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ABSTRACT. A graph is well-indumatched if all its maximal (with respect to set inclusion)
induced matchings are of the same size. We first prove that recognizing the class WZ M of
well-indumatched graphs is a co-NP-complete problem even for (2Ps, K1 5)-free graphs.
We then show that the well-known decision problems such as INDEPENDENT DOMINATING
SET, INDEPENDENT SET, and DOMINATING SET are NP-complete for well-indumatched
graphs. We also show that WZ.M is a co-indumatching hereditary class and characterize
well-indumatched graphs in terms of forbidden co-indumatching subgraphs. However, we
prove that recognizing co-indumatching subgraphs is an NP-complete problem. A graph
G is perfectly well-indumatched if every induced subgraph of G is well-indumatched.
We characterize the class of perfectly well-indumatched graphs in terms of forbidden
induced subgraphs. Finally, we show that both INDEPENDENT DOMINATING SET and
INDEPENDENT SET can be solved in polynomial time for perfectly well-indumatched
graphs, even in their weighted versions, but DOMINATING SET is still NP-complete.
2000 Mathematics Subject Classification: 68Q15; 68Q17; 05C69; 05C70; 05C75.

1. Introduction

In this paper, we study the recognition problem of graphs, where all maximal (with
respect to set inclusion) induced matchings have the same number of edges, and examine
the computational complexity of certain fundamental graph problems such as maximum
independent set, minimum dominating set, and minimum independent dominating set
within these graphs.

An induced matching M of a graph G is a set of pairwise non-adjacent edges such that
no two edges of M are joined by an edge in G. An induced matching M is maximal if
no other induced matching in G contains M. Induced matchings have applications in
the areas of communication network testing [26], concurrent transmission of messages in
wireless ad hoc networks [1], secure communication channels in broadcast networks [16],
and many others.

A graph G is called well-indumatched if all maximal induced matchings in G have the
same size. For example, the graph obtained from a star K, by subdividing each edge
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of Ky, by two vertices is a well-indumatched graph. We denote by WIM the class of
well-indumatched graphs. An interesting property of a well-indumatched graph is that
its maximal induced matching is a maximum induced matching. Therefore, the class
WIM forms the set of greedy instances with respect to the maximum induced matching
problem, because it is solved for well-indumatched graphs by any greedy type algorithm.
Greedy instances of other combinatorial problems can be defined in a similar way ([6], see
also [29]).

Caro et al. [6] investigated the complexity of recognizing greedy instances of several
combinatorial problems, one of which is the maximum independent set problem. The
class of well-covered graphs is a class of greedy instances of the maximum independent set
problem and has applications, in particular, in distributed computing systems [30].

The concept of a well-covered graph (with all its maximal independent sets of the same
size) was first introduced by Plummer [23] and has been investigated extensively in the
literature. Ravindra [24] characterized the well-covered trees and bipartite graphs. Fin-
bow et al. [10] characterized the well-covered graphs with a girth of at least 5. Then,
Campbell et al. [5] characterized the well-covered cubic graphs. In a series of papers, Fin-
bow et al. [11, 12, 13] characterized the well-covered plane triangulations. The problem of
recognizing the well-covered graphs was shown to be co-NP-complete for general graphs,
independently by Sankaranarayana and Stewart [25], and Chvéatal and Slater [8]. It is
co-NP-complete even for K 4-free graphs [6], and it is solvable in polynomial time for
K 3-free graphs [27, 28].

A matching of a graph G is a set of edges in G with no common end-vertices. The
problem of graphs recognition, in which all maximal matchings have the same size, was
first considered by Lesk et al. [21]. Graphs which satisfy this property are known in
the literature as equimatchable. In [21], it is shown that there exists a polynomial-time
algorithm which decides whether a given input graph is equimatchable (see also Lovész
and Plummer [22] for a detailed description of equimatchable graphs).

The class WIM of well-indumatched graphs is a natural analogue of well-covered
graphs. We show that recognizing the class WZM is a co-NP-complete problem even
for (2Ps, K1 5)-free graphs. Thus, it is unlikely that there exists a characterization of
well-indumatched graphs which provides its polynomial recognition.

