
Solving an Investment Optimization Problem by an
Improved Graphical Approach

Evgeny R. Gafarov

Ecole Nationale Superieure des Mines, FAYOL-EMSE, CNRS:UMR6158, LIMOS,
F-42023 Saint-Etienne, France,

Institute of Control Sciences of the Russian Academy of Sciences,
Profsoyuznaya st. 65, 117997 Moscow, Russia,

email: axel73@mail.ru

Alexandre Dolgui

Ecole Nationale Superieure des Mines, FAYOL-EMSE, CNRS:UMR6158, LIMOS,
F-42023 Saint-Etienne, France

email: dolgui@emse.fr

Alexander A. Lazarev

Institute of Control Sciences of the Russian Academy of Sciences,
Profsoyuznaya st. 65, 117997 Moscow, Russia,

email: jobmath@mail.ru

Frank Werner

Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg,
PSF 4120, 39016 Magdeburg, Germany,

email: frank.werner@mathematik.uni-magdeburg.de

February 10, 2013

Abstract

In this paper, a graphical algorithm (GrA) for an investment opti-
mization problem is presented. This algorithm is based on the same
Bellman equations as the best known dynamic programming algorithm
(DPA) for the problem but the GrA has several advantages in com-
parison with the DPA. Based on this GrA, a fully polynomial-time ap-
proximation scheme is proposed having the best known running time.

1 Introduction
The Project Investment Problem can be formulated as follows. A set
N of n potential projects and an investment budget (amount) A >
0, A ∈ Z, are given. For each project j, j = 1, . . . , n, a profit function
fj(x), x ∈ [0, A], is given, where the value fj(x

′) denotes the profit
received if the amount x′ is invested into the project j. The objective

1

is to determine an amount xj ∈ [0, A], xj ∈ Z, for each project j ∈ N
such that

∑n
j:=1 xj ≤ A and the total profit

∑n
j:=1 fj(xj) is maximized.

In this paper, we deal with piecewise linear functions fj(x). Sup-
pose that the interval [0, A] can be written as

[0, A] = [t0j , t
1
j]
⋃

(t1j , t
2
j]
⋃

. . .
⋃

(tk−1
j , tkj]

⋃
. . .

⋃
(t

kj−1
j , t

kj

j]

such that the profit function has the form fj(x) = bkj +uk
j (x− tk−1

j), if
x ∈ (tk−1

j , tkj], where k is the number of the interval, bjk is the value of
the function at the beginning of the interval, and uk

j is the slope of the
function. Without loss of generality, assume that b1j ≤ b2j ≤ . . . ≤ b

kj

j

and tkj ∈ Z, j ∈ N, k = 1, 2, . . . , kj , and that t
kj

j = A, j = 1, 2, . . . , n.
A special case of this problem is similar to the well-known bounded

knapsack problem:

maximize
∑n

j:=1 pjxj

s.t.
∑n

j:=1 wjxj ≤ A,

xj ∈ [0, bj], xj ∈ Z, j = 1, 2, . . . , n,

(1)

for which a dynamic programming algorithm (DPA) of time complexity
O(nA) is known [3].

The following problem is also similar to the problem under consid-
eration:

minimize
∑n

j:=1 fj(xj)

s.t.
∑n

j:=1 xj ≥ A,

xj ∈ [0, A], xj ∈ Z, j = 1, 2, . . . , n,

(2)

where fj(xj) are piecewise linear as well. For this problem, a DPA
with a running time of O(

∑
kjA) [4] and a fully polynomial-time ap-

proximation scheme (FPTAS) with a running time of O((
∑

kj)
3/ε) [5]

are known.
In this paper, we present an alternative solution algorithm with

a running time of O(
∑

kjA) and an FPTAS based on this solution
algorithm with a running time of O(

∑
kjn log logn/ε).

The remainder of the paper is as follows. In Section 2, we present
the Bellman equations to solve the problem under consideration. In
Section 3, a graphical algorithm (GrA) based on an idea from [1] is
presented. In Section 4, an FPTAS based on this GrA is derived.

2 Dynamic programming algorithm
In this section, we present a DPA for the problem considered. For
any project j and any state t ∈ [0, A], we define Fj(t) as the maximal

2

profit incurred for the projects 1, 2, . . . , j, when the remaining budget
available for the projects j+1, j+2, . . . , n is equal to t. Thus, we have:

Fj(t) = max
∑j

h:=1 fh(xh)

s.t.
∑j

h:=1 xh ≤ A− t,
xh ≥ 0, xh ∈ Z, h = 1, 2, . . . , j.

(3)

We define Fj(t) = 0 for t /∈ [0, A]. Then we have the following recursive
equations:

Fj(t) = maxx∈[0,A−t]{fj(x) + Fj−1(t+ x)}
= max

1≤k≤kj

max
x∈(tk−1

j ,tkj]
⋂
[0,A−t]

{bkj − uk
j t

k−1
j + uk

j · x+ Fj−1(t+ x)},
j = 1, 2, . . . , n.

(4)

Lemma 1 All functions Fj(t), j = 1, 2, . . . , n, are non-increasing on
the interval [0, A].

The proof of this lemma immediately follows from the definition of the
functions Fj(t).

The running time of the DPA using such a type of Bellman equa-
tions is O(

∑
kjA) if we use an idea from [4].

3 Graphical algorithm
In this section, we present a GrA which constructs the functions
Fj(t), j = 1, 2, . . . , n, in a more effective way in comparison with
the DPA. Below we prove that the functions Fj(t), j = 1, 2, . . . , n,
constructed in the GrA are piecewise linear.

Any piecewise linear function ϕ(x) considered in this paper can be
defined by three sets of numbers: a set of break points I (at each break
point, a new linear segment of the piecewise linear function begins), a
set of slopes U and a set of values of the function at the beginning of the
interval B. Let the notation I[k] denote the k-th element in the ordered
set I. The same notations will be used for the sets U and B as well.
The notation ϕ.I[k] denotes the k-th element of the set I of the function
ϕ(x). Then, for example, for x ∈ (tk−1

j , tkj] = (fj .I[k − 1], fj .I[k]], we
have

fj(x) = fj .B[k] + fj .U [k](x− fj.I[k]).

