ corresponds to a maximum
dissociation set in G. In particular, αw(G∗) = diss+(G).

For many classes G of graphs (e.g. chordal and weakly chordal graphs, interval-filament
graphs, and AT-free graphs), it has been proved that, if a graph G is in the class G, then the
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graph G∗ is also in G, see Cameron and Hell [11]. Since the time required for constructing
the graph G∗ is polynomial in the size of the graph G, and since finding the maximum
weight independent set for the above mentioned classes can be done in polynomial time
(see e.g. [8, 22, 23, 52]), one can obtain polynomial-time algorithms for the Maximum
Dissociation Set problem for chordal graphs, weakly chordal graphs, interval-filament
graphs, and AT-free graphs [11]. On the other hand, the class of all chair-free graphs
is not closed under the transformation G 7→ G∗ and therefore, we cannot apply known
algorithms (see e.g. [40]) for the Maximum Weight Independent Set problem within
chair-free graphs to find a maximum dissociation set in a graph from this class.

Using the construction introduced by Lozin and Rautenbach [42], we prove the following
characterization theorem. In the proof of this theorem, for the sake of simplicity, a sub-
graph of G induced by a vertex set {v1, v2, . . . , vk} ⊆ V (G) is denoted by G(v1, v2, . . . , vk)
instead of G({v1, v2, . . . , vk}). Moreover, the notation u ∼ v (u 6∼ v, respectively) means
that the vertices u and v are adjacent (nonadjacent, respectively). For disjoint sets of
vertices U and W , the notation U ∼ W (U 6∼ W , respectively) means that every vertex of
U is adjacent (nonadjacent, respectively) to every vertex of W . In the case when U = {u},
we also write u ∼ W and u 6∼ W instead of {u} ∼ W and {u} 6∼ W , respectively.

Theorem 3. The graph G∗ of a graph G is chair-free if and only if G is (G1, G2, G3)-free.

Proof. The necessity of the condition follows from the observation that each of the graphs
G∗

1, G∗
2 and G∗

3 contains an induced subgraph which is isomorphic to the chair.
To see the sufficiency, let G be a (G1, G2, G3)-free graph. We claim that G∗ is a chair-

free (i.e., G1-free) graph. Assume to the contrary that this is not the case. Then there is
a set {a, b1, b2, b3, c} ⊆ V (G∗) which induces a chair G1 in G∗, see Fig. 2. Recall that by
the definition of G∗, there exists a partition V (G∗) = V0 ∪ V1 such that both G∗(V0) = G
and G∗(V1) = (L(G))2 hold. Furthermore, it is known that V0 = V (G) and V1 = E(G).
We consider the two possible cases a ∈ V0 and a ∈ V1.

Case 1. a ∈ V0. Hence, in this case, a is a vertex of the graph G. Our further discussion
is split into twelve (up to symmetry) possible subcases.

Subcase 1.1. b1, b2, b3, c ∈ V0. This, however, implies that G(a, b1, b2, b3, c) = G1, which
is a contradiction.

Subcase 1.2. b1, b2, b3 ∈ V0 and c ∈ V1. In this case, c is an edge of the graph G, say
c = xy. Since {a, c} is a dissociation set in G, it follows that a, b1, b2 and b3 are not
the end-vertices of the edge xy. Due to the same reason and since {b1, b2, c} is also a
dissociation set in G, we have {a, b1, b2} 6∼ {x, y}. Notice that at least one of the vertices
x, y is adjacent to b3 in G. Without loss of generality, suppose that x ∼ b3. Now it is
clear that G(a, b1, b2, b3, x) = G1, which is a contradiction.

Subcase 1.3. b1, b2, c ∈ V0 and b3 ∈ V1. In this case, b3 is an edge of the graph G, say
b3 = xy. Since {b1, b2, b3} is a dissociation set in G, it follows that the vertices a, b1 and b2

are not incident with xy and moreover, {b1, b2} 6∼ {x, y}. Notice that there is an edge in
G connecting a and {x, y}. Without loss of generality, suppose that a ∼ x. If a 6∼ y, then
G(a, b1, b2, x, y) = G1, which is a contradiction. Hence a ∼ y and so c is not incident with
xy. Notice that vertex c is adjacent to some vertex of {x, y} in G. Assume by symmetry
that c ∼ x. Then G(a, b1, b2, x, c) = G1, which again gives a contradiction.
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Subcase 1.4. b1, b2 ∈ V0 and b3, c ∈ V1. In this case, both b3 and c are edges of the graph
G, say b3 = xy and c = zt. Notice that the vertices a, b1 and b2 are not incident with
the edges xy and zt since {b1, b2, c} and {b1, b2, b3} are dissociation sets in G. Due to the
same reason and since {a, c} is also a dissociation set in G, we have {b1, b2} 6∼ {x, y, z, t}
and a 6∼ {z, t}. Proceeding as in Subcase 1.3, we first see that a ∼ {x, y} and therefore,
the edges xy and zt are not adjacent in G. Next, without loss of generality, we find that
x ∼ z. Hence G(a, b1, b2, x, z) = G1, which is a contradiction.

Subcase 1.5. b1, b3, c ∈ V0 and b2 ∈ V1. In this case, b2 is an edge of the graph G, say
b2 = xy. It is easy to check that the vertices a, b1, b3 and c are not incident with xy and
moreover, {b1, b3, c} 6∼ {x, y}. Notice that there is an edge in G connecting a and {x, y}.
Assume by symmetry that a ∼ x. Then G(a, b1, x, b3, c) = G1, which is a contradiction.