Let IMatch(G) be the set of all maximal induced matchings of graph G. Define the
minimum mazximal induced matching number as

0(G) = min{|M| : M € IMatch(G)}
and the mazimum induced matching number as
Y(G) = max{|M| : M € IMatch(G)}.

In a greedy way we can find both ¢(G) and ¥(G) in any well-indumatched graph G.
It is well known that the decision analogue of the problem of computing (G) is NP-
complete [4, 26]. We prove NP-completeness for the problem with o(G) even if graphs
have maximal induced matchings of at most two sizes.

Ko and Shepherd [19] investigated relations between ¥(G) and v(G), the domination
number of G. They mentioned that they do not know any class of graphs for which
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exactly one of v, ¥ is polynomial-time computable. We show that INDEPENDENT DOM-
INATING SET, INDEPENDENT SET, and DOMINATING SET are NP-complete problems for
well-indumatched graphs. Thus, for the class WZM, ~ is hard to find, while ¥ is easily
computable. Our construction for the INDEPENDENT SET problem implies that the well-
known problems PARTITION INTO TRIANGLES and CHORDAL GRAPH COMPLETION are
NP-complete for well-indumatched graphs. Furthermore, PARTITION INTO SUBGRAPHS
ISOMORPHIC TO Pj5 is an NP-complete problem for well-indumatched graphs. This implies
that computing ¥ is NP-hard even if the input is restricted to Hamiltonian line graphs
of well-indumatched graphs, which generalizes results of Kobler and Rotics [20]. Also,
GRAPH k-COLORABILITY and CLIQUE are NP-complete problems for well-indumatched
graphs.

A class of graphs is called hereditary if every induced subgraph of a graph in this class
also belongs to the class. For a set H of graphs, a graph G is called H-free if no induced
subgraph of G is isomorphic to a graph in H. In other words, H-free graphs constitute a
hereditary class defined by H as the set of forbidden induced subgraphs.

We show that WZIM is a co-indumatching hereditary class, i.e., it is closed under
deleting the end-vertices of an induced matching along with their neighborhoods. We
characterize well-indumatched graphs in terms of forbidden co-indumatching subgraphs. It
means that we specify the minimal set of graphs 2" such that G is well-indumatched if and
only if G does not contain any graph in 2 as a co-indumatching subgraph. Unfortunately,
recognizing co-indumatching subgraphs is NP-complete.

Finally, we consider perfectly well-indumatched graphs, i.e., graphs in which every in-
duced subgraph is well-indumatched. We characterize the class of perfectly well-indumat-
ched graphs in terms of forbidden induced subgraphs, thus obtaining a new polynomial-
time recognizable class, where both parameters ¢ and X are easy to compute. We show
that both INDEPENDENT SET and INDEPENDENT DOMINATING SET can be solved in poly-
nomial time for perfectly well-indumatched graphs, even in their weighted versions, but
DOMINATING SET is NP-complete.

In this paper, we use standard graph-theoretic terminology of Bondy and Murty [3]. Let
G be a graph with the vertex set V' = V(G) and the edge set E = E(G). The subgraph
of G induced by a set X C V is denoted by G(X), and G — X = G(V \ X). Ng(z) is the
neighborhood and Ng([x] = {x} U Ng(z) is the closed neighborhood of a vertex x € V(G).
Also, for a set X C V(G), Ng(X) = UzexNg(z), Ng[X] = X U Ng(X), and ENg(X)
is the set of all edges in G that have at least one end-vertex in X. The complete graph,
the chordless path and the chordless cycle on n vertices are denoted by K,, P, and C,,
respectively. Let Ky be the null graph, i.e., Ky has no vertices and edges. K, — e is a
graph obtained from the complete graph Ky by deleting an edge. The star K1, consists
of a dominating vertex and n pendant vertices. The star K 3 is also known as the claw.
We use the notation nG for the disjoint union of n copies of G. We denote by G? the
square of graph G, i.e., the graph on V(G) in which two vertices are adjacent if and only
if they have a distance of at most 2 in G. Finally, L(G) is the line graph of a graph G,
ie., V(L(GQ)) = E(GQ), and two vertices e and ¢’ are adjacent in L(G) if and only if the
edges e and €' are adjacent in G.
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2. Complexity of recognizing well-indumatched graphs

We consider the following decision problem.

