
A Modification of Dynamic Programming
Algorithms to Reduce the Running Time or/and

Complexity

Evgeny R. Gafarov

Institute of Control Sciences of the Russian Academy of Sciences,
Profsoyuznaya st. 65, 117997 Moscow, Russia,

email: axel73@mail.ru

Alexander A. Lazarev

Institute of Control Sciences of the Russian Academy of Sciences,
Profsoyuznaya st. 65, 117997 Moscow, Russia,

Lomonosov Moscow State University,
Higher School of Economics – State University,

Moscow Institute of Physics and Technology – State University,
email: jobmath@mail.ru

Frank Werner

Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg,
PSF 4120, 39016 Magdeburg, Germany,

email: frank.werner@mathematik.uni-magdeburg.de

July 22, 2010

Abstract

In this paper, we present a modification of dynamic programming
algorithms (DPA), which we denote as graphical algorithms (GrA). For
the knapsack problem and some single machine scheduling problems,
it is shown that the time complexity of the GrA is less than the time
complexity of the standard DPA. Moreover, the average running time
of the GrA is often essentially smaller. A GrA can also solve large-
scale instances and instances, where the parameters are not integer. In
addition, for some problems, GrA has a polynomial time complexity
in contrast to a pseudo-polynomial complexity of DPA.

1

1 Introduction

Dynamic programming is a general optimization technique developed by Bell-
man [1]. It can be considered as a recursive optimization procedure which
interprets the optimization problem as a multi-step decision process. This
means that the problem is decomposed into a number of steps. In each step,
a decision has to be made which has an impact on the decision to be made
in later steps. By means of Bellman’s optimization principle [1], a recur-
sive equation is set up which describes the optimal criterion value in a given
step in terms of the optimal criterion values of the previously considered
step. Bellman’s optimality principle can be briefly formulated as follows:
Starting from any current step, an optimal policy for the subsequent steps
is independent of the policy adopted in the previous steps. In the case of a
combinatorial problem, in some step j sets of a particular size j are consid-
ered. To determine the optimal criterion value for a particular subset of size
j, one has to know the optimal values for all necessary subsets of size j − 1.
If the problem includes n elements, the number of subsets to be considered
is equal to O(2n). Therefore, dynamic programming usually results in an ex-
ponential complexity. However, if the problem considered is only NP -hard
in the ordinary sense, it is possible to derive pseudo-polynomial algorithms.

In this paper, we give the basic idea of a graphical modification of dy-
namic programming algorithms (DPA), which we denote as graphical al-
gorithms (GrA). This approach often reduces the number of states to be
considered in each step of a DPA. Moreover, in contrast to a classical DPA,
it can also treat problems with non-integer data without necessary transfor-
mations of the corresponding data. In addition, for some problems, a GrA
essentially reduces the time complexity.

We note that for the knapsack problem and for the single machine
weighted number of tardy jobs problem, dynamic programming algorithms
with the same idea like that used in a GrA are known (see e.g. [2, 3]). In such
a DPA, not all integer states t ∈ [0, A] are considered but only such states
which have different objective function values (here, A is the largest value of
a state to be considered, e.g. the capacity of the knapsack in the knapsack
problem). As a result, the time complexity of such a DPA is bounded by
O(nFopt), where Fopt is the optimal objective function value. However, these
algorithms can be useful only for problems with Fopt < A, otherwise this pro-
cedure has no advantage over the classical DPA. We generalize the idea of
such algorithms for an objective function, for which Fopt � A may hold (e.g.,
for the single machine total weighted tardiness maximization problem).

Moreover, in contrast to algorithms from [2, 3], this modification is also

2

useful for some special scheduling problems, where the starting time is vari-
able and one wishes to find all Pareto-optimal solutions (see Section 4.2).

This paper is organized as follows. In Section 2, we give the basic idea
of the GrA. Specific graphical algorithms are presented for the binary knap-
sack problem in Section 3 and for some single machine scheduling problems
in Section 4. In particular, for problem 1(nd)||max

∑
wjTj of maximizing

total weighted tardiness on a single machine, whose complexity status was
open up to now, we first give an NP -hardness proof and then a graphi-
cal algorithm. Here nd means that only non-delay schedules are considered
as feasible solutions. For the single machine problem 1(nd)||max

∑
Tj of

maximizing total tardiness, the resulting graphical algorithm improves the
complexity from O(n

∑
pj) to O(n2). Some concluding remarks are given in

Section 5.

2 Basic Idea of the Graphical Algorithm

Usually in a dynamic programming algorithm, we have to compute the value
fj(t) of a particular function for each possible state t at each stage (step) j
of a decision process, where t ∈ [0, A] and t ∈ Z. If this is done for any stage
j = 1, 2, . . . , n, where n is a size of the problem, the time complexity of such
a DPA is typically O(nA). However, often it is not necessary to store the
result for any integer state since in the interval [tl, tl+1), we have a functional
equation fj(t) = ϕ(t) for describing the best function value for a state t in
step j (e.g. fj(t) = kj · t+ bj , i.e., fj(t) is a continuous linear function when
allowing also real values t).

Assume that we have the following functional equations in a DPA for a
minimization problem, which correspond to Bellman’s recursive equations:

fj(t) = min

{
Φ1(t) = αj(t) + fj−1(t− aj), j = 1, 2, . . . , n;
Φ2(t) = βj(t) + fj−1(t− bj), j = 1, 2, . . . , n.

(1)

with the initial conditions

f0(t) = 0, for t ≥ 0,
f0(t) = +∞, for t < 0.

(2)

In (1), function Φ1(t) characterizes a setting xj = 1 while Φ2(t)
characterizes a setting xj = 0 representing a yes/no decision, e.g. for an
item, a job, etc. In step j, j = 1, 2, . . . , n, we compute and store the data

3

in the form given in Table 1.

Table 1: Computations in DPA
t 0 1 2 . . . y . . . A

fj(t) value0 value1 value2 . . . valuey . . . valueA
optimal partial
solution X(t)

X(0) X(1) X(2) . . . X(y) . . . X(A)

Here X(y), y = 0, 1, . . . , A, is a vector which describes an optimal partial
solution and which consists of j elements (values) x1, x2, . . . , xj ∈ {0, 1}.

