
A Polynomially Solvable Case of a Single Machine
Scheduling Problem When the Maximal Job Processing

Time is a Constant

Nodari Vakhania
Science Faculty, State University of Morelos

Av. Universidad 1001, Cuernavaca 62210, Morelos, Mexico
Inst. of Computational Math., Akuri 8, Tbilisi 93, Georgia

Email address: nodari@uaem.mx

Frank Werner
Fakultät für Mathematik, Otto-von-Guericke-Universität

PSF 4120, 39106 Magdeburg, Germany
Email address: frank.werner@ovgu.de

October 7, 2011

Abstract: We consider the problem of scheduling jobs with given release times and due dates
on a single machine to minimize the maximal job lateness. This problem is NP-hard, and its
version when the job processing times are restricted to p, 2p, 3p, 4p, . . ., for an integer p, is
also NP-hard. We consider the case when the maximal job processing time is kp, for any
constant k, and propose its polynomial-time solution. We easily establish that the version of
this problem with unrestricted k is NP-hard. Moreover, it is strongly NP-hard if p has no
exponential-time dependence on the maximal job due date. From a practical point of view,
this is a realistic assumption.

Keywords: scheduling, single machine, release time, due date, lateness

1 Introduction

We consider a scheduling problem when n given jobs are to be performed by a single machine.
Each job j has three non-negative integer parameters, the processing time pj which is the
number of times units that j needs on the machine, the release time rj which is the time
moment when j becomes available, and the due date dj, the time moment by which it is

1

desirable to complete j. A feasible schedule S is a mapping that assigns to each job j a
starting time tj(S), such that tj(S) ≥ rj and tj(S) ≥ tk(S) + pk, for any job k included earlier
into S. The first inequality says that a job cannot be started before its release time, and
the second one reflects the restriction that the machine can handle only one job at any time.
cj(S) = tj(S) + pj is the completion time of job j. We wish to know if there is a schedule
which meets all job due dates, i.e., every job j is completed by time dj. If there is no such
schedule, then we aim to find an optimal schedule, i.e., one minimizing the maximal lateness
which is the difference between the actual completion time and the due date of the job. The
maximal lateness is defined as Lmax = max{j|cj − dj}.

In the scheduling literature, this problem is commonly abbreviated by 1/rj/Lmax. It is
known to be strongly NP-hard [2]. Hence, it is unlikely that it can be solved in reasonable time
in the general setting. The problem can naturally be simplified by imposing some restrictions
on the job processing times. Two such versions were known to be polynomially solvable: When
all jobs have equal integer length p (problem 1/pj = p, rj/Lmax) Garey et al. [3] and when a
job processing time can be either p or 2p (problem 1/pj ∈ {p, 2p}, rj/Lmax) [8] (for a recent
overview on single and parallel machine problems with equal processing times, we refer the
interested reader to [5]). Quite recently, another such version when the job processing times
are mutually divisible, abbreviated by 1/pj : divisible, rj/Lmax, was shown to be polynomially
solvable [9]. Without release times, scheduling the jobs in order of non-decreasing due dates
gives an optimal schedule in O(n log n) time [4]. Similarly, if all dj’s are equal, then scheduling
jobs in order of non-decreasing release times is optimal.

In this paper, we continue to study the polynomially solvable versions of problem
1/rj/Lmax. We now consider the case when the job processing times are multiples of an
integer p, i.e., they can take the values p, 2p, . . . , kp, where p is the minimal job processing
time and k is a constant. Based on the commonly used notation, we abbreviate this problem
by 1/pj ∈ {p, . . . , kp}, rj/Lmax. The algorithm uses the approach from [9] that applies a bi-
nary search procedure and reduces the problem to some version of the bin packing problem.
It also uses some relevant concepts from [7] and [8] for a comparative structural analysis of the
created schedules on each iteration in the binary search. The so-called behavior alternatives
reflect all crucial ways in which a newly created feasible solution may vary from the earlier
created ones. On the bases of the analysis of the behavior alternatives, we may claim the
desired schedule properties.