NON-WELL-INDUMATCHED GRAPHS
Instance: A graph G.
Question: Are there two maximal induced matchings M and N in G with |M| # |N|?

We first prove that NON-WELL-INDUMATCHED GRAPHS is an NP-complete problem.
Then we extend this result by showing that the recognition of graphs having maximal
induced matchings of at most ¢ sizes is co-NP-complete for any value of ¢ > 1.

For the proof of NP-completeness, we will use a polynomial-time reduction from the
following well-known NP-complete problem 3-SATISFIABILITY, abbreviated as 3-SAT ([9],
see also [15]).

3-SAT

Instance: A collection C' = {c1,¢a,...,cn} of clauses over a set X = {z1,29,...,2,} of
0-1 variables such that |c;| =3 for j =1,2,...,m.

Question: Is there a truth assignment for X that satisfies all the clauses in C?

Theorem 1. NON-WELL-INDUMATCHED GRAPHS is NP-complete.

Proof. Obviously, the problem is in NP. To show that it is NP-hard, we construct a
polynomial-time reduction from 3-SAT. Let C' = {c1,¢9,...,¢n} and X = {z1,z9,...,2,}
be an instance of 3-SAT. Without loss of generality, we may assume that no clause in
C contains a variable x; and its negation T;, since such a clause is satisfied by any truth
assignment and therefore can be eliminated. Also, we may assume that m = |C| > 2.

We construct a graph G' = G (¢, x) with the vertex set C'UX’, where C" = {c1,c2,...,cn}
and X' = {w;,a;,b;,T; : i = 1,2,...,n} are disjoint sets, in the following way:

e The set C’ induces a clique.
e The set X’ induces n four-paths P* = (z;,a;,b;,T;) (with the edges z;a;, a;b; and
e For each clause ¢; = (l]1 \% ljz \% l;-’), introduce the three edges cjljl-, cjljz, cjl? between
C" and X' in G.
The graph G associated with the instance (C, X) of 3-SAT, where X = {x1,x9,z3,
.21?4,.’165} and C = {Cl = (.21?1 V x9 V .21?3),02 = (TQ V x3 V .21?4),63 = (fl Va3 V .21?5),64 =
(T3 VT4V x5)}, is shown in Fig. 1.

It is clear that the graph G' = G ¢ x) can be constructed in time polynomial in m = |C|
and n = | X|. We denote X; = {z;,a;,b;,T;}, i =1,2,...,n.

Claim 1. For an arbitrary maximal induced matching M in G, the following statements
hold:

(i) [ENG(C") N M| < 1,

(ii) ENg(X;) N M # 0 for each i =1,2,...,n, and

(iii) |M| € {n,n+1}.
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r, e b 2y0,b, 7T, zya,b,7T, z,0,b,T, 2z 0,0 7T
Fig. 1. An illustration of the construction.

Proof. (i) Since C' induces a clique, each induced matching in ENg(C’) has at most one
edge, i.e., |[ENg(C") N M| < 1.

(ii) If M and ENg(X;) are disjoint for some 7 (1 < ¢ < n), then we can add the edge
a;b; to M, contradicting the maximality of M.

(iii) By (i), |[ENg(C") N M| < 1. Also, M contains at most n edges of G(X'). Thus,
|M| < n+ 1. It follows from (ii) that |M| > n. O

Note that G has a maximum induced matching of size n+1, for example {c1c2}U{a;b; :
1,2,...,n}. Recall that m = |C| > 2.

We show that C' is satisfiable if and only if the graph G has a maximal induced match-
ing of size n. First, suppose that there exists a truth assignment ¢ satisfying C. We
construct an induced matching M C {z;a;,b;7; : i = 1,2,...,n} choosing the n edges that
correspond to true literals under ¢. That is, if ¢(z;) = 1, we include the edge x;a; into
M, otherwise the edge b;T; is included into M. Since ¢ satisfies C, each vertex of C’ is
adjacent to an end-vertex of an edge in M. It implies that we cannot extend M by adding
an edge e € F(G(X')). Indeed, such an edge is always incident to a vertex of C’. Thus,
M is a maximal induced matching of size n.