Note that ϕ.I[k] < ϕ.I[k + 1], k = 1, . . . , |ϕ.I| − 1 and kj = |fj.I|. In
each step j, j = 1, 2, . . . , n, of the subsequent algorithm, the temporary
piecewise linear functions Ψi

j and Φi
j are constructed. The functions

Fj(t), j = 1, 2, . . . , n, constructed in the GrA are piecewise linear as

3

well. For t ∈ Z, their values are equal to the values of the functions
Fj(t) considered in the DPA.

Let ϕ.I[−1] = 0 and ϕ.I[|ϕ.I|+1] = A. Remind that ϕ.I[|ϕ.I|] = A.
The points t ∈ ϕ.I and the other end points of the intervals with the
piecewise linear functions considered in this article will be called break
points. To construct a function in the GrA means to compute their
sets I, U and B.

Graphical algorithm

1. Let F0(t) = 0, i.e., F0.I := {A}, F0.U := {0}, F0.B := {0};
2. FOR j := 1 TO n DO

2.1. FOR k := 1 TO kj DO
2.1.1. Construct the temporary function

Ψk
j (t) = fj.B[k]−fj .U [k]·fj .I[k−1]+fj .U [k]·t+Fj−1(t)

according to Procedure 2.1.1.;
2.1.2. Construct the temporary function

Φk
j (t) = max

x∈(fj .I[k−1],fj .I[k]]
⋂
[0,A−t]

{Ψk
j (t+x)−fj .U [k]·t}

according to Procedure 2.1.2.;
2.1.3. IF k = 1 THEN Fj(t) := Φk

j (t) ELSE Fj(t) :=

max{Fj(t),Φ
k
j (t)}.

2.2. Modify the sets I, U,B of the function Fj(t) according to
Procedure 2.2.

3. The optimal objective function value is equal to Fn(0).

The above algorithm uses Procedures 2.1.1. and 2.1.2. described
below.

Procedure 2.1.1.

Given are k and j;

Ψk
j .I = ∅, Ψk

j .U = ∅ and Ψk
j .B = ∅.

FOR i := 1 TO |Fj−1.I| DO

add the value Fj−1.I[i] to the set Ψk
j .I;

add the value

fj.B[k]− fj .U [k] · fj .I[k− 1]+ fj .U [k] ·Fj−1.I[i]+Fj−1.B[i]

to the set Ψk
j .B;

add the value fj .U [k] + Fj−1.U [i] to the set Ψk
j .U ;

4

In Procedure 2.1.1., we shift the function Fj−1(t) up by the value
fj.B[k]− fj .U [k] · fj .I[k − 1] and increase all slopes in its diagram by
fj.U [k]. If all values t ∈ Fj−1.I are integer, then all values from the
set Ψi

j .I are integer as well. It is obvious that Procedure 2.1.1. can be
performed in O(|Fj−1 .I|) time.

Before describing Procedure 2.1.2., we present Procedure FindMax
in which the maximum function ϕ(t) of two linear fragments ϕ1(t) and
ϕ2(t) is constructed.

Procedure FindMax

1. Given are the functions ϕ1(t) = b1 + u1 · t and ϕ2(t) = b2 + u2 · t
and an interval (t′, t′′]. Let u1 ≤ u2;

2. IF t′′− t′ ≤ 1 THEN RETURN ϕ(t) = max{ϕ1(t
′′), ϕ2(t

′′)}+0 · t
defined on the interval (t′, t′′];

3. Find the intersection point t∗ of ϕ1(t) and ϕ2(t);

4. IF t∗ does not exist OR t∗ /∈ (t′, t′′] THEN

IF b1 + u1 · t′ > b2 + u2 · t′ THEN RETURN ϕ(t) = ϕ1(t)
defined on the interval (t′, t′′];
ELSE RETURN ϕ(t) = ϕ2(t) defined on the interval (t′, t′′];

5. ELSE

IF t∗ ∈ Z THEN
ϕ(t) := ϕ1(t) on the interval (t′, t∗];
ϕ(t) := ϕ2(t) on the interval (t∗, t′′];
RETURN ϕ(t);

ELSE IF t∗ /∈ Z THEN
ϕ(t) := ϕ1(t) on the interval (t′, �t∗�];
ϕ(t) := b2+u2 · �t∗�+0 · t on the interval (�t∗�−1, �t∗�];
ϕ(t) := ϕ2(t) on the interval (�t∗�, t′′];
RETURN ϕ(t);

If t∗ exists but t∗ /∈ (t′, t′′], then ϕ1(t
′) > ϕ1(t

′), since u1 ≤ u2. The
case when t∗ /∈ Z is presented in Fig. 1. So, if both points t′ and t′′

are integer, then ϕ.I contains only integer break points t. The running
time of Procedure FindMax is constant.

Procedure 2.1.2.

2.1.2.1. Given are k, j and Ψk
j (t);

2.1.2.2. Φk
j .I := ∅, Φk

j .U := ∅ and Φk
j .B := ∅;

2.1.2.3. s′ := 0, tleft := s′ + fj.I[k − 1], tright := min{s′ + fj .I[k], A};
2.1.2.4. Let T ′ = {Ψk

j .I[v],Ψ
k
j .I[v + 1], . . . ,Ψk

j .I[w]} be the maximal
subset of Ψk

j .I, where tleft < Ψk
j .I[v] < . . . < Ψk

j .I[w] < tright,

5

Figure 1: Procedure Find Max. Cutting of a non-integer point

Let T := {tleft}
⋃
T ′⋃{tright};

2.1.2.5. WHILE s′ ≤ A DO
2.1.2.6. IF T ′ = ∅ THEN let

w + 1 = argmaxi=1,2,...,|Ψk
j .I|{Ψk

j .I[i]|Ψk
j .I[i] > tright}

and v = argmaxi=1,2,...,|Ψk
j .I|{Ψk

j .I[i]|Ψk
j .I[i] > tleft};