Subcase 1.6. b1, b3 ∈ V0 and b2, c ∈ V1. In this case, both b2 and c are edges of
the graph G, say b2 = xy and c = zt. Since {b2, c} is an induced matching in G, we
have {x, y} 6∼ {z, t}. The vertices a, b1, b3 are not incident with the edges xy and zt since
{b1, b2, b3} and {a, c} are dissociation sets in G. Furthermore, we also have {b1, b3} 6∼ {x, y}
and {a, b1} 6∼ {z, t}. Since a ∼ b2 (b3 ∼ c, respectively) in the chair G1 (see Fig. 2),
there is an edge in the graph G connecting a and {x, y} (an edge connecting b3 and {z, t},
respectively). Without loss of generality, let a ∼ x and b3 ∼ z. Then G(a, b1, x, b3, z) = G1,
which is a contradiction.

Subcase 1.7. b1, c ∈ V0 and b2, b3 ∈ V1. In this case, both b2 and b3 are edges of
the graph G, say b2 = xy and b3 = zt. Since {b2, b3} is an induced matching in G,
{x, y} 6∼ {z, t}. It is easy to verify that the vertices a, b1, c (the vertices a, b1, respectively)
cannot be incident with the edge xy (the edge zt, respectively). Moreover, b1 6∼ {x, y, z, t}
and c 6∼ {x, y}. Notice that vertex a is adjacent to some vertex of {x, y} in G. Without
loss of generality, suppose a ∼ x. Arguing similarly as in the proof of Subcase 1.3, one
can show that a ∼ {z, t} and therefore, c is not incident with the edge zt. Next, without
loss of generality, we find that c ∼ z. However, then G(a, b1, x, z, c) = G1, which is a
contradiction.

Subcase 1.8. b1 ∈ V0 and b2, b3, c ∈ V1. In this case, the graph G has the edges b2 = xy,
b3 = zt and c = uv. Notice that the vertices a, b1 cannot be incident with each of the
edges xy, zt or uv since {a, c}, {b1, b2} and {b1, b3} are dissociation sets in G. Moreover,
b1 6∼ {x, y, z, t, u, v} and a 6∼ {u, v}. In addition, we have {x, y} 6∼ {z, t, u, v} since {b2, b3}
and {b2, c} are induced matchings in G. Since a ∼ {b2, b3} in the chair G1 (see Fig. 2),
there are an edge in the graph G connecting a and {x, y} and an edge connecting a and
{z, t}. Assume by symmetry that a ∼ {x, z}. As in the previous subcases, one can show
that a ∼ t and therefore, the edges zt and uv are not adjacent in G. Next, without
loss of generality, we obtain that u ∼ z. However, then G(a, b1, x, z, u) = G1, which is a
contradiction.

Subcase 1.9. b3, c ∈ V0 and b1, b2 ∈ V1. In this case, the graph G has the edges b1 = xy
and b2 = zt. Moreover, these edges constitute an induced matching in G. Notice that
the vertices a, b3, c cannot be incident with each of the edges xy or zt since both sets
{b1, b2, b3} and {b1, b2, c} are dissociation sets in G. Due to the same reason, we have
{b3, c} 6∼ {x, y, z, t}. Since a ∼ {b1, b2} in the chair G1 (see Fig. 2), there are an edge in
the graph G connecting a and {x, y} and an edge connecting a and {z, t}. Suppose without
loss of generality that a ∼ {x, z}. Then G(a, x, z, b3, c) = G1, which is a contradiction.
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Subcase 1.10. b3 ∈ V0 and b1, b2, c ∈ V1. In this case, the graph G has the edges b1 = xy,
b2 = zt and c = uv, which constitute an induced matching in G. It is easy to verify that
the vertices a, b3 cannot be incident with each of the edges xy, zt or uv. Furthermore,
we have b3 6∼ {x, y, z, t} and a 6∼ {u, v}. Since a ∼ {b1, b2} and b3 ∼ c in the chair G1

(see Fig. 2), without loss of generality, we may assume that a ∼ {x, z} and b3 ∼ u in G.
Obviously, then G(a, x, z, b3, u) = G1, which is a contradiction.

Subcase 1.11. c ∈ V0 and b1, b2, b3 ∈ V1. In this case, the graph G has the edges
b1 = xy, b2 = zt and b3 = uv, which constitute an induced matching in G. It is easy to
verify that the vertex a cannot be incident with each of these edges, whereas the vertex c
cannot be incident with the edges xy and zt. Furthermore, we have c 6∼ {x, y, z, t}. Since
a ∼ {b1, b2, b3} in the chair G1 (see Fig. 2), without loss of generality, we may assume that
a ∼ {x, z, u}. If a 6∼ t, then G(a, x, u, z, t) = G1, which is a contradiction. Therefore, it
follows that a ∼ t. Similarly, one can show that a ∼ v and so vertex c cannot be incident
with the edge uv in G. Next, without loss of generality, we obtain that c ∼ u. However,
then G(a, x, z, u, c) = G1, which again gives a contradiction.

Subcase 1.12. b1, b2, b3, c ∈ V1. In this case, b1, b2, b3 and c are edges in the graph
G. Let b1 = xy, b2 = zt, b3 = uv and c = sw. Notice that the vertex a cannot be
incident with each of these edges since {b1, b2, b3} and {b1, b2, c} are induced matchings
in G. Furthermore, we have a 6∼ {s, w}. Since a ∼ {b1, b2, b3} in the chair G1 (see
Fig. 2), without loss of generality, we may assume that a ∼ {x, z, u}. Proceeding as in
Subcase 1.11, we see that a ∼ {t, v} and therefore, the edges uv and sw are not adjacent
in G. Next, without loss of generality, we find that s ∼ u. Hence G(a, x, z, u, s) = G1,
which is a contradiction.