Conversely, let M be a maximal induced matching in G of size n.

Claim 2. Relation M C E(G(X')) holds.

Proof. Claim 1 (ii) and |M| = n imply that M contains exactly one edge from each set
ENg(X;). Moreover, M cannot have an edge connecting a vertex of X’ with a vertex of
C'. Indeed, suppose that an edge z;c; is in M. By Claim 1 (i), M \ {z;c;} C E(G(X")).
The vertex T; is non-adjacent to both x; and c;, since the clause ¢; cannot contain both
x; and Z;. Also, b; is non-adjacent to both z; and ¢;. It follows that M U {b;Z;} is an
induced matching, a contradiction to the maximality of M. O

We say that a vertex ¢; € C' is dominated by M if ¢; is adjacent to an end-vertex of
an edge in M.

Claim 3. At most one vertex in C' is not dominated by M.
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Proof. Suppose that ¢; and co are not dominated by M. Then M U {cic2} is an induced
matching, contradicting to the maximality of M. O

Claim 4. There exists a mazimal induced matching M' C E(G(X')) that dominates all
vertices in C'.

Proof. If M dominates all vertices in C’, then we may set M’ = M, since M C E(G(X"))
according to Claim 2. Otherwise, by Claim 3, we may assume that ¢; is the only vertex
in C’ that is not dominated by M. Without loss of generality, let ¢; = z7 V 29 V x3.
By the maximality of M, we cannot add the edge b;x; to M for each ¢ = 1,2,3. Since
M C E(G(X')) and z;a; € M, the edges a;b; are in M, i = 1,2,3. Now we define
M’ = (M \ {a1b1}) U {z1a1}. Since both a; and b; do not dominate any vertices in C’,
the induced matching M’ dominates all vertices in C’. In particular, M’ is maximal. [

The matching M’ of Claim 4 covers at most one of the vertices x;, T; for each i =

1,2,...,n. Hence, we can define a partial truth assignment ¢’ satisfying C' letting a literal
be true if the corresponding vertex of C’ is covered by M’. It remains to extend ¢’ to a
full assignment. This completes the proof of Theorem 1. O

A graph G is said to be bi-size indumatched if there exists an integer k > 1 such that
|M| € {k,k+ 1} for every maximal induced matching M in G. Theorem 1 implies the
following interesting corollaries.

Corollary 1. NON-WELL-INDUMATCHED GRAPHS is an NP-complete problem even for
bi-size indumatched graphs.

Corollary 2. NON-WELL-INDUMATCHED GRAPHS is NP-complete for (2Ps, K 5)-free
graphs.

Corollary 3. The decision problem corresponding to the problem of computing o(G) is
NP-complete within bi-size indumatched graphs.

Let WZM(t) be the class of graphs having maximal induced matchings of at most ¢
sizes. Note that, if ¢ = 1, then WZM(1) is the class of well-indumatched graphs. By
means of Theorem 1, one can obtain the following result.

Theorem 2. For any positive integer t, the problem of recognizing the class WIM(t) is
co-NP-complete even for (2Ps, K1 5)-free graphs.

3. NP-completeness results for well-indumatched graphs

A set I C V(G) is called independent or stable if no two vertices in I are adjacent.
The independence number of a graph G, denoted a(G), is the maximum cardinality of an
independent set in G. A set D C V(G) is a dominating set if each vertex in V(G) \ D
is adjacent to a vertex of D. The minimum cardinality of a dominating set in G is the
domination number of G, denoted by v(G). A set I C V(G) is called an independent
dominating set if I is an independent set and I is a dominating set. The minimum
cardinality of an independent dominating set of G is the independent domination number,
and it is denoted by i(G).
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The following three decision problems are known to be NP-complete (see, e.g., [15]).

INDEPENDENT SET

Instance: A graph G and an integer k.
Question: Is o(G) > k7

DOMINATING SET
Instance: A graph G and an integer k.
Question: Is v(G) < k?