We distinguish two basic kinds of jobs, non-critical and critical ones. The non-critical
jobs may be flexibly moved within a feasible schedule, whereas the critical jobs form tight
sequences (called kernels), in the sense that the delay of the earliest scheduled job from the
subset cannot exceed some precalculated parameter between (including) 0 and pmax. First,
we define the initial set of kernels applying a commonly used ED heuristic to the original
problem instance. Then we determine lower and upper bounds on the allowable delay for each
kernel and carry out the binary search within the corresponding interval. Each new derived
value δ defines the maximal currently allowable delay for the kernels. For each δ, we aim to
distribute the non-kernel jobs in order to utilize the intervals in between kernels (the bins) in
an optimal way so that no non-kernel job causes the lateness more than that of a kernel job.
The minimum of such a δ yields an optimal schedule.

2

Thus, roughly, the problem considered reduces to an optimal distribution of the non-kernel
jobs within the bins. Now, the maximal job processing time pmax = kp, which in our setting is
a constant, restricts the total number of job rearrangements which may potentially lead to an
optimal solution. This, in turn, results in a polynomial-time behavior of our algorithm. Our
algorithm runs in time O(n2 log n log pmax). We have an alternative pseudo-polynomial time
bound of O(dmaxn log n log pmax), where dmax is the maximal job due date (this latter bound
may be more attractable for some practical applications).

The version of the considered problem when k is not a constant is NP-hard. This eas-
ily follows from the known reduction from the PARTITION problem to the general prob-
lem 1/rj/Lmax, given in [2]. If in this transformation, we multiply the derived data for the
corresponding scheduling problem by p, we obtain another polynomial-time reduction from
PARTITION to the version of problem 1/pj ∈ {p, . . . , kp}, rj/Lmax when k is not a constant.
Furthermore, this version is strongly NP-hard whenever p has a polynomial-time dependence
on dmax, i.e., when it is not an exponent of dmax. This also easily follows from the transforma-
tion given in [2] from the strongly NP-hard 3-PARTITION problem. Similarly, multiplying
the data of the derived scheduling instance by p, we obtain a reduction from 3-PARTITION
to the problem with unrestricted k. This transformation is pseudo-polynomial if p is a poly-
nomial of dmax, which shows the strong NP-hardness of this version. Let us mention that this
restriction on p is natural from a practical pint of view (it is highly unlikely that a job may
need a processing time which is an exponent of its due date).

In the next section, we describe some basic concepts. In Section 3, we define our lower
and upper bounds and the interval for the binary search procedure. In Section 4, we describe
how to verify the existence of a feasible schedule in which the lateness of no job is more than
the maximal allowable lateness defined by the current δ from the above interval. We define
the derived subsets of jobs which are used for possible job rearrangements and show a bound
on their total number.

2 Basics

The Earliest Due date heuristic (ED-H) suggested by Jackson [4] in early 1955 is commonly
used for the construction of feasible schedules. Starting from time 0, at the current scheduling
time t, among all released jobs it schedules one with the smallest due date, and updates the
current scheduling time by adding the processing time of the scheduled job. It is easily seen
why the ED-heuristic is not optimal: Assume that at time moment rj, job i is processed where
dj < di. Hence, job i will delay the starting of job j, whereas job j was an urgent job that
needed to be scheduled with no or less delay in an optimal schedule.

The initial ED-schedule σ is the one generated by ED-H for the originally given problem
instance. As we have noted, the value of the objective function for the latter ED-schedule
may be pmax = max{pi|i = 1, 2, ..., n} − 1 more than the optimal value (this absolute error
delineates the frontier between the polynomial solvability and strong NP-completeness).

A gap in a schedule is a maximal consecutive time interval in which no job is processed by

3

the machine. By our convention, there occurs a 0-length gap (cj, ti) whenever job i starts at
its release time immediately after the completion of job j. A block in an ED-schedule S is its
consecutive part preceded and succeeded by a (possibly a 0-length) gap.

Now we define critical and non-critical jobs introduced informally in the introduction. Our
primary goal now is to determine rigid (critical) segments in our initial ED-schedule σ. We
do this by simply verifying our objective function for each included j.