Case 2. a ∈ V1. Hence, a is an edge of the graph G. Let V ′ ⊆ V (G) be the set of all
vertices (including the end-vertices of the edges) which are contained in {a, b1, b2, b3, c}. As
in Case 1, there are twelve (up to symmetry) possible subcases beginning with b1, b2, b3, c ∈
V0 and finishing with b1, b2, b3, c ∈ V1. We will not present the proof of the theorem for all
subcases since the basic idea of the proof is the same in each of these twelve subcases (by
considering the subgraph F of G induced by V ′ and detecting in F one of the forbidden
induced subgraphs G1, G2 or G3) and due to space considerations. Thus, we restrict the
proof to the following two nontrivial subcases.

Subcase 2.1. b1, b2, b3, c ∈ V0. In this case, b1, b2, b3 and c are vertices in the graph G,
whereas a = xy is an edge in G. Since {a, c} is a dissociation set in G, it follows that the
vertices b3, c are not incident with xy and moreover, c 6∼ {x, y}. We claim that neither b1

nor b2 is incident with the edge xy. Assume to the contrary that without loss of generality
b1 = x. Since a ∼ {b2, b3} in the chair G1 (see Fig. 2), we have the only possibility that
y ∼ {b2, b3}. However, then G(y, x, b2, b3, c) = G1, which is a contradiction. Therefore,
the vertices b1, b2 are not incident with xy.

We denote by F the subgraph of G induced by {b1, b2, b3, c, x, y}. Since a ∼ b3 in the
chair G1 (see Fig. 2), without loss of generality, we may assume that y ∼ b3. Moreover,
since a ∼ {b1, b2} in the chair G1, there are an edge in the graph G connecting b1 and {x, y}
and an edge connecting b2 and {x, y}. Note that y ∼ {b1, b2} leads to a contradiction since
in that case, F − x is isomorphic to G1. Similarly, if x ∼ {b1, b2, b3}, the graph F − y is
isomorphic to G1, which again gives a contradiction. Table 2 shows all remaining (up to
symmetry) variants for the undefined edges b1x, b1y, b2x, b2y and b3x.
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Table 2. Remaining variants for the undefined edges in Subcase 2.1.

b1x b1y b2x b2y b3x Forbidden induced subgraph
No Yes Yes No No F − b2 is isomorphic to G1

Yes No Yes No No F − c is isomorphic to G1

Yes No Yes Yes No F is isomorphic to G3

No Yes Yes No Yes F is isomorphic to G2

Thus, we have contradictions in all cases displayed in Table 2 and therefore, Subcase 2.1
is completed.

Subcase 2.2. b1, b2, b3, c ∈ V1. In this case, the set {a, b1, b2, b3, c} induces the chair G1

in (L(G))2 since G∗(V1) = (L(G))2. In fact, Orlovich and Zverovich [49] proved that the
graph (L(G))2 is chair-free if and only if the graph G is (H1,H2, . . . , H30)-free (see Fig. 4).

Fig. 4. Graphs H1 −H30.

Notice that each of the graph Hi (1 6 i 6 30) contains at least one of the graphs G1,
G2 or G3 as an induced subgraph. Thus, we arrive at a contradiction to the condition
that G is (G1, G2, G3)-free. This completes the proof of Subcase 2.2. ¤

Based on the technique of modular decomposition (see e.g. [7]), the following statement
has been proved by Lozin and Milanič [40].

Theorem 4 ([40]). The Maximum Weight Independent Set problem can be solved
in polynomial time in the class of chair-free graphs.

Lemma 2 and Theorems 3 and 4 imply the following result.
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Theorem 5. The Maximum Dissociation Set problem can be solved in polynomial time
in the class of (G1, G2, G3)-free graphs.

Theorem 5 implies the following interesting corollary.

Corollary 2. The Maximum Dissociation Set problem can be solved in polynomial
time in the class of (chair,bull)-free graphs and in particular, in the class of (claw, bull)-
free graphs, where the graph bull is shown in Fig. 5.

Fig. 5. Graph bull.

Notice that the only triangle-free graph in Fig. 2 is the chair G1. Thus, we have the
following corollary of Theorem 5.

Corollary 3. The Maximum Dissociation Set problem can be solved in polynomial
time for (chair,K3)-free graphs.

Using a similar technique as in the proof of Theorem 3, the following statement can be
easily derived (we omit the proof).

Theorem 6. Let m > 2 be an integer. The graph G∗ of a graph G is mK2-free if and
only if G is mK2-free.

A general result of Balas and Yu [4] (see also Alekseev [1]) implies that the number
of maximal independent sets in mK2-free graphs (for fixed m > 2) is bounded by a
polynomial of the graph vertex number. Using an algorithm of Tsukiyama et al. [56],
these sets for a graph G can be listed in O(nmN) time, where n = |V (G)|, m = |E(G)|
and N is the total number of maximal independent sets. Thus, the Maximum Weight
Independent Set problem for mK2-free graphs can be solved in polynomial time by
means of this algorithm. So, using Lemma 2 and Theorem 6, we have the following
corollary.

Corollary 4. For any fixed integer m > 2, the Maximum Dissociation Set problem
can be solved in polynomial time in the class of mK2-free graphs.

For some classes of graphs, we can specify the complexity of finding the maximum
dissociation number (Theorem 7 and Corollary 5). Remind that a simple path in a graph
is called Hamiltonian if it contains all vertices of the graph.