2.1.2.7. IF w + 1 is not defined THEN let w + 1 = |Ψk
j .I|;

2.1.2.8. IF v is not defined THEN let v = |Ψk
j .I|;

2.1.2.9. IF tleft < A THEN εleft := Ψk
j .I[v]− tleft ELSE εleft :=

A− s′;
2.1.2.10. IF tright < A THEN εright := Ψk

j .I[w+1]−tright ELSE
εright := +∞;

2.1.2.11. ε := min{εleft, εright};
2.1.2.12. IF tleft < A THEN

bleft := Ψk
j .B[v] +Ψk

j .U [v] · (tleft −Ψk
j .I[v− 1])− fj.U [k] · s′

ELSE bleft := 0;
2.1.2.13. IF tright < A THEN

bright := Ψk
j .B[w+1]+Ψk

j .U [w+1]·(tright−Ψk
j .I[w])−fj .U [k]·s′

ELSE bright := 0;
2.1.2.14. IF T ′ = ∅ THEN binner := 0 ELSE

binner := max
s=v,v+1,...,w

{Ψk
j .B[s]+Ψk

j .U [s]·(Ψk
j .I[s]−Ψk

j .I[s−1])}−fj.U [k]·s′;

6

2.1.2.15. Denote function

ϕleft(x) := bleft − (fj .U [k]−Ψk
j .U [v]) · x.

IF tleft = A THEN ϕleft(x) := 0;
2.1.2.16. Denote function

ϕright(x) := bright − (fj .U [k]−Ψk
j .U [w + 1]) · x.

IF tright = A THEN ϕright(x) := 0;
2.1.2.17. Denote function

ϕinner(x) := binner − fj.U [k] · x.
IF T ′ = ∅ THEN ϕinner(x) := 0;

2.1.2.18. Construct the piecewise linear function

ϕmax(x) := max
x∈[0,ε]

{ϕleft(x), ϕright(x), ϕinner(x)}

according to Procedure FindMax;
2.1.2.19. add the values from ϕmax.I increased by s′ to the set

Φk
j .I;

2.1.2.20 add the values from ϕmax.B to the set Φk
j .B;

2.1.2.21. add the values from ϕmax.U to the set Φk
j .U ;

2.1.2.22. IF ε = εleft THEN exclude Ψk
j .I[v] from the set T and

v := v + 1;
2.1.2.23. IF ε = εright THEN include Ψk

j .I[w + 1] to the set T
and w := w + 1;

2.1.2.24. s′ := s′ + ε.
2.1.2.25. tleft := s′ + fj .I[k − 1], tright := min{s′ + fj .I[k], A};

2.1.2.26. Modify the function Φk
j according to Procedure 2.2. (de-

scribed below).

In fact, in Procedure 2.1.2., we do the following. When we shift
s′ to the right, we shift the interval I ′ = [tleft, tright] of the length
fj.I[k] − fj .I[k − 1]. We have to use the values Ψk

j (x) for x ∈ T ′ to
calculate Φk

j (t) at the point t = s′. Since Ψk
j (x) is piecewise linear,

it is only necessary to consider the values Ψk
j (x) at the break points

belonging to T ′ and at the end points of the interval T ′. So, if we shift
s′ to the right by a small value x ∈ [0, ε] such that all the break points
remains the same, then the value Φk

j (t) will be changed according to
the value ϕmax(x).

Lemma 2 Procedure 2.1.2. has a running time of O(|Fj−1.I|).

7

Proof. Step [2.1.2.14] has to be performed with the use of a simple
data structure. Let {q1, q2, . . . , qr} be a maximal subset of T ′ having
the following properties:

q1 < q2 < . . . < qr;
there is no j ∈ T ′ such that qi ≤ j < qi+1 and
Ψi

j.B[j] ≥ Ψi
j .B[qi+1], i = 1, . . . , r − 1.

We can keep track of the set {q1, q2, . . . , qr} by storing its elements
in increasing order in a Queue Stack, i.e., a list with the property
that elements at the beginning can only be deleted while at the end,
elements can be deleted and added [2]. This data structure can easily
be implemented such that each deletion and each addition requires a
constant time. So, step [2.1.2.14] can be performed in constant time.

Each of the steps [2.1.2.6]–[2.1.2.25] can be performed in constant
time. The loop [2.1.2.5.] can be performed in O(|Ψk

j .I|) time, where
|Ψk

j .I| = |Fj−1(t).I|, since each time a break point from |Ψk
j .I| is added

or deleted. So, the lemma is true. �
We remind that in the DPA, the functional equations (4) are con-

sidered. In fact, in Procedure 2.1.1., we construct the function

bkj − uk
j t

k−1
j + uk

j · (t+ x) + Fj−1(t+ x)

and in Procedure 2.1.2., we construct the function

Φk
j (t) = max

x∈(tk−1
j ,tkj]

⋂
[0,A−t]

{bkj−uk
j t

k−1
j +uk

j ·(t+x)−uk
j ·t+Fj−1(t+x)}.

Unlike the DPA, to construct Φk
j (t) in the GrA, we do not consider

all integer points x ∈ (tk−1
j , tkj]

⋂
[0, A − t], but only the break points

from the interval, since only they influence the values of Φk
j (t) (and in

addition tleft, tright). Step [2.1.3.] can be performed according to Pro-
cedure FindMax as well, i.e., to construct Fj(t) := max{Fj(t),Φ

i
j(t)},

their linear fragments have to be compared in each interval, organized
by their break points. It is easy to see that we do the same operations
with the integer points t as in the DPA. So, the values Fj(t), t ∈ Z,
are the same for the GrA and the DPA, and we can state the following:

Lemma 3 The values Fj(t), j = 1, 2, . . . , n, at the points t ∈
[0, A]

⋂
Z are equal to the values of the functions Fj(t) considered in

the DPA.

Next, we present Procedure 2.2. used in step [2.1.26] of Procedure
2.1.2.