We call a job o from an ED-schedule S an overflow job if

fS(o) = max{f(j)|j ∈ S},

where fS (fS(j), respectively) is the maximal lateness in S (the lateness of j ∈ S, respectively).
Note that fS(o) might be a positive or non-positive magnitude: in the former case, there arises
a late job in S.

We call a kernel a maximal job sequence/set in S ending with an overflow job o such
that no job from this sequence has a due date larger than do; if there are several successively
scheduled overflow jobs, then o is the latest one. Note that kernel jobs imply rigid segments
in a feasible schedule, i.e., they are to be scheduled within a highly restricted time interval.
Let K be the set of all kernels

K1 ≺ K2 ≺ . . . ≺ Kk

arisen in σ, and let r(K) = mini∈K{ri}, for a kernel K. If the earliest scheduled kernel job
starts at time r(K), then there is no feasible schedule S ′ with f(S ′) < fS(o) (as reordering
the kernel jobs cannot reduce the lateness) and S is clearly an optimal schedule. Otherwise,
there is a job scheduled before all kernel jobs that delays kernel jobs including the overflow
job. By removing such a job, the kernel jobs might be restarted earlier reducing in this way
fmax. To be more formal, let us introduce some definitions. Suppose that i precedes j in an
ED-schedule S. We will say that i pushes j in S, if j gets rescheduled earlier whenever i is
removed and the succeeding jobs from S are rescheduled as early as possible respecting the
order in S.

It follows from our assumption and definitions that the earliest scheduled job of every
kernel is immediately preceded and pushed by a job e with de > do. Clearly, we may have
more than one such job scheduled before the kernel K in the block containing K. We call
such a job an emerging job for K, and the latest scheduled one (job e above) the delaying
emerging job. We shall later refer to job j with dj > do and rj < r(K) scheduled after K as
a passive emerging job for K.

To restart the kernel jobs earlier, we activate an emerging job e for K, that is, we force it
and all passive emerging jobs to be rescheduled after K by increasing their release times to
a sufficiently large magnitude, say r(K) (the latter jobs also are said to be activated for K).
Then, when ED-H is again applied, neither job e nor any passive emerging job will surpass
any kernel job and hence, the earliest job in K will start at r(K). (More than one emerging
job can be activated for K and the same emerging job may be activated for two or more
successive kernels.)

4

3 Defining the Boundaries

δ-balanced schedules. Consider an (incomplete) ED-schedule σ∗∗ in which the delay job of
every K ∈ K is just omitted, and let f ′(i) be the new (reduced) value of the lateness of each
kernel job i in σ∗∗. Since every K is (re)started at time r(K) in σ∗∗,

L(K) = maxi∈K{f ′(i)}

is a lower bound on the value of the optimal schedule. For any feasible S,

f(S) ≥ L∗ = maxκ{L(Kκ)}

is a stronger lower bound. Furthermore, if δ(K) = L∗ − L(K), then clearly, in any feasible
S we may allow the delay of δ(K) ≥ 0 without increasing the current maximal lateness, for
every K.

We still need to accommodate every delaying job omitted in σ∗∗. Assume, instead of
omitting, the delaying job is activated for each K. This simple solution might be too rough
as due to the gaps left before each kernel, no available space might be left for scheduling the
activated jobs together with the rest of the jobs. So the gap(s) before each kernel are to be
somehow beneficially used. We use a binary search procedure. We already know that the
earliest scheduled job of every K can be started at time r(K) + δ(K). In an optimal schedule
Sopt, either each kernel K starts no later than at time r(K) + δ(K) or K is to be delayed by
some δ, 0 ≤ δ ≤ ∆, where ∆ = f(o)− L∗. Observe that, if the earliest job of every K starts
no later than at time r(K) + δ(K) + δ, then f(i) ≤ L∗+ δ, for any i ∈ K. More generally, we
call a feasible schedule S(δ) with

f(S(δ)) ≤ L∗ + δ

δ-balanced (note that σ = S(∆)). The magnitude L∗ + δ is the δ-boundary; job j surpasses
the δ-boundary if f(j) > L∗ + δ.