Theorem 7. Let G be a graph with n vertices and containing a Hamiltonian path. Then

diss+(L(G)) =
⌊2n

3

⌋
.
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Proof. First, we show that diss+(H) > b2n/3c, where H = L(G). As mentioned in the
proof of Claim 1, a dissociation set in the graph H corresponds precisely to the disjoint
union of a set M of mutually vertex-disjoint 3-paths (not necessarily induced) and a set
S of mutually nonadjacent edges (i.e., a matching) in the graph G. Notice that one of the
sets M or S may be empty. Grouping as far as possible successive vertices in a Hamiltonian
path of the graph G into paths with three vertices and taking into account in the case of
n ≡ 2(mod 3) the two remaining vertices of the Hamiltonian path, we construct the set
M consisting of q mutually vertex-disjoint 3-paths and (in the case of n ≡ 2(mod 3)) the
set S consisting of exactly one edge, here q is the quotient when n is divided by 3. Let
D be the dissociation set in H corresponding to the set M ∪ S in G. Then |D| = 2q, if
n = 3q or n = 3q + 1, and |D| = 2q + 1, if n = 3q + 2. This implies that |D| = b2n/3c.
Since diss+(H) > |D|, we have diss+(H) > b2n/3c.

Conversely, let D be a maximum dissociation set in the graph H, i.e., diss+(H) = |D|.
As in the proof of Claim 1, suppose that the induced subgraph H(D) consists of a copies
of K2 and b copies of K1, i.e., H(D) = aK2 ∪ bK1, where a + b > 0. Then, in the graph
G, the set D corresponds precisely to the disjoint union M∗ ∪ S∗ such that M∗ is the set
of a mutually vertex-disjoint 3-paths and S∗ is the set of b mutually nonadjacent edges.
Let c denote the number of vertices in G belonging neither to the 3-paths of M∗ nor to
the edges of S∗. Then

n = 3a + 2b + c 6 3a + 2b + c + (b + 2c) = 3(a + b + c),

which implies that a + b + c > n/3. Since diss+(H) = |D| and |D| = 2a + b, it follows by
the last inequality that

diss+(H) = 2a + b = 3a + 2b + c− (a + b + c) 6 n− n

3
=

2n

3
.

Comparing the last inequality with diss+(H) > b2n/3c, we have diss+(H) = b2n/3c. ¤
By means of Theorem 7, we obtain the following corollary.

Corollary 5. The maximum dissociation number can be computed in linear time in the
class of line graphs of graphs having a Hamiltonian path.

Proof. Let H be the class of line graphs of graphs having a Hamiltonian path and let
H ∈ H. There is an algorithm that runs in O(|V (H)| + |E(H)|) time and generates a
graph G such that H = L(G) (see e.g. [38]). By Whitney’s theorem [57], it follows that
the graph G is unique if H has no component that is isomorphic to K3. Obviously, if
H = K3, then diss+(H) = 2. Thus, if |V (H)| > 4, we can find the number of vertices
of the graph G in linear time. From Theorem 7, it follows that diss+(H) = b2|V (G)|/3c,
and hence, we can find the maximum dissociation number of graph H in linear time. ¤
Remark 1. We showed in the proof of Corollary 5 that one can find in polynomial time
the maximum dissociation number diss+(H) of the line graph H of a graph having a
Hamiltonian path. An interesting question is whether an algorithm with polynomial-time
complexity may exist for finding a maximum dissociation set D in the graph H, i.e., a
dissociation set D ⊆ V (H) such that |D| = diss+(H). Notice that the previous results do
not provide a natural way to ask such a question.
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4. The minimum maximal dissociation set problem

In this section, we show that the Minimum Maximal Dissociation Set problem is
NP-complete for weakly chordal graphs. The class of weakly chordal graphs, introduced
in [31], is a well-studied class of perfect graphs, see e.g. [32].

For the proof of NP-completeness, we will use a polynomial-time reduction from the
well-known NP-complete problem 3-Satisfiability, abbreviated as 3-Sat (Cook [16], see
also Garey and Johnson [21]).

3-Sat
Instance: A collection C = {c1, c2, . . . , cm} of clauses over a set X = {x1, x2, . . . , xn} of

0− 1 variables such that |cj | = 3 for j = 1, 2, . . . , m.
Question: Is there a truth assignment for X that satisfies all the clauses in C?

Theorem 8. Minimum Maximal Dissociation Set is NP-complete for weakly chordal
graphs.

Proof. Clearly, the problem is in NP. To show that it is NP-complete, we establish a
polynomial-time reduction from 3-Sat. Let C = {c1, c2, . . . , cm} and X = {x1, x2, . . . , xn}
be an instance of 3-Sat. We construct a graph G = G(C,X) in the following way:

• For each variable xi, we construct a graph Fi as follows. First, take an edge xixi,
where the end-vertices xi and xi of the edge are called the literal vertices. Then
add a triangle (yi, yi, zi, yi) and join xi to yi and xi to yi, respectively. Thus, Fi is
isomorphic to the graph P 5, where P 5 is the complement of the path P5.

• For each clause cj , we construct a graph consisting of one vertex cj , where cj is
called the clause vertex. The set C ′ = {c1, c2, . . . , cm} of all clause vertices induces
a complete subgraph in G.

• For each clause cj = (l1j ∨ l2j ∨ l3j ), introduce the three edges cjl
1
j , cjl

2
j and cjl

3
j

between the clause vertex cj and the corresponding three literal vertices l1j , l2j and
l3j from the set X ′ = ∪n

i=1V (Fi).

The graph G associated with the instance (C, X) of 3-Sat, where X = {x1, x2, x3,
x4, x5} and C = {c1 = (x1∨x2∨x3), c2 = (x2∨x3∨x4), c3 = (x1∨x3∨x5), c4 = (x3∨x4∨x5)}
is shown in Fig. 6.

Claim 2. The graph G = G(C,X) is weakly chordal.

Proof. To prove that the graph G is weakly chordal, we show that neither the graph G
nor the complement G of this graph has an induced cycle on five or more vertices.