However, this data can also be stored in a condense tabular form as
given in Table 2.

Table 2: Computations in GrA

t [t0, t1) [t1, t2) . . . [tl, tl+1) . . . [tmj−1, tmj]

fj(t) ϕ1(t) ϕ2(t) . . . ϕl+1(t) . . . ϕmj (t)

optimal partial solution X(t) X(t0) X(t1) . . . X(tl) . . . X(tmj−1)

Here, we have 0 = t0 < t1 < t2 < . . . < tmj = A. To compute function
fj+1(t), we compare two temporary functions Φ1(t) and Φ2(t) which are as
follows.

The function Φ1(t) is a combination of the terms αj+1(t) and fj(t−aj+1).
Function fj(t− aj+1) has the same structure as in Table 2, but all intervals
[tl, tl+1) have been replaced by [tl−aj+1, tl+1−aj+1), i.e., we shift the graph
of function fj(t) to the right by the value aj+1. If we can present function
αj+1(t) in the same form as in Table 2 with µ1 columns, we store function
Φ1(t) in the form of Table 2 with mj +µ1 columns. In an analogous way, we
store function Φ2(t) in the form of Table 2 with mj + µ2 columns.

Then we construct function

fj+1(t) = min{Φ1(t),Φ2(t)}.

For example, let the columns of Table Φ1(t) contain the intervals

[t10, t
1
1), [t

1
1, t

1
2), . . . , [t

1
(mj+µ1)−1, t

1
(mj+µ1)

]

and the columns of Table Φ2(t) contain the intervals

[t20, t
2
1), [t

2
1, t

2
2), . . . , [t

2
(mj+µ2)−1, t

2
(mj+µ2)

].

4

To construct function fj+1(t), we compare the two functions Φ1(t) and Φ2(t)
on each interval, which is formed by means of the points

{t10, t11, t12, . . . , t1(mj+µ1)−1, t
1
(mj+µ1)

, t20, t
2
1, t

2
2, . . . , t

2
(mj+µ2)−1, t

2
(mj+µ2)

},

and we determine the intersection points t31, t32, . . . , t3µ3 . Thus, in the table of
function fj+1(t), we have at most 2mj + µ1 + µ2 + µ3 ≤ A intervals.

In fact, in each step j = 1, 2, . . . , n, we do not consider all points t ∈
[0, A], t ∈ Z, but only points from the interval in which the optimal partial
solution changes or where the resulting functional equation of the objective
function changes. For some objective functions, the number of such pointsM
is small and the new algorithm based on this graphical approach has a time
complexity of O(nmin{A,M}) instead of O(nA) for the original dynamic
programming algorithm.

Moreover, such an approach has some other advantages.

1. The GrA can solve instances, where (some of) the parameters
aj , bj , j = 1, 2, . . . , n or/and A are not in Z.

2. The running time of the GrA for two instances with the parameters
{aj , bj , A} and {aj · 10k ± 1, bj · 10k ± 1, A · 10k ± 1}, k > 1, is the
same while the running time of the DPA will be 10k times larger in the
second case. Thus, using the GrA, one can usually solve considerably
larger instances.

3. Properties of an optimal solution are taken into account (e.g. for the
knapsack problem, it is possible that an item with the smallest value
cj
aj

does not influence the running time, for the notation see Section 3).

4. As we will show below, for several problems, the GrA has even a poly-
nomial time complexity or we can at least essentially reduce the com-
plexity of the standard DPA.

3 Graphical Algorithm for the Knapsack Problem

In this section, we describe the application of this approach to the one-
dimensional knapsack problem.

One-dimensional knapsack problem (KP): One wishes to fill a
knapsack of capacity A with items having the largest possible total utility.
If any item can be put at most once into the knapsack, we get the binary

5

or 0 − 1 knapsack problem. This problem can be written as the following
integer linear programming problem:

f(x) =
n∑
j=1

cjxj → max

n∑
j=1

ajxj ≤ A;

xj ∈ {0, 1}, j = 1, 2, . . . , n.

(3)

Here, cj > 0 gives the utility and aj > 0 the required capacity of item
j, j = 1, 2, . . . , n. The variable xj ∈ {0, 1} characterizes whether item j is
put into the knapsack or not.

The dynamic programming algorithm based on Bellman’s optimality
principle is one of the standard algorithms for KP. It is assumed that all
parameters are integer: A, aj ∈ Z+, j = 1, 2, . . . , n. Note that there also
exists a dynamic programming algorithm by Papadimitriou [2] with com-
plexity O(nFopt), where Fopt denotes the optimal objective function value.
However, in the following, we describe the standard algorithm by Bellman
since the graphical algorithm is derived from this variant.

For KP, Bellman’s recursive equations are as follows:

fj(t) = max

{
Φ1(t) = cj + fj−1(t− aj), j = 1, 2, . . . , n;
Φ2(t) = fj−1(t), j = 1, 2, . . . , n.

(4)

where
f0(t) = 0, t ≥ 0,
f0(t) = +∞, t < 0.

Φ1(t) represents the setting xj = 1 (i.e., item j is put into the knapsack)
while Φ2(t) represents the setting xj = 0 (i.e., item j is not put into the
knapsack). In each step j, j = 1, 2, . . . , n, the function values fj(t) are
calculated for each integer point (i.e., ‘state’) 0 ≤ t ≤ A. For each point
t, a corresponding best (partial) solution X(t) = (x1(t), x2(t), . . . , xj(t)) is
stored.

The algorithm is illustrated by the following example:
f(x) = 5x1 + 7x2 + 6x3 + 3x4 → max

2x1 + 3x2 + 5x3 + 7x4 ≤ 9;

xj ∈ {0, 1} , j = 1, . . . , 4.