INDEPENDENT DOMINATING SET
Instance: A graph G and an integer k.
Question: Is i(G) < k7

Here we prove that INDEPENDENT SET and INDEPENDENT DOMINATING SET are NP-
complete problems for well-indumatched graphs. Below we show that the DOMINATING
SET problem is NP-complete even in a hereditary subclass of well-indumatched graphs.

Theorem 3. INDEPENDENT DOMINATING SET is an NP-complete problem for well-
indumatched graphs.

Proof. Clearly, the problem belongs to NP. To show that it is NP-hard, we establish
a polynomial-time reduction from 3-SAT. For any instance (C,X) of 3-SAT with the
clauses C' = {¢1,¢,...,cn} and variables X = {x1,x9,...,2,}, we construct a graph G
as follows.

e For each variable z;, we introduce a complete graph F; = K, with two special
vertices x; and T; called the literal vertices.

e For each clause cj, we introduce a graph H; = Pr = (aj,bj,d;, cj,d;, b}, a’;), where
c; is called the clause vertex.

e Edges connecting V' (F;) and V(H;) are defined as follows: a clause vertex c; is
connected to the three literal vertices corresponding to the literals in the clause c;.

It is easy to see that the graph G can be constructed in time polynomial in m = |C|
and n = | X]|.

Claim 5. Fach mazimal induced matching M in G has exactly 2m + n edges.

Proof. Clearly, M contains exactly one edge from each set ENg(V(F})), i = 1,2,...,n.
Also, M contains exactly two edges from each path H;, j =1,2,...,m. O

Claim 6. There exists a satisfying truth assignment for C' if and only if G has an inde-
pendent dominating set of size k = 2m + n.

Proof. First, suppose that C has a satisfying truth assignment. We construct an indepen-
dent dominating set I in G as follows. If x; is assigned value 1, then include the literal
vertex z; into I; otherwise, T; is included into I. Finally, the set {b;, b;- cj=1,2,...,m}
is included into [. It is straightforward to verify that [ is an independent dominating set
in G of cardinality 2m + n, as required.

Conversely, suppose that I is an independent dominating set with |I| = 2m+n. Clearly,
I contains exactly one vertex from each F;. Also, I must contain at least two vertices from

each set S; = {a;,bj,a}, b} to dominate a; and a. Since [I| = 2m +n, I has exactly two



8 PH. BAPTISTE, M.Y. KOVALYOV, Y.L. ORLOVICH, F. WERNER, L.E. ZVEROVICH

vertices from each S;. To dominate d; and dg-, we must have I N.S; = {b;, b;} However,
the set S; does not dominate c;j, so the vertex c; must be dominated by some variable
vertex. Thus, we can define a truth assignment ¢ : X — {0,1} by ¢(z;) = 1if x; € I, and
¢(z;) = 0 otherwise. O

Claims 5 and 6 imply that INDEPENDENT DOMINATING SET is NP-complete for well-
indumatched graphs. O

We now prove that INDEPENDENT SET is NP-complete for well-indumatched graphs.
Theorem 4. INDEPENDENT SET is an NP-complete problem for well-indumatched graphs.

Proof. We give a polynomial-time reduction from the INDEPENDENT SET problem for
arbitrary graphs. Given a graph G with the edge set E(G) = {e1,e2,...,en}, m > 1,
construct a new graph G* as follows. First, for each edge e; = u;v;, 1 = 1,2,...,m, add
a triangle (z;,y;, z;), and join z; to u; and y; to v;, respectively. Thus, V(G*) = V(G) U
{xi,yi,zi :1=1,2,...,m} and E(G*) = {e;, vjui, yivi, TiYi, Yizi, izi 1 1= 1,2,...,m}.

Claim 7. G* is a well-indumatched graph.

Proof. Let G = G*({ui,vi,zi,9i,2i}), © = 1,2,...,m. An arbitrary maximal induced
matching M contains at most one edge of each G}, therefore |M| < m. Suppose that M
and E(G}) are disjoint for some ¢ € {1,2,...,m}. By symmetry, we may assume that M
does not contain any edge that is incident to u;. It implies that M U {x;2;} is an induced

matching, a contradiction to the maximality of M. Thus, |[M| = m. O
Claim 8. o(G*) = a(G) +m, where m = |E(G)|.