First we show that the graph G is (Ck : k > 5)-free. Assume that we have an induced
cycle Ck (k > 5) in G. We cannot have V (Ck) ⊆ X ′ since X ′ induces n disjoint copies
of P 5 and the graph P 5 has no induced cycle on five or more vertices. Furthermore, we
cannot have V (Ck) ⊆ C ′ since C ′ induces a complete subgraph in G. It follows that
V (Ck)∩C ′ 6= ∅ and V (Ck)∩X ′ 6= ∅. We must have |V (Ck)∩C ′| 6 2 (otherwise, we have
a chord).

Let |V (Ck) ∩ C ′| = 2 and V (Ck) ∩ C ′ = {cp, cq}. The cycle Ck consists of two vertex-
disjoint chordless paths between cp and cq one of which is the edge cpcq. The second path
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Fig. 6. An illustration of the construction.

cannot include the vertices simultaneously from V (Fi) and V (Fj), i 6= j, since there are
no edges in the graph G between V (Fi) and V (Fj). Thus, V (Ck) \ {cp, cq} ⊆ V (Fi) for
some i, 1 6 i 6 n, and this gives either the chord xixi or the chord yiyi in Ck, which is
impossible.

Let |V (Ck) ∩ C ′| = 1 and V (Ck) ∩ C ′ = {cp}. Similarly, the cycle Ck cannot include
the vertices simultaneously from V (Fi) and V (Fj), i 6= j. Thus, V (Ck) \ {cp} ⊆ V (Fi) for
some i, 1 6 i 6 n, and this gives either the chord xixi or the chord yiyi in Ck, which is
impossible. Hence, graph G is (Ck : k > 5)-free.

Now we show that graph G is (Ck : k > 5)-free. In G, the set C ′ is an independent set,
each set V (Fi), i = 1, 2, . . . , n, induces a path P5 = (yi, xi, zi, xi, yi) and for i 6= j, each
vertex from V (Fi) is adjacent to every vertex of V (Fj). Each vertex in C ′ is necessarily
adjacent to the vertices yi, yi, zi and can be adjacent to the vertices xi, xi of each path
P5 = (yi, xi, zi, xi, yi).

Assume that there is an induced cycle Ck (with k > 5) in G. Notice that this cycle
cannot include the vertex cp ∈ C ′ and the two edges cpu and cpv, where u ∈ V (Fi),
v ∈ V (Fj) and i 6= j, since it creates the chord uv.

First, we show that the cycle Ck cannot use any two vertices cp and cq from C ′. Assume
to the contrary that {cp, cq} ⊂ V (Ck). Let the cycle Ck include the edges cpu, cpv, cqu

′,
cqv

′, where u, v ∈ V (Fi) and u′, v′ ∈ V (Fj).
If i 6= j, then u = xi, v = xi, u′ = xj and v′ = xj since otherwise, without loss of

generality, we would have u ∈ {yi, yi, zi}, and we have the chord cqu since cq is adjacent
to u. Since xi is adjacent both to xj and xj , then either uu′ or uv′ is a chord in Ck.

If i = j, then u 6= v, u′ 6= v′ but it can be that {u, v} ∩ {u′, v′} 6= ∅. If the cycle Ck

includes the edge cpu and vertex u is adjacent to cq in G, then the edge cqu belongs to
Ck since otherwise cqu is a chord in Ck. Thus, {u, v} * {yi, yi, zi} and {u′, v′} * {yi, yi,
zi}. Let u ∈ {yi, yi, zi}, then one of the vertices u′, v′ coincides with u, say vertex u′,
and v, v′ ∈ {xi, xi}. If v = v′, then |V (Ck)| = 4, which is a contradiction. If v 6= v′, then
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we have either the chord uv or the chord uv′ in Ck. It remains to consider the case when
u, v, u′, v′ ∈ {xi, xi} which also implies a contradiction since |V (Ck)| = 4.

Now we show that the cycle Ck cannot use exactly one vertex cp from C ′. Assume
to the contrary that cp ∈ V (Ck). Let the cycle Ck include the edges cpu and cpv, then
u, v ∈ V (Fi) for some i, 1 6 i 6 n. The cycle Ck cannot include any vertex from V (Fj),
j 6= i, since otherwise |V (Ck)| = 4 or we have a chord in Ck. Thus, V (Ck) ⊆ {cp} ∪ V (Fi)
and we arrive at a contradiction since any cycle of a length of at least 5 in the induced
subgraph G({cp} ∪ V (Fi)) has a chord.

We have shown that the cycle Ck (with k > 5) does not include any vertex from C ′ and
therefore, V (Ck) ⊆ X ′. Since G(V (Fi)) = P5, 1 6 i 6 n, and for i 6= j, each vertex from
V (Fi) is adjacent to every vertex of V (Fj), the cycles in G(X ′) without chords have four
vertices. This completes the proof of the claim. ¤

It is easy to see that the graph G can be constructed in polynomial time in m = |C|
and n = |X|. To complete the proof, it now suffices to show the following.

Claim 3. There exists a satisfying truth assignment for C if and only if G has a maximal
dissociation set of size 2n.

Proof. First, suppose that there exists a truth assignment φ satisfying C. We construct a
dissociation set D in G as follows. If φ(xi) = 1, then include the vertices xi and yi into D;
otherwise, the vertices xi and yi are included into D. Clearly, D is a maximal dissociation
set of size 2n in G.

Conversely, suppose that D is a maximal dissociation set with |D| = 2n. Note that any
maximal dissociation set in G contains at least two vertices of each graph Fi, i = 1, 2, . . . , n.
Indeed, if this maximal dissociation set does not contain the vertices xi and xi of Fi, then
it contains two vertices of the set {yi, yi, zi} ⊂ V (Fi). On the other hand, if it contains at
least one of the vertices xi or xi of Fi, then it contains zi. Since |D| = 2n, the maximal
dissociation set D contains exactly two vertices of each graph Fi, i = 1, 2, . . . , n, and it
does not contain any cj , j = 1, 2, . . . ,m. Specifically, we can have one of the following
three variants: D ∩ V (Fi) = {xi, yi}, D ∩ V (Fi) = {xi, yi} or D ∩ V (Fi) = {yi, yi}.