(5)

6

Table 3: Application of the dynamic programming algorithm

t f1(t) X(t) f2(t) X(t) f3(t) X(t) f4(t) X(t)

0 0 (0„ ,) 0 (0,0„) 0 (0,0,0,) 0 (0,0,0,0)
1 0 (0„ ,) 0 (0,0„) 0 (0,0,0,) 0 (0,0,0,0)
2 5 (1„ ,) 5 (1,0„) 5 (1,0,0,) 5 (1,0,0,0)
3 5 (1„ ,) 7 (0,1„) 7 (0,1,0,) 7 (0,1,0,0)
4 5 (1„ ,) 7 (0,1„) 7 (0,1,0,) 7 (0,1,0,0)
5 5 (1„ ,) 12 (1,1„) 12 (1,1,0,) 12 (1,1,0,0)
6 5 (1„ ,) 12 (1,1„) 12 (1,1,0,) 12 (1,1,0,0)
7 5 (1„ ,) 12 (1,1„) 12 (1,1,0,) 12 (1,1,0,0)
8 5 (1„ ,) 12 (1,1„) 13 (0,1,1,) 13 (0,1,1,0)
9 5 (1„ ,) 12 (1,1„) 13 (0,1,1,) 13 (0,1,1,0)

The results with the dynamic programming algorithm are summarized
in Table 3. Therefore, for t = 9, we get the optimal solution

X(13) = (x1(13), x2(13), x3(13), x4(13)) = (0, 1, 1, 0)

and the corresponding optimal objective function value f4(9) = 13. The
time complexity of this algorithm is O(nA).

The idea of the GrA [13] for KP is as follows. In each step of
GrA, we store function fj(t) in tabular form as given in Table 4, where
0 = t1 < t2 < . . . < tmj and W1 < W2 < . . . < Wmj .

Table 4: Function fl(t)
t t1 t2 . . . tmj

fj(t) W1 W2 . . . Wmj

optimal partial solution X(t) X1 X2 . . . Xmj

The above data means the following. For each value t ∈ [tl, tl+1), 1 ≤
l < mj , we have an optimal partial solution Xl = (x1, x2, . . . , xj) and the
objective function value fj(t) =

∑j
i=1 ci · xi = Wl. The points tl are called

the break points (or ‘jumps’ in this case), i.e., we have fj(t′) < fj(t
′′) for

t′ < tl ≤ t′′.
In the next step j + 1, we transform function fj(t) into functions

Φ1(t) = cj+1 + fj(t− aj+1) and Φ2(t) = fj(t)

in O(mj) operations, i.e., the graph of Φ1(t) can be constructed from the
graph of fj(t) by an ‘upward’ shift by cj+1 and a ‘right’ shift by aj+1. In

7

each of the tables for Φ1(t) and Φ2(t), we have at most mj break points.
Then we compute a new table of function

fj+1(t) = max{Φ1(t),Φ2(t)}

in O(mj) operations. In the new table of function fj+1(t), there are at
most 2mj break points (usually, this number is smaller). In fact, we do
not consider all points t from the interval [0, A], but only points from this
interval at which the objective function value changes.

If we have a situation illustrated in Table 5, then we cut the column
which corresponds to point tl+1, i.e., we can combine both intervals [tl−1, tl)
and [tl, tl+1), and we can take the same optimal partial solution: Xl+1 := Xl.

Table 5: Reducing the number of intervals for function fj+1(t)

t . . . tl tl+1 . . .

fj+1(t) . . . Wl Wl+1 = Wl . . .

optimal partial schedule . . . Xl Xl+1 . . .

Let us consider the computational steps of the GrA for the instance
considered for illustration the DPA. The results of the calculations are
presented in Tables 6-9.

Table 6: Step j = 1.

t 0 2
f1(t) 0 5
X(t) (0, , ,) (1, , ,)

Due to a2 = 3, one has to consider the intervals obtained from the
boundary points 0, 2, 0 + 3, 2 + 3 in order to construct function f2(t). As
the result, we get Table 7.

Table 7: Step j = 2.
t 0 2 3 5

f2(t) 0 5 7 12
X(t) (0, 0, ,) (1, 0, ,) (0, 1, ,) (1, 1, ,)

To construct function f3(t), one has to consider the intervals obtained
from the boundary points 0, 2, 3, 5, 0 + 5, 2 + 5, 3 + 5 due to a3 = 5. The
point 5 + 5 > 9 need not to be considered. We obtain the results given in

8

Table 8.

Table 8: Step j = 3.

t 0 2 3 5 8
f3(t) 0 5 7 12 13
X(t) (0, 0, 0,) (1, 0, 0,) (0, 1, 0,) (1, 1, 0,) (0, 1, 1,)

In the last step, one has to consider the intervals resulting from the
boundary points 0, 2, 3, 5, 8, 0 + 7, 2 + 7 in order to construct function f4(t).
The points 3 + 7, 5 + 7, 8 + 7 need not to be considered since they are larger
than A = 9. Therefore, it suffices to consider five points. As a result, we
obtain Table 9.

Table 9: Step j = 4.

t 0 2 3 5 8
f4(t) 0 5 7 12 13
X(t) (0, 0, 0, 0) (1, 0, 0, 0) (0, 1, 0, 0) (1, 1, 0, 0) (0, 1, 1, 0)

It is obvious that the time complexity of GrA is
O(min{2n, nmin{A,Fopt}}), where Fopt is the optimal objective func-
tion value.

For the numerical instance, the GrA stored 12 break points: 1 in the
first step (t = 2), 3 in the second step (t = 2, 3, 5), 4 in the third step
(t = 2, 3, 5, 8), and 4 in the last step (t = 2, 3, 5, 8), too. In contrast, the
standard dynamic programming algorithm would consider 4×9 = 36 points.
Consequently, the running time of the DPA can be essentially reduced.

It is known that for the following instance of KP [5], known Branch and
Bounds algorithms with any method of choosing a subproblem or a variable
for branching have an exponential time complexity [5, 6]:{

f(x) =
∑n

j=1 2 · xj → max∑n
j=1 2 · xj ≤ 2bn2 c+ 1.

(6)

Let us now consider a generalized instance as follows:{
f(x) =

∑n
j=1 a · 2 · xj → max∑n

j=1 a · 2 · xj ≤ a ·
(
2bn2 c+ 1

)
,

(7)

where a > 1.

9

It is easy to show that for each a, the graphical algorithm has a running
time of O(n) since in each step of the GrA, only objective function values
from the set {0, a, 2a, . . . , n ·a} have to be considered. For the first instance,
the running time of the classical DPA requires O(n · 2bn2 c) operations and
for the second one, it requires O(n · a · 2bn2 c) operations.