Procedure 2.2.
Given is Fj(t);
FOR k := 1 TO |Fj .I| − 1 DO

8

IF Fj .U [k] = Fj .U [k+1] AND Fj .U [k] · (Fj .U [k]−Fj.U [k− 1])+
Fj .B[k] = Fj .B[k + 1] THEN

Fj .B[k + 1] := Fj .B[k];
Delete the kth elements from Fj .B, Fj .U and Fj .I;

So, in Procedure 2.2., we combine two adjoining linear fragments that
are in the same line. That means that, if we have two adjacent linear
fragments which are described by the values (slopes) Fj .U [k], Fj .U [k+
1] and Fj .B[k], Fj .B[k + 1], where Fj .U [k] · (Fj .U [k]− Fj .U [k − 1]) +
Fj .B[k] = Fj .B[k + 1], (i.e., these fragments are on the same line),
then, to reduce the number of intervals |Fj .I| and thus the running
time of the algorithm, we can join these two intervals into one interval.

Lemma 4 All functions Fj(t), j = 1, 2, . . . , n, are piecewise linear on
the interval [0, A] with integer break points.

Proof. For F0(t), the lemma is true. In Procedure 2.1.1., all break
points from the set Ψi

1.I are integer as well (see the comments after
Procedure 2.1.1.). Since all points from f1.I are integer, we have ε ∈ Z
and as a consequence, s′ ∈ Z. According to the Procedure FindMax,
all points ϕmax.I considered in Procedure 2.1.2. are integer. So, all
break points from Φi

j .I, i = 1, 2, . . . , kj , are integer as well. Thus, the
break points of the function F1(t) := max{F1(t),Φ

i
1(t)} are integer, if

we use Procedure FindMax to compute the function max{F1(t),Φ
i
1(t)}.

Analogously, we can prove that all break points of F2(t) are integer,
etc.

Thus, it is obvious that all functions Fj(t), j = 1, 2, . . . , n, con-
structed in the GrA are piecewise linear. �

Theorem 1 The GrA finds an optimal solution of the problem in

O

(∑
kj min{A, max

j=1,2,...,n
{|Fj .B|}}

)

time.

Proof. Analogously to the proof of Lemma 4, after each step [2.1.3.]
of the GrA, the function Fj(t), j = 1, 2, . . . , n, has only integer break
points from the interval [0, A]. Each function Φi

j .I, j = 1, 2, . . . , n, i =
1, 2, . . . , kj , has only integer break points from [0, A] as well. So, to
perform step [2.1.3.], we need to perform Procedure FindMax on no
more than A + 1 intervals. Thus, the running time of step [2.1.3.] is
O(A). According to Lemmas 1 and 2, the running time of steps [2.1.1.]
and [2.1.2.] is O(Fj .I), where Fj .I ≤ A. The running time of step
[2.2.] is O(Fj .I) as well.

Analogously to the comments after the DPA, it is easy to show that
Fj(t), j = 1, 2, . . . , n, is a non-increasing function in t. So, Fj .B[k] ≥

9

Figure 2: Functions fj(t)

Fj .B[k + 1], j = 1, 2, . . . , n, k = 1, 2, . . . , |Fj .I| − 1. Then, according
to Procedure 2.2., there are no more than 2 · Fj .B[0] different values
in the set Fj .I, where Fj .B[0] is the maximal value in the set Fj .B.

Thus, the running time of the GrA is

O

(∑
kj min{A, max

j=1,2,...,n
{|Fj .B|}}

)
.

�

4 Example
Next, we explain the idea of the GrA using the numerical example
presented in Fig. 2. In this instance, we consider four projects with
the profit functions fj(t), j = 1, 2, 3, 4 (see Table 1).

10

Table 1: Functions fj(t)

f1.I = {3, 10, 13, 25} f2.I = {5, 25} f3.I = {2, 4, 6, 25} f4.I = {3, 4, 25}
f1.U = {0, 1, 13 , 0} f2.U = { 2

5 , 0} f3.U = {0, 2, 12 , 0} f4.U = {0, 0, 0}
f1.B = {0, 0, 7, 8} f2.B = {0, 2} f3.B = {0, 0, 4, 5} f4.I = {0, 1, 4}

STEP j = 1, k = 1. We have Ψk
j (x) = 0, Ψk

j .I = {0}, Ψk
j .U = {0}

and Ψk
j .B = {0}.

s’=0. We get T ′ = ∅, tleft = 0, tright = 3 and ε = min{25−0, 25−3}=
22. Then we obtain bleft = 0, bright = 0 and binner = 0. Furthermore,
ϕleft(x) = 0, ϕright(x) = 0 and ϕinner(x) = 0. Thus, ϕmax(x) = 0.
We get s′ = s′ + 22 = 22.

s’=22. We obtain T ′ = {25}, tleft = 22, tright = 25 and ε = 25− 22 =
3. Moreover, bleft = 0, bright = 0 and binner = 0. In addition, we get
ϕleft(x) = 0, ϕright(x) = 0 and ϕinner(x) = 0. Thus, ϕmax(x) = 0.
Next, we consider s′ = 22 + 3 = 25.
We have Φ1

1(x) = 0, Φ1
1.I = {0}, Φ1

1.U = {0}, Φ1
1.B = {0}.