Proof. Let Z = {z1,29,...,2n}. If I is a maximum independent set in G, then I* = TUZ
is an independent set in G*. Hence, o(G*) > |[I*| = a(G) + m. Conversely, let I* be a
maximum independent set in G*. Without loss of generality, we may assume that Z C I'*.
The set [ = I* \ Z is independent in G, therefore a(G) > |I| = a(G*) — m. O

Claims 7 and 8 imply that the described mapping of an instance (G, k) to the instance
(G*,k + |E(G)]) gives the required reduction, and the result follows. O

The transformation used in the proof of Theorem 4 yields the following result for well-
indumatched graphs.

Corollary 4. PARTITION INTO TRIANGLES and CHORDAL GRAPH COMPLETION are
NP-complete problems for well-indumatched graphs.

Let H be a given graph. Consider the following decision problem.

PARTITION INTO SUBGRAPHS ISOMORPHIC TO H

Instance: A graph G with |V (G)| = ¢q|V(H)| for some integer q.

Question: Is there a partition V; UVo U ... UV, = V(G) such that G(V;) contains a
subgraph isomorphic to H for all i = 1,2,...,¢?

It is well known that this problem is NP-complete for each H that contains a connected
component of three or more vertices ([17, 18], see also [15]).
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Theorem 5. PARTITION INTO SUBGRAPHS [SOMORPHIC TO Ps is NP-complete for well-
indumatched graphs.

Proof. We give a polynomial-time reduction from the problem with H = Pj5 for arbitrary
graphs. Given a graph G with |V (G)| = 3¢ and E(G) = {e1,e2,...,en}, m > 1, construct
a new graph G*™* as follows. First, for each edge e¢; = u;v;, 1 = 1,2,...,m, add a new edge
x;y; and join x; to u; and y; to v;, respectively. Then attach two pendant vertices 2z’ and
2" to each z € {x;,y;}. More precisely,

V(G™) =V(G)U{xi,z), 2 yi vl yl ci=1,2,...,m}
and E(G*™) consists of

e ¢ foralli=1,2,...,m,

o x;u;, y;v;, for all e; = u;v;, 1 =1,2,...,m, and
/ " / ! .

o XY, X%y, Tixy Yy, yiy; forall i =1,2,... m.

It is easy to see that each maximal induced matching contains exactly one edge from
each subgraph induced by {u;, v, z;,yi, 2, =], y.,y/}. Thus, G** is a well-indumatched
graph. Also, G has a partition into subgraphs Ps if and only if G** has a partition into
subgraphs P3. Indeed, all 3-paths (z},z;,2) and (y.,y;,y;) are always in a partition of
G™** into 3-paths. O

Kobler and Rotics [20] proved that computing ¥ is NP-hard for line graphs and there-
fore, for claw-free graphs. One interesting special case of the problem is when the input
line graph L(G) is obtained from a graph G with polynomial-time computable 3. Corol-
lary 5 shows that this special case is also NP-complete even if restricted to Hamiltonian
line graphs of well-indumatched graphs.

Corollary 5. Computing ¥ for Hamiltonian line graphs L(G) is NP-hard even if G is a
well-indumatched graph.

Kobler and Rotics [20] also proved that computing 3 is NP-hard for Hamiltonian graphs.
This proof is not related to their proof for claw-free graphs. Corollary 6 implies a unified
result.

Corollary 6. Computing X2 is NP-hard for Hamiltonian claw-free graphs.
The reduction used in the proof of Theorem 5 also gives the following result.

Corollary 7. GRAPH k-COLORABILITY and CLIQUE are NP-complete problems for well-
indumatched graphs.