In [6], a worse subcase (i.e., a subcase where the number of points in
the search tree of a Branch and Bounds algorithm is greater than in [5]) has
been presented. For this type of instances, we have a set of numbers B =
{b1, b2, . . . , bn} which are used by the following parameterized optimization
instance: 

f(x) =
m+n∑
j=1

cjxj → max

m+n∑
j=1

cjxj ≤ ka+ 1,

a ≥ 2,
cj = a, j = 1, 2, . . . ,m,
cj = bj · a, j = m+ 1, 2, . . . ,m+ n,
xj ∈ {0, 1}, j = 1, 2, . . . ,m+ n.

(8)

It is obvious that the time complexity of the GrA for this type of in-
stances is independent of a and is equal to O(m + nmin{k, 2n}), where
k ≤ m+

∑n
i=1 bi. Clearly, this complexity can be essentially smaller than the

running time of the Branch and Bound algorithm (which is already O(2n√
n

)

for instance (6) and not smaller for instance (8)) and the running time of
the standard DPA.

Thus, the use of a GrA can reduce both the time complexity and the
running time of existing algorithms for KP. The application of the GrA to
the partition problem is described in detail in [8], where also computational
results are presented and compared with algorithms from [14].

4 Graphical Algorithm for Single Machine Schedul-
ing Problems

In this section, we present graphical algorithms for several single machine
scheduling problems, which can be formulated as follows.

We are given a set N = {1, 2, . . . , n} of n independent jobs that must be
processed on a single machine. Preemptions of a job are not allowed and at
any time, no more than one job can be processed. The processing of the jobs

10

starts at time 0. For each job j ∈ N , a processing time pj > 0, a weight wj
and a due date dj are given.

A schedule is uniquely determined by a permutation π = (j1, j2, . . . , jn)
of the jobs of set N . Let Cjk(π) =

∑k
l=1 pjl be the completion time of job

jk in schedule π. If Cj(π) > dj , then job j is tardy and we have Uj(π) = 1,
otherwise Uj(π) = 0. If Cj(π) ≤ dj , then job j is said to be on-time.
Moreover, let Tj(π) = max{0, Cj(π)−dj} be the tardiness of job j in schedule
π. Additionally, let GTj(π) = min{max{0, Cj(π)− dj}, pj}.

For the problem of minimizing the weighted number of tardy jobs
1||
∑
wjUj , the objective is to find an optimal schedule π∗ that minimizes

the value
∑n

j=1wjUj(π) and for the problem of maximizing total tardiness
1(nd)||max

∑
Tj [4, 9, 11], the objective is to find an optimal schedule π∗

that maximizes the value
∑n

j=1 Tj(π), where each feasible schedule starts at
time 0 and does not have any idle time between the processing of jobs.
Additionally, for the special case of the single machine generalized total
tardiness minimization problem 1||

∑
GTj , we wish to minimize the value∑n

j=1GTj(π) [10].
In [13], the authors propose an algorithm for the special NP -hard case of

the single machine total tardiness minimization problem, where p1 ≥ . . . ≥
pn, d1 ≤ . . . ≤ dn, dn − d1 ≤ pn. This special case is called B-1.

In Table 10, we summarize the time complexity of existing and new
graphical algorithms for particular scheduling problems.

Table 10: Time complexity of the GrA

Problem Time complexity of GrA Time complexity
of classical DPA

1||
∑
wjUj O(min{2n, n ·min{dmax, Fopt}}) [10] O(ndmax)

1|dj = d′j +A|
∑
Uj [7] O(n2) O(n

∑
pj)

1||
∑
GTj O(min{2n, n · dmax}) [10] O(ndmax)

1||
∑
Tj special case B-1 O(min{2n, n · dmax}) O(ndmax)

1(nd)||max
∑
wjTj O(min{2n, n ·min{dmax,

∑
wj}}) O(ndmax)

1(nd)||max
∑
Tj O(n2) [11] O(ndmax)

Usually, the running time of the GrA will be smaller while the running
time of the DPA is equal to the time complexity.

11

4.1 Graphical Algorithm for the Minimization of the
Weighted Number of Tardy Jobs on a Single Machine

Lemma 1 For problem 1||
∑
wjUj, there exists an optimal schedule π =

(G,H) = (EDD,LDD), where all jobs j ∈ H are tardy and all jobs i ∈ G
are on-time. All jobs from the set G are processed in EDD (early due date)
order and all jobs from the set H are processed in LDD (last due date) order.

Note that in an optimal schedule, the on-time jobs can be scheduled in
EDD order while the tardy jobs can be scheduled in arbitrary order. Now we
present a solution algorithm for the problem of maximizing the total weight
of the on-time jobs which is identical to the problem under consideration.
The following algorithm is based on Lemma 1.

Algorithm 1

1. Enumerate the jobs according to non-increasing due dates: d1 ≥ d2 ≥
. . . ≥ dn.

2. π1(t) := (1). For each t ∈ Z
⋂

[0,
n∑
i=2

pi], compute:

if p1 + t− d1 ≤ 0, then f1(t) := w1 else f1(t) := 0;

3. FOR j := 2 TO n DO

FOR t := 0 TO
∑n

i=j+1 pi (t ∈ Z) DO

π1 := (j, πj−1(t+ pj)), π2 := (πj−1(t), j);
If pj + t− dj ≤ 0, then Φ1(t) := wj + fj−1(t+ pj)
else Φ1(t) := fj−1(t+ pj);

If
j∑
i=1

pi + t− dj ≤ 0, then Φ2(t) := fj−1(t) + wj

else Φ2(t) := fj−1(t);
If Φ1(t) < Φ2(t), then fj(t) := Φ2(t) and πj(t) := π2,
else fj(t) := Φ1(t) and πj(t) := π1;

4. πn(0) is an optimal schedule with the objective function value fn(0).

πj(t) represents the best partial schedule (sequence) of the jobs 1, 2, . . . , j

when the first job starts at time t, and fj(t) =
∑j

i=1wi[1−Ui(πj(t))] denotes
the corresponding weighted number of on-time jobs.

12

Theorem 1 [10] Algorithm 1 constructs an optimal schedule for problem
1||
∑
wjUj in O(n

∑
pj) time.

In fact, for this dynamic programming algorithm, we have the following
functional equations:

fj(t) = max

{
Φ1(t) = α(t) + fj−1(t+ pj), j = 1, 2, . . . , n;
Φ2(t) = β(t) + fj−1(t), j = 1, 2, . . . , n.