Consider a clause vertex cj and the corresponding three literal vertices l1j , l2j and l3j
from ∪n

i=1V (Fi). Let l1j ∈ V (Fp), l2j ∈ V (Fq) and l3j ∈ V (Fr), where 1 6 p, q, r 6 n and
p 6= q 6= r 6= p. It cannot be that D ∩ V (Fi) = {yi, yi} for each i = p, q, r simultaneously.
Otherwise, D is not maximal since we can include cj into D. Thus, for at least one
i ∈ {p, q, r}, we have D ∩ V (Fi) = {xi, yi} or D ∩ V (Fi) = {xi, yi}. It follows that we can
construct a satisfying truth assignment φ to C by setting φ(xi) = 1 if D∩V (Fi) = {xi, yi},
and φ(xi) = 0 otherwise. ¤

This completes the proof of the theorem. ¤

Since the graphs G(C,X) appearing in the proof of Theorem 8 are clearly (K1,5, 2P5)-free,
we obtain the following corollary.

Corollary 6. Minimum Maximal Dissociation Set is NP-complete for (K1,5, 2P5)-free
weakly chordal graphs.
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5. Inapproximability of dissociation set problems

The optimization version of the Maximum Dissociation Set (the Minimum Maxi-
mal Dissociation Set, respectively) problem asks for a maximum (minimum maximal,
respectively) dissociation set in a graph G. In the following, we use the notations Maxi-
mum Dissociation Set and Minimum Maximal Dissociation Set when we refer also
to the optimization versions of the problems.

In this section, we show that dissociation set problems are hard to approximate: for
Minimum Maximal Dissociation Set within the class of bipartite graphs and for Max-
imum Dissociation Set for arbitrary graphs.

Recall that an algorithm is an f(n)-approximation algorithm for a minimization (max-
imization, respectively) problem if for each instance x of a problem of size n, it returns a
solution y with a value m(x, y) such that m(x, y)/opt(x) 6 f(n) (opt(x)/m(x, y) 6 f(n),
respectively), where opt(x) is the value of the optimum solution of x. An algorithm is a
constant approximation algorithm if f(n) is a constant. If an NP-optimization problem
(i.e., its decision version is in NP) admits a polynomial-time f(n)-approximation algo-
rithm, we say that it is approximable within a factor of f(n).

To prove the hardness of an approximation for a given NP-optimization problem, the
most common approach is to establish a gap-preserving reduction from a problem known to
be NP-hard (or hard to approximate) to the problem under consideration (for more details,
see e.g. [3]). Often, for proving inapproximability results, a technique for a duplication
of graph vertices is used (see e.g. [17, 26, 33, 47, 48]). We introduce the following graph
transformation (transformation of a graph G with a fixed vertex v into a graph Fv by the
duplication of vertex v). Given a graph G, let Op be an edgeless graph with p vertices,
p > 1, such that V (G) ∩ V (Op) = ∅. For a fixed vertex v ∈ V (G), define a graph Fv as
follows. Let V (Fv) = (V (G) ∪ V (Op)) \ {v}. The vertices x and y are adjacent in Fv if
and only if (i) the vertices x and y are adjacent in G, (ii) the vertices x and v are adjacent
in G and y ∈ V (Op). We say that the graph Fv is obtained from graph G as a result of
a p-duplication of vertex v. Notice that Fv can also be considered as the graph obtained
from graph G by adding p − 1 new vertices which are adjacent to the vertices of the set
NG(v) and which are not adjacent to each other.

First, we prove the following fact.

Lemma 3. For each instance (C,X) of 3-Sat with a set C of m clauses and a set X of n
variables and for each positive integer t, there exists a bipartite graph G on 3n + 2tn(n +
m) vertices such that the following property holds for the minimum maximal dissociation
number:

diss−(G)

{
6 2n, if C is satisfiable,
> 2nt, if C is not satisfiable.

Proof. Let C = {c1, c2, . . . , cm} and X = {x1, x2, . . . , xn} be an instance of 3-Sat. Con-
sider a graph H(C,X) which is constructed in the following way:

• For each variable xi, we construct a graph Hi as follows. First, take the path
(xi, yi, xi) on three vertices, where the end-vertices xi and xi of the path are the
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literal vertices. Then add the vertex zi and join yi to zi. Thus, Hi is isomorphic to
the graph K1,3.

• For each clause cj , we construct a graph consisting of one vertex cj , where cj is the
clause vertex. The set {c1, c2, . . . , cm} of all clause vertices is an independent set in
H(C,X).

• For each clause cj = (l1j ∨ l2j ∨ l3j ), introduce the three edges cjl
1
j , cjl

2
j and cjl

3
j

between the clause vertex cj and the corresponding three literal vertices l1j , l2j and
l3j from ∪n

i=1V (Hi).

Let t > 1 be an integer. We construct a graph G = H(C,X),t obtained from graph H(C,X)

by a 2nt-duplication of each clause vertex cj , j = 1, 2, . . . , m, and each vertex zi ∈ Hi,
i = 1, 2, . . . , n. As a result of this 2nt-duplication of the vertices cj and zi, we obtain
the vertices cj,k and zi,k, k = 1, 2, . . . , 2nt, respectively. The graph G has the vertex set
C ′ ∪X ′ ∪ Y ∪ Z, where C ′ = {cj,k : j = 1, 2, . . . ,m, k = 1, 2, . . . , 2nt}, X ′ = {xi, xi : i =
1, 2, . . . , n}, Y = {yi : i = 1, 2, . . . , n} and Z = {zi,k : i = 1, 2, . . . , n, k = 1, 2, . . . , 2nt} are
disjoint sets. Thus, the graph G has 3n + 2tn(n + m) vertices and this graph is bipartite
with the parts C ′ ∪ Y and X ′ ∪ Z.