Thus, we allow an extra delay of δ for any (former) overflow job in S(δ), whereas the first
job of every kernel K ∈ S(δ) starts no later than at time r(K) + δ(K) + δ (we respectively
redefine the delaying job for a kernel K as one that completes after time r(K) + δ(K) + δ).
Though, this does not yet guarantee that no job from K will surpass the δ-boundary when
ED-H is again applied. This will be clearly so if K starts at moment r(K) + δ(K) + δ.

Suppose that the earliest job of K starts strictly earlier at moment r(K) + δ(K) + δ − ε,
for an integer ε ≥ 1. Then, when scheduling the jobs of K by ED-H, there may occur a time
moment at which some kernel job completes but no yet unscheduled job from K is released.
Then some external job might be included at that (or later) moment. We put a restriction on
the total length of such external jobs that might be included in between the jobs of K (more
formally, in any feasible S with

f(S) ≤ L(K) + δ(K) + δ

the above length is to be restricted as follows): clearly, if no gap in between the jobs of K
occurs, then the above magnitude cannot be more than ε, otherwise it cannot exceed ε minus

5

the total length of the gap(s) occurred. We shall refer to this restriction as the fitness rule for
K. Based on the next lemma which immediately follows, we further assume that this rule is
respected while scheduling each kernel in S(δ):

Lemma 1 No job from any kernel K will surpass the δ-boundary if the fitness rule is respected.

Although no job from the current set of kernels may surpass the current δ-boundary, there
may arise some other job that surpasses it. We wish to find out if there exists such a S(δ).
At the first iteration of the binary search procedure when we generate σ = S(∆), δ = ∆. The
next value for δ is 0. If there exists no S(0), then the next value of δ is [∆/2]. So δ is derived
from the interval [0,∆], whereas the change from a larger to a smaller value of δ is carried out
if a δ-balanced schedule for the current δ was successfully created, otherwise δ is increased
respectively in the next iteration. The following observation is apparent:

Observation 1 S(δ) with a minimal possible δ is optimal.

Observe now that the problem is already solved given that we have a procedure that either
constructs a S(δ) or asserts that it does not exist. As δ < pmax, the number of iterations for
the binary search procedure is bounded by log pmax. Then, roughly, the running time of the
overall algorithm would be log pmax multiplied by the time complexity of the above procedure.

4 Seeking After S(δ)

The procedure SEEK(S(δ)) that seeks after S(δ) consists of several passes. It again uses the
ED-rule (in which ties are broken by selecting a longest job).

Let Kδ be the set of kernels corresponding to δ in the binary search procedure (the initial
set of kernels K = K∆). For δ′ < δ′′, |Kδ′ | ≥ |Kδ′′ |. Whenever the binary search procedure
resumes with a new δ, SEEK(S(δ)) sets initially Kδ to K′δ, where δ′ > δ is the smallest so
far encountered value with an existing S(δ′). As SEEK(S(δ)) advances in forming a complete
schedule, the current Kδ might be completed by a new kernel. Recall that each K ∈ Kδ starts
no later than at time r(K) + δ(K) + δ in S(δ). SEEK(S(δ)) respects this restriction. Hence,
if there arises a job j surpassing the δ-boundary, then it cannot belong to any kernel in Kδ
(see also Lemma 1).

We shall refer to the interval before each K ∈ Kδ as the bin defined by K and denote it
by BK . Note that we may have a non-idle time interval after the latest kernel of Kδ that we
also call bin.

Observe that, if SEEK(S(δ)) has succeeded to construct a complete schedule so that no
bin job has surpassed the δ-boundary, then this schedule is S(δ). Assume that K was the
latest scheduled kernel from Kδ when there has occurred (a non-kernel job) j surpassing the
δ-boundary. If j is a former emerging job (one activated for K or/and some preceding kernel),
then we will say that an instance of alternative (b1) (IA(b1)) with job j occurs.

If j is not a former emerging job, then an activated (former emerging) job must be pushing
j. If among such jobs there is an emerging job for j, let e be the latest scheduled one. If job e

6

was included before K, then the jobs from K together with j and all jobs that were included
after e (before job j has occurred) define a new kernel, also denoted by K. If e was included
after K, then the sequence of jobs in-between e and j (including j) forms a new kernel K ′ for
the current δ. SEEK(S(δ)) updates the current Kδ respectively.