STEP j = 1, k = 2. We have Ψk
j (x) = x − 3, Ψk

j .I = {25}, Ψk
j .U =

{1} and Ψk
j .B = {−3}.

s’=0. We obtain T ′ = ∅, tleft = 3, tright = 10 and ε = min{25−3, 25−
10} = 15. Moreover, bleft = 0, bright = 7 and binner = 0. Then we get
ϕleft(x) = 0 + (1 − 1)x, ϕright(x) = 7 + (1 − 1)x and ϕinner(x) = 0.
Thus, ϕmax(x) = 7. We get s′ = s′ + 15 = 15.

s’=15. We have T ′ = {25}, tleft = 15 + 3 = 18, tright = 15 + 10 = 25
and ε = 25 − 18 = 7. Moreover, bleft = −3 + 1 · 18 − 1 · 15 = 0,
bright = 0 and binner = −3 + 1 · (25 − 0) − 1 · 15 = 7. Then we get
ϕleft(x) = 0 + (1 − 1)x, ϕright(x) = 0 and ϕinner(x) = 7 − x. Thus,
ϕmax(x) = 7− x. Next, we consider s′ = s′ + 7 = 22.

s’=22. We have T ′ = ∅, tleft = 25, tright = 22 + 10 = 32 and ε =
A − s′ = 25 − 22 = 3. Then ϕleft(x) = ϕright(x) = ϕinner(x) = 0.
Thus, ϕmax(x) = 0. We get s′ = s′ + 3 = 25.
We have Φ2

1.I = {15, 22, 25}, Φ2
1.U = {0,−1, 0} and Φ2

1.B = {7, 7, 0}.
STEP j = 1, k = 3. We have Ψk

j (x) = x+3 2
3 , Ψk

j .I = {25}, Ψk
j .U =

{ 1
3} and Ψk

j .B = {3 2
3}. This step is performed analogously. We have

to consider s′ = 0, 12, 15.
We have Φ3

1.I = {12, 25, 22}, Φ3
1.U = {0,− 1

3 , 0}, Φ3
1.B = {8, 8, 0}.

STEP j = 1, k = 4. We have Ψk
j (x) = 8, Ψk

j .I = {25}, Ψk
j .U = {0}

and Ψk
j .B = {8}. This step is performed analogously. We have to

consider s′ = 0, 12.
We have Φ4

1.I = {12, 25}, Φ4
1.U = {0, 0}, Φ4

1.B = {8, 0}.

11

So, after STEP j = 1, we have F1(t) = max{Φ1
1,Φ

2
1,Φ

3
1,Φ

4
1}, F1.I =

{12, 15, 22, 0}, F1.U = {0,− 1
3 ,−1, 0} and F1.B = {8, 8, 7, 0}, see Fig.

3.1.

STEP j = 2, k = 1. We have Ψk
j .I = {12, 15, 22, 0}, Ψk

j .U = { 2
5 ,

2
5 −

1
3 ,

2
5 − 1, 25} and Ψk

j .B = {8, 12 4
5 , 13, 8

4
5}.

s’=0. We have T ′ = ∅, tleft = 0, tright = 5 and ε = min{12− 0, 12−
5} = 7. Moreover, bleft = 8, bright = 10 and binner = 0. Then
we obtain ϕleft(x) = 8 + (25 − 2

5)x, ϕright(x) = 10 + (25 − 2
5)x and

ϕinner(x) = 0. Thus, ϕmax(x) = 10. We get s′ = s′ + 7 = 7.

s’=7. We have T ′ = {12}, tleft = 7, tright = 12 and ε = min{12 −
7, 15 − 12} = 3. Moreover, bleft = 8, bright = 12 4

5 − 2
5 · 7 = 10 and

binner = 10. Then we get ϕleft(x) = 8, ϕright(x) = 10 − 1
3x and

ϕinner(x) = 10 − 2
5x. Thus, ϕmax(x) = 10 − 1

3x. Next, we have to
consider s′ = s′ + 3 = 10.

s’=10. We have T ′ = {12, 15}, tleft = 10, tright = 15 and ε = min{12−
10, 22 − 15} = 2. Moreover, bleft = 8, bright = 10 − 1

3 · 3 = 9 and
binner = max{12 4

5 − 2
5 · 10 = 8 4

5 , 13 − 2
5 · 10 = 9} = 9. Then we

get ϕleft(x) = 8, ϕright(x) = 9 − x and ϕinner(x) = 9 − 2
5x. Thus,

ϕmax(x) = 9− 2
5x. We get s′ = s′ + 2 = 12.

s’=12. We have T ′ = {15}, tleft = 12, tright = 17 and ε = min{15−
12, 22− 17} = 3. Moreover, bleft = 8, bright = 9− 2 = 7 and binner =
9 − 4

5 . Then we obtain ϕleft(x) = 8 − 1
3x, ϕright(x) = 7 − x and

ϕinner(x) = 8 1
5 − 2

5x. Thus, ϕmax(x) = 8 1
5 − 2

5x. We get s′ = s′ +3 =
15.

s’=15. We have T ′ = ∅, tleft = 15, tright = 20 and ε = min{22 −
15, 22− 20} = 2. Furthermore, bleft = 8− 1

3 · 3 = 7, bright = 7− 3 = 4
and binner = 0. Then we get ϕleft(x) = 7 − x, ϕright(x) = 4 − x and
ϕinner(x) = 0. Thus, ϕmax(x) = 7 − x. Next, we have to consider
s′ = s′ + 2 = 17.

s’=17. We have T ′ = {22}, tleft = 17, tright = 22 and ε = min{22−
17, 25 − 22} = 3. Moreover, bleft = 7 − 2 = 5, bright = 4 − 2 = 2
and binner = 13 − 3

5 (22 − 15) − 2
5 · 22 = 13 − 13 = 0. Then we

get ϕleft(x) = 5 − x, ϕright(x) = 2 and ϕinner(x) = 0 − 2
5x. Thus,

ϕmax(x) = 5− x. We get s′ = s′ + 3 = 20.

s’=20. We have T ′ = {22, 25}, tleft = 20, tright = 0 and ε = 22− 20 =
2. In addition, bleft = 5 − 3 = 2, bright = 0 and binner = max{0 −
6
5 , 8

4
5 +(25− 22)25 − 2

5 · 20 = 2} = 2. Then we obtain ϕleft(x) = 2− x,
ϕright(x) = 0 and ϕinner(x) = 2− 2

5x. Thus, ϕmax(x) = 2− 2
5x. Next,

we consider s′ = s′ + 2 = 22.

s’=22. We have T ′ = {25}, tleft = 22, tright = 0, ε = 25 − 22 = 3.
Furthermore, bleft = 2 − 2 = 0, bright = 0 and binner = 2 − 2

5 · 2. In

12

Figure 3: Calculations in the example

13

addition, we get ϕleft(x) = 0, ϕright(x) = 0 and ϕinner(x) =
6
5 − 2

5x.
Thus, ϕmax(x) =

6
5 − 2

5x. We get s′ = s′ + 3 = 25.