(9)

where
f0(t) = 0 for t ≥ 0.

Φ1(t) represents the setting xj = 1 (i.e., we add the job j to the beginning
of the partial schedule) while Φ2(t) represents the setting xj = 0 (i.e., we
add it to the end). If pj + t − dj ≤ 0, then α(t) = wj else α(t) = 0. If
j∑
i=1

pi + t− dj ≤ 0, then β(t) = wj else β(t) = 0.

Algorithm 1 can be modified by considering for each j = 1, 2, . . . , n, only
the interval [0, dj − pj] instead of the interval [0,

∑n
i=j+1 pi] since for each

t > dj − pj , job j is tardy in any partial schedule πj(t) and the partial
schedule π2 := (πj−1(t), j) is optimal. Thus, the time complexity of the
modified Algorithm 1 is equal to O(ndmax). Here we note that one can
assume that dmax <

∑n
j=1 pj since otherwise the job with maximal due date

is always on-time and can be excluded from the consideration.
The idea of the graphical algorithm (GrA) for this problem is as follows.

In each step of the GrA, we store function fj(t) in tabular form as given in
Table 11, where t1 < t2 < . . . < tmj and W1 > W2 > . . . > Wmj .

Table 11: Function fj(t)

t t1 t2 . . . tmj

fj(t) W1 W2 . . . Wmj

optimal partial schedule π1 π2 . . . πmj

The above data means the following. For each value t ∈ (tl, tl+1], 1 ≤
l < mj , we have an optimal partial schedule πl = (G,H) = (EDD,LDD)
and the objective function value fj(t) = Wl =

∑
i∈Gwi. The points tl are

called the break points, i.e., we have fj(t′) > fj(t
′′) for t′ ≤ tl < t′′.

In the next step j + 1, we transform function fj(t) into functions Φ1(t)
and Φ2(t) according to Step 3 of Algorithm 1 in O(mj) operations. In each

13

of the tables for Φ1(t) and Φ2(t), we have at most mj +1 break points. Then
we compute a new table of the function

fj+1(t) = max{Φ1(t),Φ2(t)}

in O(mj) operations. In the new table of function fj+1(t), there are at most
2mj + 2 break points (usually, this number is smaller). In fact, we do not
consider all points t from the interval [0,min{dj − pj ,

∑n
i=j+1 pi}], but only

points from this interval at which the objective function value changes.
If we have a situation described in Table 12, we cut the column corre-

sponding to point tl+1, combine both intervals, and we can use πl := πl+1.

Table 12: Reducing the number of intervals for function fj+1(t)

t . . . tl tl+1 . . .

fj+1(t) . . . Wl Wl+1 = Wl . . .

optimal partial schedule . . . πl πl+1 . . .

It is obvious that we will have at most Fopt break points in the GrA,
where Fopt ≤

∑n
j=1wj is the optimal total weight of the on-time jobs. In

each step j = 1, 2, . . . , n of the GrA, we have to consider at most min{2j , dj−
pj ,

∑n
i=j+1 pi,

∑j
i=1wi, Fopt} break points. Thus, the time complexity of the

GrA is O(min{2n, n ·min{dmax, Fopt}}).

4.2 Graphical Algorithm for the Single Machine of Minimiz-
ing the Number of Late Jobs when the Starting Time of
the Machine is Variable

In the standard model of problem 1||
∑
Uj , it is generally assumed that the

machine starts at time t0 = 0. In this section, we abandon this assumption.
We assume that it is possible to start the machine at any possible time −G,
where G ≥ 0. The quality of a feasible schedule is measured by two criteria.
The first one is the number of late jobs (or, what is the same, the number
of on-time jobs) and the second one is the cost of the starting time of the
machine. We wish to find all n + 1 Pareto optimal schedules. Denote this
problem as 1|dj = d′j +G|

∑
Uj .

In [7], an exact algorithm for the problem with time complexity O(n4) has
been proposed. In this section, we present an algorithm with time complexity
O(n2).

First, we construct a modification of Algorithm 1, where wj = 1 for
all j = 1, 2, . . . , n, and in each step j = 1, 2, . . . , n, we consider the interval

14

[dmin−
∑n

i=1 pi,
∑n

i=j+1 pi]. The time complexity of the resulting algorithm is
O(n

∑
pj). The graphical modification of this algorithm for problem 1|dj =

d′j + G|
∑
Uj has the time complexity O(nmin{dmax, 2n,

∑n
i=1wi, Fopt}).

Since
∑n

i=1wi = n, the time complexity of GrA for problem 1|dj = d′j +

G|
∑
Uj is O(n2).

We recall that a ‘state’ t in the GrA has the same meaning like −G, i.e.,
t denotes the starting time of a (partial) schedule. Assume that in the last
step of the GrA, we have obtained the data given in Table 13.

Table 13: Function fn(t)

t t1 t2 . . . tn+1

fn(t) n n− 1 . . . 0

optimal partial schedule π1 π2 . . . πn+1

This means that we have n+1 Pareto-optimal solutions described by the
pairs (t2, n), (t3, n−1), . . . , (tn+1 +1, 0), where the first value is −G and the
second one is the number of on-time jobs.

Moreover, we can use the same idea of the GrA for the generalized prob-
lem 1|dj = d′j + G|

∑
wjUj although for the generalized problem, the time

complexity of the GrA will be pseudo-polynomial (see the previous section).

4.3 Graphical Algorithm for Maximizing Weighted Total
Tardiness on a Single Machine

In contrast to the usual minimization problem, here we wish to maximize the
value

∑n
j=1wjTj(π), where each feasible schedule starts at time 0 and does

not have any idle time between the processing of jobs. The problem has both
a theoretical importance and some practical interpretations [4, 9, 11, 12]. For
this problem, in the next subsections, we present an NP -hardness proof, a
pseudo-polynomial algorithm and the graphical modification (GrA) of this
algorithm. For the special case of wj = 1 for all j = 1, 2, . . . , n, it follows
that the GrA has a polynomial time complexity.

4.3.1 Proof of NP -Hardness for Problem 1(nd)||max
∑
wjTj

In this section, we give a polynomial reduction from the partition problem
to a special case of problem 1(nd)||max

∑
wjTj .