The graph G = H(C,X),t associated with an instance (C, X) of 3-Sat, where X =
{x1, x2, x3, x4, x5} and C = {c1 = (x1∨x2∨x3), c2 = (x2∨x3∨x4), c3 = (x1∨x3∨x5), c4 =
(x3 ∨ x4 ∨ x5)}, and t = 1 is shown in Fig. 7.

Fig. 7. An illustration of the construction.

The following statement holds.

Claim 4. If C is satisfiable, then diss−(G) 6 2n for G = H(C,X),t, otherwise diss−(G) >
2nt.

Proof. Assume that there exists a truth assignment φ satisfying C. We construct a disso-
ciation set D ⊂ X ′ ∪Y by choosing the n vertices from X ′ that correspond to true literals
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under φ and all vertices of the set Y . That is, if φ(xi) = 1, the vertices xi and yi are
included in D, otherwise the vertices xi and yi are in D.

Notice that the degree of each vertex in G(D) is equal to 1. Obviously, any vertex from
(X ′ \D) ∪ Z has a neighbor in D. Since φ satisfies all the clauses in C, every vertex in
C ′ has a neighbor in D. Thus, D is a maximal dissociation set in G. Since |D| = 2n and
diss−(G) 6 |D|, we have diss−(G) 6 2n.

On the other hand, suppose that C is not satisfiable. Consider any maximal dissociation
set D in G. It is sufficient to consider the case when D ∩ (X ′ ∪ Y ) 6= ∅, since otherwise
D = C ′ ∪ Z by maximality of D and we have |D| = 2nt(m + n) > 2nt.

Let D ∩ (X ′ ∪ Y ) 6= ∅. If D ∩X ′ = ∅ and D ∩ Y 6= ∅, then C ′ ⊂ D by the maximality
of D and we have |D| > |C ′| = 2mnt > 2nt. If D ∩X ′ 6= ∅ and D ∩ Y = ∅, then Z ⊂ D
by the maximality of D and we have |D| > |Z| = 2n2t > 2nt. It remains to consider
the case when D ∩ X ′ 6= ∅ and D ∩ Y 6= ∅. If yi 6∈ D for some i ∈ {1, 2, . . . , n}, then
{zi,k : k = 1, 2, . . . , 2nt} ⊂ D by the maximality of D and we have |D| > 2nt. It remains to
consider the case when yi ∈ D for each i, i = 1, 2, . . . , n. Then for every i, i = 1, 2, . . . , n,
we have only one of the three possibilities: {xi, yi} ⊂ D, or {xi, yi} ⊂ D, or {yi, zi,k} ⊂ D
for some k ∈ {1, 2, . . . , 2nt}.

Remind that C admits no truth assignment. This means that whatever assignment we
choose (i.e., whatever choice of 0 or 1 we make for each variable xi), there will be at least
one clause cj unsatisfied (i.e., the vertices cj,1, cj,2, . . . , cj,2nt will be not adjacent to the
vertices from D ∩X ′. Indeed, if for each j = 1, 2, . . . , m, there exists a vertex in D ∩X ′
which is adjacent to all vertices cj,1, cj,2, . . . , cj,2nt, then we construct a truth assignment φ
by setting φ(xi) = 1 if xi ∈ D, and φ(xi) = 0 otherwise. By the maximality of D and due
to yi ∈ D, i = 1, 2, . . . , n, we can introduce the vertices cj,1, cj,2, . . . , cj,2nt into D. Thus,
|D| > 2nt. ¤

This completes the proof of the lemma.
¤

Now we can present the following theorem.

Theorem 9. Assuming that P 6= NP, Minimum Maximal Dissociation Set for bi-
partite graphs cannot be approximated in polynomial time within a factor of p1−ε for any
constant ε > 0, where p denotes the number of vertices in the input graph.

Proof. For a constant ε > 0, we define s as follows: s = max{2, d3/εe}. Given an instance
(C, X) of 3-Sat with |C| = m and |X| = n, we set t = ns−2. Now we construct the
bipartite graph G = H(C,X),t as in the proof of Lemma 3 and prove the following claim.

Claim 5. Approximating diss−(G) for G = H(C,X),t within a factor of ns−2 is NP-hard.

Proof. By contradiction suppose that there exists a polynomial-time ns−2-approximation
algorithm for the optimization version of Minimum Maximal Dissociation Set within
the class of graphs G = H(C,X),t. Then we can use this algorithm to solve 3-Sat in
polynomial time which gives a contradiction to P 6= NP. Indeed, applying the algorithm
to G generates a dissociation set D. If C is satisfiable, then diss−(G) 6 2n by Lemma 3,
and therefore, |D| 6 ns−2diss−(G) 6 2ns−1. If C is not satisfiable, then diss−(G) > 2nt
by Lemma 3 and therefore, |D| > diss−(G) > 2ns−1 by the choice of t. Thus, by comparing
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2ns−1 with the size of the dissociation set found by the algorithm, we solve the satisfiability
of C in polynomial time. ¤

Now we estimate t = ns−2 in terms of p = |V (G)| = 3n + 2ns−1(n + m). For this
purpose, we may assume that n > 5 and n = m. Obviously, 3-Sat remains NP-complete
under these additional restrictions. Indeed, if n < m, we can add m− n dummy variables
which do not occur in any clause, and if m < n, we can add n − m trivially satisfiable
clauses. Using the assumption n = m, we have p > ns and

ns−2 =
p− 3n

2n(n + m)
=

p− 3n

4n2
>

p− 3n

4p2/s
.