We have Φ1
2.I = {7, 10, 15, 20, 25}, Φ1

2.U = {0,− 1
3 ,− 2

5 ,−1,− 2
5} and

Φ1
2.B = {10, 10, 9, 7, 2}, see Fig. 3.2.

STEP j = 2, k = 2. Since f2.U [2] = 0, this step can be done in an
easier way. It is only necessary to shift the diagram of the function
F1(t) to the left by the value 5 and up by the value 2. So, we have
Φ2

2.I = {12− 5, 15− 5, 22− 5, 0− 5}, Φ2
2.U = {0,− 1

3 ,−1, 0}, Φ2
2.B =

{8 + 2, 8 + 2, 7 + 2, 0 + 2}.
In Fig. 3.3, the maximum function is presented. In fact, we
have F2(t) = Φ1

2(t), i.e., F2.I = {7, 10, 15, 20, 25}, F2.U =
{0,− 1

3 ,− 2
5 ,−1,− 2

5} and F2.B = {10, 10, 9, 7, 2}.
STEP j = 3, k = 1. Since f3.U [1] = 0, this step can be done in an
easier way. To obtain the function Φ1

3(t), it is only necessary to shift
the diagram of the function F2(t) to the left by the value 0 and up by
the value 0.

STEP j = 3, k = 2. We have Ψk
j .I = {7, 10, 15, 20, 25}, Ψk

j .U =

{2, 2− 1
3 , 2− 2

5 , 1, 2− 2
5} and Ψk

j .B = {10− 4, 10− 4+ 7 · 2, 9− 4+ 10 ·
2, 7− 4 + 15 · 2, 2− 4 + 20 · 2}.
s’=0. We have T ′ = ∅, tleft = 2, tright = 4 and ε = min{7−2, 7−4}=
3. bleft = 10, bright = 14 and binner = 0. We obtain ϕleft(x) = 10,
ϕright(x) = 14 and ϕinner(x) = 0. Thus, ϕmax(x) = 14. We get
s′ = s′ + 3 = 3.

s’=3. We have T ′ = {7}, tleft = 5, tright = 7 and ε = min{7− 5, 10−
7} = 2. Moreover, bleft = 10, bright = 14 and binner = 14. We obtain
ϕleft(x) = 10, ϕright(x) = 14 − 1

3x and ϕinner(x) = 14 − 2
x . Thus,

ϕmax(x) = 14− 1
3x. Next, we have to consider s′ = s′ + 2 = 5.

s’=5. We have T ′ = ∅, tleft = 7, tright = 9, ε = min{10−7, 10−9}= 1.
Moreover, bleft = 10, bright = 14− 1

3 ·2 and binner = 0. Then we obtain
ϕleft(x) = 10− 1

3x, ϕright(x) = 14− 2
3 − 1

3x and ϕinner(x) = 0. Thus,
ϕmax(x) = 14− 2

3 − 1
3x. We get s′ = s′ + 1 = 6.

s’=6. We have T ′ = {10}, tleft = 8, tright = 10 and ε = min{10 −
8, 15− 10} = 2. Moreover, bleft = 10− 1

3 , bright = 13 and binner = 13.
Then we obtain ϕleft(x) = 10 − 1

3 − 1
3x, ϕright(x) = 13 − 2

5x and
ϕinner(x) = 13 − 2x. Thus, ϕmax(x) = 13 − 2

5x. Next, we consider
s′ = s′ + 2 = 8.

s’=8. We have T ′ = ∅, tleft = 10, tright = 12 and ε = min{15−10, 15−
12} = 3. Moreover, bleft = 9, bright = 13− 4

5 and binner = 0. Then we
obtain ϕleft(x) = 9− 2

5x, ϕright(x) = 13− 4
5 − 2

5x and ϕinner(x) = 0.
Thus, ϕmax(x) = 13− 4

5 − 2
5x. We get s′ = s′ + 3 = 11.

14

s’=11. We have T ′ = {15}, tleft = 13, tright = 15 and ε = min{15−
13, 20 − 15} = 2. Moreover, bleft = 9 − 6

5 , bright = 11 and binner =
11. Then we obtain ϕleft(x) = 9 − 6

5 − 2
5x, ϕright(x) = 11 − x and

ϕinner(x) = 11−2x. Thus, ϕmax(x) = 11−x. We get s′ = s′+2 = 13.

s’=13. We have T ′ = ∅, tleft = 15, tright = 17, ε = min{20− 15, 20−
17} = 3. In addition, bleft = 7, bright = 9 and binner = 0. Then we
obtain ϕleft(x) = 7 − x, ϕright(x) = 9 − x and ϕinner(x) = 0. Thus,
ϕmax(x) = 9− x. Next, we have to consider s′ = s′ + 3 = 16.

s’=16. We have T ′ = {20}, tleft = 18, tright = 20 and ε = min{20−
18, 25− 20} = 2. Moreover, bleft = 4, bright = 6 and binner = 6. Then
we obtain ϕleft(x) = 4−x, ϕright(x) = 6− 2

5x and ϕinner(x) = 6−2x.
Thus, ϕmax(x) = 6− 2

5x. We get s′ = s′ + 2 = 18.

s’=18. We have T ′′ = ∅, tleft = 20, tright = 22 and ε = min{25 −
20, 25 − 22} = 3. Moreover, bleft = 2, bright = 6 − 4

5 and binner =
0. Then we obtain ϕleft(x) = 2 − 2

5x, ϕright(x) = 6 − 4
5 − 2

5x and
ϕinner(x) = 0. Thus, ϕmax(x) = − 4

5 − 2
5x. We get s′ = s′ + 3 = 21.

s’=21. We have T ′ = {25}, tleft = 23, tright = 0 and ε = 25− 23 = 2.
Moreover, bleft = 2 − 6

5 , bright = 0 and binner = 4. Then we obtain
ϕleft(x) = 2 − 6

5 − 2
5x, ϕright(x) = 0 and ϕinner(x) = 4 − 2x. Thus,

ϕmax(x) = 4− 2x. We get s′ = s′ + 2 = 23.

s’=23. Here, ϕmax(x) = 0. We get s′ = s′ + 2 = 25.