Partition problem: Given is a set N = {b1, b2, . . . , bn} of numbers b1 ≥
b2 ≥ . . . ≥ bn > 0 with bi ∈ Z+, i = 1, 2, . . . , n. Does there exist a subset

15

N ′ ⊂ N such that ∑
i∈N ′

bi = A =
1

2

n∑
i=1

bi?

Without loss of generality we assume that n > 3 and
∑n

i=1 bi > 10.
Given an instance of the partition problem, we construct the following

instance of problem 1(nd)||max
∑
wjTj :


w2i = M i, i = 1, 2, . . . , n, (10.1)
w2i−1 = w2i + bi, i = 1, 2, . . . , n, (10.2)

p2i =
∑i−1

j=1w2j + 1
2

∑
j∈N\{i} bj , i = 1, 2, . . . , n, (10.3)

p2i−1 = p2i + bi, i = 1, 2, . . . , n, (10.4)
d2i = d2i−1 = P −

∑n
j=i p2j , i = 1, 2, . . . , n, (10.5)

(10)

where M = (n
∑n

i=1 bi)
10 and P =

∑2n
j=1 pj .

We renumber the jobs of set N̄ = {1, 2, . . . , 2n} as

V1, V2, V3, V4, . . . , V2i−1, V2i, . . . , V2n−1, V2n.

Let (Vn,1, Vn−1,1, . . . , Vi,1, . . . , V1,1, V1,2, . . . , Vi,2, . . . , Vn−1,2, Vn,2) be a canon-
ical schedule, where {Vi,1, Vi,2} = {V2i−1, V2i}, i = 1, 2, . . . , n.

Lemma 2 For case (10), all optimal schedules are canonical schedules, or
they can be reduced to a canonical schedule if the LPT (longest processing
time order) rule is applied to the first n jobs.

Proof.
1) First, we prove that one of the jobs V2n and V2n−1 is tardy in any optimal
schedule. Suppose that both jobs are on-time in an optimal schedule π =
(π1, V2n, π2, V2n−1, π3, π4), where only jobs from set π4 are tardy. We note
that we consider only optimal schedules of the type π = (G,H), where all
jobs j ∈ H are tardy and all jobs i ∈ G are on-time (see Lemma 3 in Section
4.3.2). For the schedule π′ = (π1, π2, V2n−1, π3, π4, V2n), we have

n∑
j=1

wjTj(π
′)−

n∑
j=1

wjTj(π) ≥ w2nT2n(π′)− p2n
∑
j∈π4

wj ≥

≥ p2nMn−p2n
n−1∑
i=1

(2M i+bi) = p2nM
n−p2n

(
2M

Mn−1 − 1

M − 1
+

n−1∑
i=1

bi

)
> 0.

16

Thus, schedule π is not optimal, i.e., one of the jobs V2n and V2n−1 is
tardy in any optimal schedule.
2) Now we prove that the following inequalities hold:

w2

p2
<
w4

p4
< . . . <

w2n

p2n
.

We have to prove:

M i−1∑i−2
j=1w2j + 1

2

∑
j∈N\{i−1} bj

<
M i∑i−1

j=1w2j + 1
2

∑
j∈N\{i} bj

.

Let Bi = 1
2

∑
j∈N\{i} bj , i = 1, 2, . . . , n. Then, by equivalent transforma-

tions, we obtain

M i−1

MM i−2−1
M−1 +Bi−1

<
M i

MM i−1−1
M−1 +Bi

⇐⇒ 1
M(M i−2−1)+Bi−1(M−1)

M−1

<
M

M(M i−1−1)+Bi(M−1)
M−1

⇐⇒ M(M i−1 − 1) +Bi(M − 1) < M [M(M i−2 − 1) +Bi−1(M − 1)]

⇐⇒ 0 < M2(Bi−1 − 1)−M(Bi−1 +Bi − 1) +Bi.

The latter inequality is true sinceM2 > M ·2
∑n

j=1 bj and (Bi−1−1) > 1.
Thus, the above inequalities hold. Analogously, we can prove that

w2(i−1)−1

p2(i−1)−1
<
w2i

p2i
,

w2(i−1)

p2(i−1)
<
w2i−1
p2i−1

and
w2(i−1)−1

p2(i−1)−1
<
w2i−1
p2i−1

for each i = 2, 3, . . . , n.
Then, one of the jobs V2n and V2n−1 is the last tardy job in any op-

timal schedule (see Lemma 3 in Section 4.3.2). In the following, we con-
sider only optimal schedules of the type (Vn,1, πα, Vn,2), where {Vn,1, Vn,2} =
{V2n−1, V2n}.
3) Analogously to 1) and 2), we can prove that for each i = n−1, n−2, . . . , 1,
one of the jobs V2i and V2i−1 is tardy in any optimal schedule.

Thus, the lemma is true.
�

Theorem 2 Problem 1(nd)||max
∑
wjTj is NP -hard in the ordinary sense.

17

Proof. For the schedule π = (V2n−1, V2(n−1)−1, . . . , V3, V1, V2, V4, . . . , V2(n−1), V2n),
we have the objective function value

F (π) =

n∑
j=1

w2jT2j(π) =

n∑
j=1

w2jp2j .

Now we consider a canonical schedule

π′ = (Vn,1, Vn−1,1, . . . , Vi,1, . . . , V1,1, V1,2, . . . , Vi,2, . . . , Vn−1,2, Vn,2).

In addition, let us denote

xi =

{
1, if Vi,2 = V2i−1,
0, if Vi,2 = V2i.

Then we have

F (π′) = F (π) +
n∑
i=1

xi

(w2i−1 − w2i) · TV2i(π)− (p2i−1 − p2i)

 i−1∑
j=1

wVj,2


= F (π) +

n∑
i=1

xi

bi · p2i − bi ·
 i−1∑
j=1

wVj,2


= F (π) +

n∑
i=1

xi

bi · p2i − bi ·
 i−1∑
j=1

w2j +
i−1∑
j=1

xjbj


= F (π) +

n∑
i=1

xibi

p2i − 1

2

n∑
j=i+1

xjbj −
i−1∑
j=1

w2j −
1

2

i−1∑
j=1

xjbj


= F (π) +

1

2

n∑
i=1

xibi

 ∑
j∈N\{i}

bj −
∑

j∈N\{i}

xjbj


= F (π) +

1

2

n∑
i=1

∑
j∈N\{i}

xi · bi · bj · (1− xj).