Since p = 3n + 4ns, s > 2 and n > 5, we have p > 15n and therefore, p − 3n > 4
5p.

Dividing both sides of the last inequality by 4p2/s, we have
p− 3n

4p2/s
>

1
5
p1−2/s.

From p = 3n+4ns and n > 5, we have p > 5s and therefore, p1/s > 5. Taking into account
that 1/s = (1− 2/s)− (1− 3/s), we obtain

1
5
p1−2/s > p1−3/s

and hence
t = ns−2 > p1−3/s.

Since p1−3/s > p1−ε by the definition of s, approximating diss−(G) within a factor of p1−ε

is NP-hard according to Claim 5. The proof of the theorem is complete. ¤

The following corollary is an immediate consequence of Theorem 9.

Corollary 7. Minimum Maximal Dissociation Set is NP-complete for bipartite graphs.

Now we show that the Maximum Dissociation Set problem is hard to approximate
for arbitrary graphs by a reduction from the Maximum Independent Set problem.

H̊astad [30] proved that Maximum Independent Set cannot be approximated in
polynomial time within a factor of |V (G)|1−ε for each constant ε > 0 unless NP = ZPP.
Here, ZPP denotes the class of languages decidable by a random expected polynomial-
time algorithm that makes no errors. In view of the recent paper by Zuckerman [59],
who derandomized H̊astad’s randomized reduction, “unless NP = ZPP” in the above
inapproximability result for Maximum Independent Set can be changed to “unless
P = NP”, and we can pass to the following theorem.

Theorem 10. Assuming that P 6= NP, Maximum Dissociation Set cannot be approx-
imated in polynomial time within a factor of p1/2−ε for any constant ε > 0, where p is the
number of vertices in the input graph.

Proof. We construct a polynomial-time reduction from the Maximum Independent Set
problem for arbitrary graphs. Given a graph G with V (G) = {v1, v2, . . . , vn}, we construct
a new graph H by a 2-duplication of each vertex vi, i = 1, 2, . . . , n. Each vertex vi in G is
transformed into two vertices vi and v′i in H.
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Claim 6. The size of a maximum dissociation set of H is equal to the double size of a
maximum independent set of G, i.e., diss+(H) = 2α(G).

Proof. If S is a maximum independent set in G, then the set D = {vi, v
′
i : vi ∈ S} is an

independent set in H and therefore, it is a dissociation set in H. Thus, diss+(H) > |D| =
2|S| = 2α(G).

Conversely, let D be a maximum dissociation set of H, i.e., |D| = diss+(H). We can
construct an independent set S in G such that |S| = |D|/2 in the following way. Let
u ∈ D and deg u = 0 in the graph H(D). If u ∈ {vi, v

′
i} for some i, 1 6 i 6 n, then

both vertices vi and v′i are in D due to the maximality of the dissociation set D. In this
case, we include the vertex vi into S. Let u ∈ D with deg u = 1 in the graph H(D) and
w ∈ D be adjacent to u. Assume that u ∈ {vi, v

′
i} and w ∈ {vj , v

′
j} for some i and j,

1 6 i 6= j 6 n. In any case, we can suppose that either u = vi or w = vj and include
either vi or vj into S. Indeed, if u = v′i and w = v′j , we can replace the set D by the
dissociation set (D \ {v′i, v′j}) ∪ {vi, vj} with the same cardinality as D. Since D is a
dissociation set, the constructed set S is an independent set in G and |S| = |D|/2. Thus,
α(G) > |S| = diss+(H)/2, i.e., diss+(H) 6 2α(G).

As a result, we have diss+(H) = 2α(G). ¤

Since p = |V (H)| = 2|V (G)| and, unless P = NP, Maximum Independent Set cannot
be approximated in polynomial time within a factor of |V (G)|1−ε for each constant ε > 0,
we obtain that the Maximum Dissociation Set problem cannot be approximated in
polynomial time within a factor of (p/2)1−ε and therefore, within a factor of p1/2−ε. ¤

Notice that Theorems 9 and 10 give a negative answer to the question about the exis-
tence of approximation algorithms with a constant factor for the dissociation set problems.

6. Conclusion

In this paper, we considered the complexity of finding a dissociation set of maximum
size in line graphs and finding a maximal dissociation set of minimum size. We have shown
that the Maximum Dissociation Set problem is NP-complete for planar line graphs of
planar bipartite graphs with a maximum vertex degree of 4. On the other hand, we have
shown that the Maximum Dissociation Set problem can be solved in polynomial time
for some special classes of graphs, in particular, for (G1, G2, G3)-free graphs (see Fig. 2).
This class includes (chair, bull)-free and (claw, bull)-free graphs as proper subclasses.
Moreover, we have shown that the maximum dissociation number can be computed in
linear time in the class of line graphs of graphs having a Hamiltonian path.

The Minimum Maximal Dissociation Set problem has been shown to be NP-comp-
lete for weakly chordal graphs and for bipartite graphs. For further research, it is interest-
ing to establish the complexity of the Minimum Maximal Dissociation Set problem
for such structured classes of graphs as chordal graphs, comparability graphs, circular-arc
graphs, and AT-free graphs.

We have given a negative answer to the question about the existence of approximation
algorithms with a constant factor for the dissociation set problems provided that P 6= NP.



22 YURY ORLOVICH, ALEXANDRE DOLGUI, GERD FINKE, VALERY GORDON, FRANK WERNER

Namely, we have shown that for any constant ε > 0 (i) the Minimum Maximal Disso-
ciation Set problem is hard to approximate in polynomial time within a factor of n1−ε

even for bipartite graphs and (ii) the Maximum Dissociation Set problem is hard to
approximate in polynomial time for arbitrary graphs within a factor of n1/2−ε, where n
denotes the number of vertices in the graph.
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