4. Co-indumatching subgraphs

The class WIM of well-indumatched graphs is not hereditary. For example, the path
P; is a well-indumatched graph, while Pj is not. However, P; contains P5 as an induced
subgraph. We introduce a new hereditary system that is similar to that for well-covered
graphs [7, 31].
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The neighborhood of an edge e = wv is defined as N(e) = N(u) U N(v). Clearly,
u,v € N(e). Also, N(S) = UeesN (e) for a set S of edges. Let M be an induced matching
in G, including M = (). A subgraph G — N(M) of G is called co-indumatching. We denote
by CIMSub(G) the set of co-indumatching subgraphs in G. For example, the cycle Cy
has the following co-indumatching subgraphs: Cg, Py, K1, Ky and thus, CIMSub(Cs) =
{Cs, Py, K1,Kp}. A class of graphs M is co-indumatching hereditary if CIMSub(G) C
M for each graph G € M. A minimal forbidden co-indumatching subgraph for a co-
indumatching hereditary class M is a graph F such that CIMSub(F) \ M = {F}.

Proposition 1. WIM is a co-indumatching hereditary class.

Proposition 2. Fach co-indumatching hereditary class can be characterized in terms of
forbidden co-indumatching subgraphs.

Proposition 2 means that for each co-indumatching hereditary class M, there is a
set of graphs 2 such that G € M if and only if G does not contain each graph in
Z as a co-indumatching subgraph. Such a set 2  must contain all minimal forbidden
co-indumatching subgraphs for M. Conversely, every set 2  that contains all minimal
forbidden co-indumatching subgraphs for M characterizes M.

For example, P5 is a forbidden co-indumatching subgraph for WZM. Indeed, it is not
well-indumatched, but P; — N(e) is well-indumatched for each edge e of P5s. We shall
characterize well-indumatched graphs in terms of forbidden co-indumatching subgraphs.

Another important problem concerns the complexity of recognizing co-indumatching
subgraphs.

CO-INDUMATCHING SUBGRAPH
Instance: A graph G and a set U C V(@) that induces a subgraph H.
Question: Is H a co-indumatching subgraph of G?

We prove that the problem is hard.
Theorem 6. CO-INDUMATCHING SUBGRAPH is an NP-complete problem.

Let G1,Go, ..., Gy be pairwise vertex-disjoint graphs. The join of graphs G1,Go, ..., Gk
is the graph Zle G; =G UGy U --- UGy, where G; is the complement of G;. We denote
by Zyy the set of all graphs of the form Zle G, where each graph G; is well-covered and
a(Gy) # a(Gj) for 1 < i # j < k. It is easy to see that Zyy consists of non-well-covered
graphs. Let Zyyzaq be the class of all graphs F such that (L(F))? € Zyy.

Here is our characterization.

Theorem 7. Zyyzar is the set of all minimal forbidden co-indumatching subgraphs for
the class WIM.

5. Perfectly well-indumatched graphs

In this section, we consider a hereditary subclass of the class WIM. A graph G
is perfectly well-indumatched if every induced subgraph of G is well-indumatched. We
characterize perfectly well-indumatched graphs in terms of forbidden induced subgraphs.
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Kite is the graph consisting of five vertices u,v,w,z,y and edges uv, uw, vw, wz, Ty.
Butterfly is the graph obtained from kite by adding the edge wy.

Theorem 8. For a graph G, the following statements are equivalent:
(i) G is a perfectly well-indumatched graph.
(ii) G is a (Ps, kite, butter fly)-free graph.
(iii) (L(Q@))? is a (K4 — e)-free graph.

Theorem 8 implies that the class of perfectly well-indumatched graphs contains all
2K,-free graphs and therefore, all split graphs. Recall that Foldes and Hammer [14]
characterized split graphs as (2K5, Cy, C5)-free graphs. It is well known that DOMINATING
SET is an NP-complete problem for split graphs [2].

Corollary 8. DOMINATING SET is an NP-complete problem for perfectly well-indumatched
graphs.

As we have shown, INDEPENDENT SET and INDEPENDENT DOMINATING SET are NP-
complete problems for well-indumatched graphs. However, they can be solved in polyno-
mial time for perfectly well-indumatched graphs.

Theorem 9. The INDEPENDENT SET problem and the INDEPENDENT DOMINATING SET
problem can be solved in polynomial time for perfectly well-indumatched graphs, even in
their weighted versions.
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