If and only if there exists a subset N ′ ⊂ N for the instance of partition
problem such that

∑
i∈N ′ bi = A, then for an optimal canonical schedule π∗,

18

we have
F (π∗) = F (π) +

1

2
A2,

where xi = 1 if i ∈ N ′ since

F (π∗) = F (π) +
1

2

∑
i∈N ′

∑
j∈N\N ′

bi · bj = F (π) +
1

2
A ·A.

If there is no solution for the instance of the partition problem, then

F (π∗) = F (π) +
1

2

n∑
i=1

∑
j∈N\{i}

xi · bi · bj · (1− xj)

= F (π) +
1

2
(A− y)(A+ y)

= F (π) +
1

2
A2 − 1

2
y2,

where y > 0.
�
In addition, in the following section, a pseudo-polynomial solution al-

gorithm for problem 1(nd)||max
∑
wjTj is presented. Thus, problem

1(nd)||max
∑
wjTj is NP -hard in the ordinary but not in the strong sense.

As a consequence, we can prove that problem 1(sa)|rj |max
∑
wjTj , the

complexity status of which was open [12], is NP -hard since the special
case 1(sa)|rj = 0|max

∑
wjTj is equivalent to 1(nd)||max

∑
wjTj , where

sa means that we consider only semi-active schedules as feasible solutions.

4.3.2 Solution Algorithms for Problem 1(nd)||max
∑
wjTj

First, we present a property of an optimal schedule and an exact algorithm
for the problem under consideration.

Lemma 3 For problem 1(nd)||max
∑
wjTj, there exists an optimal schedule

π = (G,H), where all jobs j ∈ H are tardy and all jobs i ∈ G are on-time.
All jobs from the set G are processed in non-increasing order of values wj

pj
and all jobs from the set H are processed in non-decreasing order of values
wj

pj
.

As a consequence, we obtain the following corollary.

19

Corollary 1 For the problem 1(nd)||max
∑
Tj, there exists an optimal

schedule π = (G,H) = (SPT,LPT), where all jobs j ∈ H are tardy and
all jobs i ∈ G are on-time. All jobs from set G are processed in SPT (short-
est processing time) order and all jobs from set H are processed in LPT
(longest processing time) order.

The proof of Corollary 1 has been presented in [11]. Lemma 3 can be
proved analogously (or see [4]).

For problem 1(nd)||max
∑
wjTj , we present the following pseudo-

polynomial algorithm based on Lemma 3.

Algorithm 2

1. Number the jobs such that w1
p1
≤ w2

p2
≤ . . . ≤ wn

pn
;

2. π1(t) := (1), f1(t) := w1 max{0, p1 + t − d1} for all t ∈ Z with t ∈
[0,
∑n

i=2 pi];

3. FOR j := 2 TO n DO

FOR t := 0 TO
∑n

i=j+1 pi (t ∈ Z) DO

π1 := (j, πj−1(t+ pj)), π2 := (πj−1(t), j);
Φ1(t) := wj max{0, pj + t− dj}+ fj−1(t+ pj);

Φ2(t) := fj−1(t) + wj max

{
0,

j∑
i=1

pi + t− dj

}
;

If Φ1(t) > Φ2(t) then fj(t) := Φ1(t) and πj(t) := π1,
else fj(t) := Φ2(t) and πj(t) := π2;

4. πn(0) is an optimal schedule with the objective function value fn(0).

πj(t) represents the best partial schedule of the jobs 1, 2, . . . , j when the
first job starts at time t, and fj(t) denotes the corresponding total weighted
tardiness.

In fact, for this dynamic programming algorithm, we have the following
functional equations:

fj(t) = max


Φ1(t) = wj max{0, pj + t− dj}+ fj−1(t+ pj), j = 1, 2, . . . , n;

Φ2(t) = wj max

{
0,

j∑
i=1

pi + t− dj

}
+ fj−1(t), j = 1, 2, . . . , n.

(11)

20

where
f0(t) = 0 for all t ≥ 0.

Function Φ1(t) represents the setting xj = 1 (which means that we add job
j as the first job of the corresponding partial schedule of the first j− 1 jobs)
while Φ2(t) represents the setting xj = 0 (which means that job j is added
as the last job to the partial schedule of the first j − 1 jobs).

Theorem 3 Algorithm 2 constructs an optimal schedule in O(n
∑
pj) time.

The proof of a similar theorem for problem 1(nd)||max
∑
Tj has been

presented in [11]. Moreover, for t ≥ dmax, all jobs are tardy in each partial
schedule which starts at time t. Thus, we can reduce the time complexity
to O(ndmax). We note that a similar algorithm for this problem with time
complexity O(n

∑
pj) has been presented in [4]. However, from Algorithm

2, it is easy to construct the GrA.
In each step of the graphical algorithm, we store function fj(t) in tabular

form as given in Table 14.

Table 14: Function fj(t)

t (−∞, t1] (t1, t2] . . . (tmj ,+∞)

fj(t) b1 = 0 b2 . . . bmj+1

total weight of tardy jobs u1 = 0 u2 . . . umj+1

optimal partial schedule π1 π2 . . . πmj+1

Note that the notations πj from Table 14 and πj(t) from Algorithm 2
have a different meaning. The above data means the following. For each
value t ∈ (tl, tl+1], we have an optimal partial schedule πl+1 with the total
weight of tardy jobs ul+1 and the function value fj(t) = bl+1 + (t− tl) ·ul+1.
In [11], it has been shown for the corresponding problem with unit weights
that this table represents a continuous, piecewise-linear and convex function
fj(t) which is also true for the problem under consideration. The points
t1, t2, . . . , tmj are called the break points since there is a change from value ul
to ul+1 (which means that the slope of the piecewise-linear function changes).
For describing each linear segment, we store its slope ul+1 and its function
value bl+1 at point t = tl. In the following, we describe how function fj+1(t)
is determined by means of function fj(t).