If no new kernel can be defined, i.e., there is no job e, let i be an activated (former
emerging) job pushing j. Then an instance of alternative (b2) (IA(b2)) with job i is said to
occur. The next observation immediately follows:

Observation 2 If in the block containing K there arises a non-kernel job surpassing the
δ-boundary, then there must be occurring an IA(b1/b2) with an activated job.

So, if no IA(b1/b2) occurs, then we already have a correct answer (for the general problem
1/rj/Lmax). Otherwise, to complete the description of SEEK(S(δ)), we need to describe how
we rearrange non-kernel jobs for an IA(b1/b2). Clearly, at least one passive emerging job q
for K is to be rescheduled before K. This will not be possible (in S(δ)), unless some job i
scheduled in BK or some earlier bin is rescheduled after K (if this was possible, ED-H would
include q in BK). In general, suppose that we impose the delay of jobs i1, i2, . . . , iι so that
they are not scheduled before K. In the resultant schedule portion before K, let γ be a gap
occurring after time rq, and λ be the total length of all gaps including γ and all succeeding
gaps before K. Then γ is (potentially) valid for q (subject to i1, i2, . . . , iι) if pq < λ. We call
a job s pushing q a substitution job for q if it is an emerging job for K (s is from BK or some
earlier bin). Suppose that we activate some substitution job(s) for K. If among the newly
arisen gaps there is a valid one for q subject to the above substitution job(s) then, and only
then, it might be possible to avoid another IA(b1/b2):

Observation 3 Suppose that there occurs an IA(b1/b2) behind the kernel K. Then there
exists no S(δ) if there arises no valid gap for none of the passive emerging jobs for K subject
to some substitution jobs.

Proof. First, we show that the claim holds if there exists no substitution job for none of the
passive emerging jobs. At least one passive emerging job q for K is to be rescheduled before
K. Hence, some job i scheduled before K is to be moved after K. However, since i is not a
substitution job for q, it is not an emerging job for K. Then it will surpass the δ-boundary.
Now, if there arises no valid gap for q subject to some substitution jobs, then similarly, the
δ-boundary will be surpassed.

4.1 Arranging the Activations for Substitution Jobs

Now we describe how the activations for the substitution jobs for a given kernel K ∈ Kδ are
organized. By Observation 3, all SEEK(S(δ)) has to do is to activate substitution jobs for
K in a proper fashion, whenever IA(b1/b2) with a job j, activated for K occurs. Suppose
again IA(b1/b2) with a job j activated for kernel K arises. We know that we may avoid
this occurrence of IA(b1/b2) only if we activate some substitution job(s) for K so that j
gets rescheduled earlier. By ED-H, all potentially useful substitution jobs must have been
scheduled in the same bin B(K ′), each of them being started strictly before the moment rj,

7

where K ′ = K or K ≺ K ′. Denote this set of these substitution jobs by SUBST(K, δ),
and denote the corresponding set of the passive emerging jobs by PASS(K) (observe that
j ∈PASS(K)). Basically, we need to determine which jobs from SUBST(K, δ) are to be
activated for K (whereas ED-H will determine the job(s) in PASS(K) which will be included
within the released space in B(K ′)). The total length of these jobs must be “enough long” to
provide a sufficient left-shift (to avoid another IA(b1/b2) with a job from PASS(K)).

By ED-H, job j cannot be released before the latest scheduled job in SUBST(K, δ) is
started. Hence, the jobs in SUBST(K, δ) are scheduled one after another as a single sequence.
Denote the interval occupied by this sequence by I(SUBST(K, δ)). We may achieve a desired
left-shift for the job(s) in PASS(K) by rescheduling some job(s) from SUBST(K, δ) behind
K. It follows that the activation of jobs from S ⊂ SUBST(K, δ) is successful (that is, S(δ)
includes these activations) unless an IA(b1/b2) with (1) a job from PASS(K) or (2) S occurs
(see Observation 2).