We have Φ2
3.I = {7 − 4, 10 − 4, 15− 4, 20 − 4, 25− 4, 23, 25}, Φ2

3.U =
{0,− 1

3 ,− 2
5 ,−1,− 2

5 ,−2, 0} and Φ2
3.B = {10+ 4, 10+ 4, 9+ 4, 7+ 4, 2+

4, 0 + 4} = {14, 14, 13, 11, 6, 4, 0}.
STEP j = 3, k = 3. We have Ψk

j .I = {7, 10, 15, 20, 25}, Ψk
j .U =

{ 1
2 ,

1
2 − 1

3 ,
1
2 − 2

5 ,
1
2 − 1, 12 − 2

5} and Ψk
j .B = {10 + 2, 10 + 2 + 7 · 1

2 , 9 +

2 + 10 · 1
2 , 7 + 2 + 15 · 1

2 , 2 + 2 + 20 · 1
2}.

s’=0. We have T ′ = ∅, tleft = 4, tright = 6 and ε = min{7−4, 7−6}=
1. Furthermore, bleft = 14, bright = 15 and binner = 0. Then we obtain
ϕleft(x) = 14, ϕright(x) = 15 and ϕinner(x) = 0. Thus, ϕmax(x) = 15.
Next, we have to consider s′ = s′ + 1 = 1.

s’=1. We have T ′ = {7}, tleft = 5, tright = 7 and ε = min{7− 5, 10−
7} = 2. Moreover, bleft = 14, bright = 15 and binner = 15. Then we
obtain ϕleft(x) = 14, ϕright(x) = 15 − 1

3x and ϕinner(x) = 15 − 1
2x.

Thus, ϕmax(x) = 15− 1
3x. We get s′ = s′ + 2 = 3.

s’=3. We have T ′ = ∅, tleft = 7, tright = 9 and ε = min{10− 7, 10−
9} = 1. Moreover, bleft = 14, bright = 15− 2

3 and binner = 0. Then we
obtain ϕleft(x) = 14− 1

3x, ϕright(x) = 15− 2
3 − 1

3x and ϕinner(x) = 0.
Thus, ϕmax(x) = 15− 2

3 − 1
3x. We get s′ = s′ + 1 = 4.

15

s’=4. We have T ′ = {10}, tleft = 8, tright = 10 and ε = min{10 −
8, 15− 10} = 2. Moreover, bleft = 14− 1

3 , bright = 14 and binner = 14.
Then we obtain ϕleft(x) = 14 − 1

3 − 1
3x, ϕright(x) = 14 − 2

5x and
ϕinner(x) = 14− 1

2x. Thus, ϕmax(x) = 14− 2
5x. We get s′ = s′+2 = 6.

s’=6. We have T ′ = ∅, tleft = 10, tright = 12 and ε = min{15−10, 15−
12} = 3. Moreover, bleft = 13, bright = 14− 4

5 and binner = 0. Then we
obtain ϕleft(x) = 13− 2

5x, ϕright(x) = 14− 4
5 − 2

5x and ϕinner(x) = 0.
Thus, ϕmax(x) = 14− 4

5 − 2
5x. Next, s′ = s′ + 3 = 9.

s’=9. We have T ′ = {15}, tleft = 13, tright = 15 and ε = min{15 −
13, 20−15} = 2. Moreover, bleft = 13− 6

5 , bright = 12 and binner = 12.
Then ϕleft(x) = 13 − 6

5 − 2
5x, ϕright(x) = 12 − x and ϕinner(x) =

12− 1
2x. Thus, ϕmax(x) = 12− 1

2x. We get s′ = s′ + 2 = 11.

s’=11. Now T ′ = ∅, tleft = 15, tright = 17 and ε = min{20− 15, 20−
17} = 3. Moreover, bleft = 11, bright = 10 and binner = 0. Then
ϕleft(x) = 11 − x, ϕright(x) = 10 − x and ϕinner(x) = 0. Thus,
ϕmax(x) = 11− x. Next, s′ = s′ + 3 = 14.

s’=14. We have T ′ = {20}, tleft = 18, tright = 20 and ε = min{20−
18, 25 − 20} = 2. Furthermore, bleft = 8, bright = 7 and binner = 7.
Then we obtain ϕleft(x) = 8− x, ϕright(x) = 7− 2

5x and ϕinner(x) =
7− 1

2x. There exists an intersection point x′ of the functions ϕleft(x)
and ϕright(x): 8−x′ = 7− 2

5x
′, x′ = 5

3 . So, we get ϕmax(x) = 8−x, x ∈
[0, 53] and ϕmax(x) = 7− 2

5x, x ∈ [53 , 2]. Next, s′ = s′ + 2 = 16.

s’=16. Here, T ′ = ∅, tleft = 20, tright = 22 and ε = min{25− 20, 25−
22} = 3. Moreover, bleft = 6, bright = 7 − 4

5 and binner = 0. Then
ϕleft(x) = 6 − 2

5x, ϕright(x) = 7 − 4
5 − 2

5x and ϕinner(x) = 0. Thus,
ϕmax(x) = 7− 4

5 − 2
5x. Next, s′ = s′ + 3 = 19.

s’=19. We have T ′ = {25}, tleft = 23, tright = 0 and ε = 25− 23 = 2.
Moreover, bleft = 6− 6

5 , bright = 0 and binner = 5. Then ϕleft(x) = 6−
6
5− 2

5x, ϕright(x) = 0 and ϕinner(x) = 5− 1
2x. Thus, ϕmax(x) = 5− 1

2x.
We get s′ = s′ + 2 = 21.

s’=21. In the interval [21, 25], we have Φ3
2(x) = 0, since f3[3 − 1] = 4

and 21 + 4 = 25.