Function Φ1(t) is obtained from function fj(t) by the following opera-
tions. We shift the graph of function fj(t) to the left by the value pj+1 and
in the table for function fj(t), we add a column which results from the new

21

break point t′ = dj+1 − pj+1. If tl − pj+1 < t′ < tl+1 − pj+1, l + 1 ≤ mj ,
then in the new table for Φ1(t), we have two new intervals of t: (tl− pj+1, t

′]
and (t′, tl+1 − pj+1]. Moreover, we increase the values ul+1, ul+2, . . . , umj+1

by wj+1, i.e., the total weight of the tardy jobs (and thus the slope of the
corresponding function) increases. The corresponding partial sequences π1

are obtained by adding job j + 1 as the first job to each previous partial
sequence.

Function Φ2(t) is obtained from function fj(t) by the following opera-
tions. In the table for fj(t), we add a column which results from the new
break point t′ = dj+1 −

∑j+1
i=1 pi. If tl < t′ < tl+1, l + 1 ≤ mj , then in the

new table, we have two new intervals of t: (tl, t
′] and (t′, tl+1]. Moreover,

we increase the values ul+1, ul+2, . . . , umj+1 by wj+1, i.e., the total weight of
tardy jobs increases. The corresponding partial sequences π2 are obtained
by adding job j + 1 at the end to each previous partial sequence.

Now we construct a table that corresponds to the function

fj+1(t) = max{Φ1(t),Φ2(t)}.

We compare the intervals from both tables and search for intersection
points of the graphs of functions Φ1(t) and Φ2(t). This step requires O(mj)
operations. If in the table for function fj+1(t), we have the situation
displayed in Table 15, we cut the column, which corresponds to interval
(tl, tl+1], and combine both intervals, i.e., we set tl := tl+1.

Table 15: Deletion of a column
t . . . (tl−1, tl] (tl, tl+1] . . .

fj+1(t)

total weight of tardy jobs . . . ul ul+1 = ul . . .

optimal partial schedule πj+1(t)

A detailed description, complexity results and a numerical example of
a similar algorithm for problem 1(nd)||max

∑
Tj have been presented in

[11]. It is obvious that in each step j, j = 1, 2, . . . , n, we have at most
min{

∑n
i=1 pi, dmax, O(2j),

∑j
i=1wi}+ 1 columns in the corresponding table.

Thus, the time complexity of the GrA for problem 1(nd)||max
∑
wjTj is

O(min{2n, n ·min{dmax,
∑n

j=1wj}}). Moreover, since we have
∑n

j=1wj = n
for problem 1(nd)||max

∑
Tj , the time complexity of the GrA reduces to

O(n2) [11] for the latter problem.

22

5 Concluding Remarks

The graphical approach can be applied to problems, where a pseudo-
polynomial algorithm exists and Boolean variables are used in the sense
that yes/no decisions have to made (e.g. in the scheduling problems under
consideration, a job may be completed on-time or not or for a knapsack
problem, an item can be put into the knapsack or not). For the knapsack
problem, the graphical algorithm often reduces substantially the number of
points to be considered but the time complexity of the algorithm remains
pseudo-polynomial. However, for the single machine problem of maximiz-
ing total tardiness, the graphical algorithm improved the complexity from
O(n

∑
pj) to O(n2). Thus, the graphical approach has not only a practical

but also a theoretical importance.

Acknowledgements

Partially supported by DAAD (Deutscher Akademischer Austauschdienst):
A/08/80442/Ref. 325.

References

[1] Bellman R., Dynamic Programming, Princeton: Princeton Univ. Press,
1957.

[2] Papadimitriou Ch. and Steiglitz K., Combinatorial Optimization: Algo-
rithms and Complexity, Englewood Cliffs: Prentice Hall, 1982.

[3] Sahni S. K., Algorithms for Scheduling Independent Jobs, J. Assoc. Com-
put. Mach., N 23, 1976, 116-127

[4] Lawler E.L., Moore J.M., A Functional Equation and its Application
to Resource Allocation and Sequencing Problems, Management Science,
Vol. 16, No. 1, 1969, 77 – 84

[5] Finkelstein Yu. Yu., Approximate Methods and Applied Problems of Dis-
crete Optimization, Nauka, Moscow, 1976 (in Russian).

[6] Posypkin M.A., Sigal I. Kh., Speedup estimates for some variants of
the parallel implementations of the branch-and-bound method, Compu-
tational Mathematics and Mathematical Physics, Vol. 46, N 12, 2006,
2189 –2 202.

23

[7] Hoogeveen H. and T’Kindt V., Minimizing the number of late jobs when
the start time of the machine is variable, Booklet of Abstracts, PMS
2010 Conference, 235 – 238.

[8] Lazarev A.A., Werner F., A Graphical Realization of the Dynamic Pro-
gramming Method for Solving NP -Hard Combinatorial Problems, Com-
puters and Mathematics with Applications, 2009, Vol. 58, No. 4, 619 –
631.

[9] Gafarov E.R., Lazarev A.A., Werner F., Algorithms for Maximizing
the Number of Tardy Jobs or Total Tardiness on a Single Machine, to
appear in Automation and Remote Control, Vol. 71, No. 10, 2010.

[10] Gafarov E.R., Lazarev A.A., Werner F., Single Machine Scheduling with
Generalized Total Tardiness Objective Function, Preprint 10/10, FMA,
OvGU Magdeburg, 2010.

[11] Gafarov E.R., Lazarev A.A., Werner F., A Polynomial Time Graph-
ical Algorithm for Maximizing Total Tardiness on a Single Machine,
Preprint 12/10, FMA, OvGU Magdeburg, 2010.

[12] Aloulou M.A., Kovalyov M.Y., Portmann M.-C., Evaluation Flexible
Solutions in Single Machine Scheduling via Objective Function Maxi-
mization: the Study of Computational Complexity, RAIRO Oper. Res.,
Vol. 41, 2007, 1 – 18.

[13] Lazarev A.A., Werner F., Algorithms for Special Cases of the Single
Machine Total Tardiness Problem and an Application to the Even-Odd
Partition Problem, Mathematical and Computer Modelling, Vol. 49, No.
9-10, 2009, 2061 – 2072.

[14] Kellerer, H., Pferschy, U., Pisinger, D., Knapsack Problems, New York:
Springer, 2004.

24