It is apparent that the total length of the jobs in S matters. Roughly, a subset of
SUBST(K, δ) with a correct total length would work out: this length should be enough to
left-shift job j by a sufficient amount of time units. Though, if it is “too long”, it may cause
a space shortage at a later schedule portion. Since the ED-heuristic could not include any job
from PASS(K) in B(K), the available space before time moment r(K) + δ(K) + δ was less
than pmax. By the activation of some job(s) from SUBST(K, δ) such a space can be released.
Though clearly, it does not need to be more than pmax. That is, the total processing time of
jobs in any S (that we may need to evaluate) is bounded by pmax = kp. Then the constant k
also bounds to a constant the total number of subsets that SEEK(S(δ)) may need to evaluate
(we give more details on this later).

We call two subsets of jobs from SUBST(K, δ) congruent if there exists a one-to-one and
onto mapping between these subsets so that the image of every job in the first subset is
a job of the same length from the second subset. Two congruent subsets have the same
total job length, though the corresponding left-shift (which is determined by the resultant
newly released space within I(SUBST(K, δ))) may be different. Intuitively, it is not difficult
to see why the rescheduling of later scheduled jobs gives no-less left-shift than that of the
earlier scheduled jobs. A formal proof of a similar statement can be found in [7]. Thus,
while forming the next (yet untried) subset, among all same-length jobs (the candidates to be
included into the subset) we always break ties by selecting the latest scheduled (the closest
to the corresponding kernel) job. With this kind of tie-breaking rule, the formed subset
will always provide the maximal possible left-shift among all yet untried congruent subsets.
However, because of the variation of job due dates in two congruent subsets, it may still be
necessary to deal with more than one congruent subset.

Although the total number of non-congruent subsets is a constant, the number of elements
in each class of congruent subsets is not a constant. However, as we will see later, the total
number of congruent subsets that might SEEK(S(δ)) may need to evaluate can be bounded
from above by any of the magnitudes n or dmax.

Assume that there occurs IA(b) either (1) with a job of PASS(K) or (2) with a job of
SUBST(K, δ) (and recall that these are the only possibilities). In case (1), the resultant

8

left-shift after the activation of jobs in S turns out to be insufficient. Then clearly, no other
subset congruent to S can work out. We proceed with the next (non-congruent to S) subset
of SUBST(K, δ). If no such untried subset remains, then there exists no δ-balanced schedule
and SEEK(S(δ)) can stop with a “no” answer.

Unlike case (1), in case (2) a suitable subset of SUBST(K, δ) may be congruent to S.
However, in such a job set there must be at least one job i with a larger due date than
the corresponding job from S, as otherwise it is easily seen that the outcome would be the
same. Thus, from the remaining jobs in I(SUBST(K, δ), the latest scheduled yet untried job
is looked for such that it has the same processing time as a job in S but has a larger due
date. By interchanging the two jobs, we create the new subset (congruent to S), to be tried
the next.

4.2 Summarizing the Algorithm

In the previous section, we have described how the activation of jobs in the subsets of
SUBST(K, δ), for a kernel K ∈ Kδ, is organized. Whenever for the next tried S ⊂
SUBST(K, δ) no further IA(b1/b2) for a job from PASS(K) or SUBST(K, δ) arises the ar-
rangement of the bins preceding kernel K is complete. SEEK(S(δ)) continues the construction
of the current schedule until a complete schedule S(δ) is obtained, or another IA(b1/b2) for a
kernel succeeding K occurs, in which case the procedure of the previous section for this new
kernel is repeatedly applied.

To estimate the time complexity of SEEK(S(δ)), we need to know the total number of
subsets S ⊂ SUBST(K, δ) that SEEK(S(δ)) may evaluate, for all K ∈ Kδ.

First, we show that the total number of non-congruent subsets is a constant, for any
K ∈ Kδ. Indeed, since the total length of the jobs in any considered subset is bounded
from above by pmax, the number of possible subset lengths is also bounded by pmax. For any
fixed length p∗ ≤ pmax, the number of possible non-congruent subsets equals to the number of
combinations of different positive integers which sum to p∗ (without considering the sequence).
As an example, for p∗ = 5, we have P (5) = 7 since the following sum representations exist:

1 + 1 + 1 + 1, 1 + 1 + 1 + 2, 1 + 2 + 2, 1 + 1 + 3, 2 + 3, 1 + 4, 5.

This number, known as the partition function P (p∗), is approximately equal to

P (p∗) ∼
exp(π

√
2p∗/3)

4p∗
√

3

for large numbers p∗ (note that there exists a rather complicated formula for the detailed
computation of P (p∗) given by Hans Rademacher). Therefore, the total number of all non-
congruent subsets is bounded by pmax multiplied by the above magnitude P (p∗), which is a
constant in the problem under consideration.

We have two alternative bounds on the total number of congruent subsets we may need
to evaluate, dmax and n. Indeed, since the due date of each newly selected job in each newly

9

formed congruent subset of SUBST(K, δ) is less than that of the replaced job, there is an
obvious upper bound dmax on the total number of congruent subsets that SEEK(S(δ)) may
test, for each K ∈ Kδ. Moreover, this bound also applies to the total number of congruent
subsets that SEEK(S(δ)) may test for all K ∈ Kδ. Indeed, let K ≺ K ′, and i be the latest
replaced job in a congruent subset of SUBST(K, δ). Then note that i cannot be an emerging
job of K ′. Hence, di is less than the due date of any job in SUBST(K ′, δ). In other words,
the due date of any replaced job from SUBST(K ′, δ) must be more than that of any replaced
job from SUBST(K, δ), which shows our first claim for dmax.

To see our second claim with the bound n, denote the number of jobs in SUBST(K, δ) by
ν(K). Since the number of kernels is less than n, and for each tried S ⊂ SUBST(K, δ), for
every K ∈ Kδ, we apply the O(n log n) ED-heuristic, the overall time spent by SEEK(S(δ))
to build a complete schedule S(δ) (or establish that it does not exist) is

O

n log n
∑
K∈Kδ

ν(K)

 = O(n2 log n).

Similarly, based on our first claim, an alternative time complexity for SEEK(S(δ)) is
O(dmaxn log n). This completes the description of our algorithm and the proof of its cor-
rectness and time complexity:

Theorem 1 The binary search procedure finds an optimal schedule in time

O(n2 log n log pmax) or O(dmaxn log n log pmax).

5 Concluding Remarks

We have proposed a polynomial-time solution of a restricted version of a strongly NP-hard
problem 1/rj/Lmax. In our restriction the maximal job processing time is bounded from above
by kp, where p is an integer and k is an integer constant. We believe that this is the maximal
polynomially solvable special case of problem 1/rj/Lmax with restricted job processing times.

Acknowledgments

This work has been partially supported by Deutscher Akademischer Austauschdienst (DAAD)
and by CONACyT grant 160162.

References

[1] K.R. Baker and Z.-S. Su. Sequencing with due-dates and early start times to minimize
maximum tardiness. Naval Res. Logist. Quart. 21:, 171–177, 1974.

10

[2] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP–completeness, Freeman, San Francisco, 1979.

[3] M.R. Garey, D.S. Johnson, B.B. Simons and R.E. Tarjan. Scheduling unit–time tasks
with arbitrary release times and deadlines. SIAM J. Comput., 10: 256–269, 1981.

[4] J.R. Jackson. Scheduling a production line to minimize the maximum lateness, Man-
agement Science Research Report 43, University of California, Los Angeles, 1955.

[5] S.A. Kravchenko, F. Werner. Parallel machine problems with equal processing times.
Journal of Scheduling, 14, 435 – 444, 2011.

[6] L. Schrage. Obtaining optimal solutions to resource constrained network scheduling
problems, Unpublished Manuscript, March, 1971.

[7] N. Vakhania. A better algorithm for sequencing with release and delivery times on
identical processors. Journal of Algorithms, 48, 273 –293, 2003.

[8] N. Vakhania. Single-machine scheduling with release times and tails. Annals of Operations
Research, 129, 253 – 271, 2004

[9] N. Vakhania. Scheduling jobs with release times preemptively on a single machine to
minimize the number of late jobs. Proceedings of MISTA 2011, 389 – 398, 2011.

11