So, we have Φ3
3.I = {1, 4, 9, 11, 15 2

3 , 19, 21, 25}, Φ3
3.U =

{0,− 1
3 ,− 2

5 ,− 1
2 ,−1,− 2

5 ,− 1
2 , 0} and Φ3

3.B = {15, 14, 12, 11, 6 1
3 , 5, 0}.

STEP j = 3, k = 4. Since f3.U [4] = 0, this step can be done in an
easier way. To obtain the function Φ4

3(t), it is only necessary to shift
the diagram of the function F2(t) to the left by the value 6 and up by
the value 5.
In Fig. 3.4, the functions Φ1

3(t) and Φ2
3(t) are presented and in Fig.

3.5, the functions Φ3
3(t) and Φ4

3(t) are displayed.

16

Figure 4: Function F4(t)

In Fig. 3.6, the maximum function

F3(t) = max{Φ1
3(t),Φ

2
3(t),Φ

3
3(t),Φ

4
3(t)}

is presented. So, we have F3.I = {1, 4, 9, 11, 15 2
3 , 21, 22

1
2 , 25}, F3.U =

{0,− 1
3 ,− 2

5 ,− 1
2 ,−1,− 2

5 ,− 1
2 ,− 2

5} and F3.B = {15, 14, 12, 11, 6 1
3 , 4, 1}.

STEPS j = 4, k = 1, 2, 3 are performed in an easy way, i.e., to obtain
the functions Φ1

4(t),Φ
2
4(t),Φ

3
4(t), we have to shift the diagram of the

function F3(t) to the left by the value 0, 3, 4 and up by the value 0, 1, 4,
respectively. In Fig. 4, the maximum function F4(t) is displayed.

To find an optimal solution at the point s = 0, we can do back-
tracking. We have x4 = 4 and f4(x4) = 4, x3 = 6 and f3(x3) = 5,
x2 = 5 and f2(x2) = 2 as well as x1 = 10 and f1(x1) = 7. So, the
optimal objective function value is F ∗(0) = 18.

In the GrA, we considered the following number of states s′ : 2 +
3 + 3 + 2 = 10 (for j = 1), 8 + 4 = 12 (for j = 2, where 4 states were
considered for k = 2), 5+10+11+5 = 31 (for j = 3, where 5 states were
considered for k = 1 and k = 4), 7+7+7 = 21 (for j = 4, i.e., during the
shift of the diagram). So, in total we considered 10+12+31+21 = 74
states s′. In the DPA, approximately 25(3 + 2 + 4 + 3) = 300 states
would be considered. If we scale our instance to a large number M
(i.e., we multiply all input data by M), the running time of the DPA
increases by the factor M , but the running time of the GrA remains the
same. Of course, for each state in the GrA, we need more calculations
than in the DPA. However, this number is constant O(1) and the GrA
has a better running time.

17

5 An FPTAS based on the GrA
In this section, a fully polynomial-time approximation scheme
(FPTAS) is derived based on the GrA presented in Section 3.

First, we recall some relevant definitions. For the optimization
problem of minimizing a function F (π), a polynomial-time algorithm
that finds a feasible solution π′ such that F (π′) is at most ρ ≥ 1
times less than the optimal value F (π∗) is called a ρ-approximation
algorithm; the value of ρ is called a worst-case ratio bound. If a problem
admits a ρ-approximation algorithm, it is said to be approximable
within a factor ρ. A family of ρ-approximation algorithms is called an
FPTAS, if ρ = 1+ ε for any ε > 0 and the running time is polynomial
with respect to both the length of the problem input and 1/ε. Notice
that a problem which is NP-hard in the strong sense admits no FPTAS
unless P = NP.

Let LB = max
j=1,...,n

fj(A) be a lower bound and UB = n · LB be an

upper bound on the optimal objective function value.
The idea of the FPTAS is as follows. Let δ = εLB

n . To reduce
the time complexity of the GrA, we have to diminish the number of
columns |Fj .B| considered, which corresponds to the number of differ-
ent objective function values b ∈ Fj .B, b ≤ UB. If we do not consider
the original values b ∈ Fj .B but the values b which are rounded up
or down to the nearest multiple of δ values b, there are no more than
UB
δ = n2

ε different values b. Then we will be able to approximate the
function Fj(t) into a similar function with no more than 2n2

ε break
points (see Fig. 5). Furthermore, for such a modified table represent-
ing a function F j(t), we will have

|Fj(t)− Fj(t)| < δ ≤ εF (π∗)
n

.

If we do the rounding and modification after each step [2.2.], the cumu-
lative error will be no more than nδ ≤ εF (π∗), and the total running
time of the n runs of the step [2.2.] will be

O

(
n2

∑
kj

ε

)
,

i.e., an FPTAS is obtained.
In [7], a technique was proposed to improve the complexity of an

approximation algorithm for optimization problems. This technique
can be described as follows. If there exists an FPTAS for a problem
with a running time bounded by a polynomial P (L, 1ε ,

UB
LB), where L is

the length of the problem instance and UB, LB are known upper and
lower bounds, and the value UB

LB is not bounded by a constant, then

18

Figure 5: Substitution of columns and modification of Fl(t)

the technique enables us to find in P (L, log log UB
LB) time values UB0

and LB0 such that

LB0 ≤ F ∗ ≤ UB0 < 3LB0,

i.e., UB0

LB0
is bounded by the constant 3. By using such values UB0

and LB0, the running time of the FPTAS will be reduced to P (L, 1ε),
where P is the same polynomial. So, by using this technique, we can
improve the FPTAS to have a running time of

O

(
n ·∑ kj

ε
(1 + log logn)

)
,

A detailed description of an FPTAS based on a GrA for some single
machine scheduling problems was presented in [6].

6 Concluding Remarks
In this paper, we used a graphical approach to improve a known
pseudo-polynomial algorithm for the Investment Optimization Prob-
lem and to derive a FPTAS with the best known running time.

The graphical approach can be applied to problems, where a
pseudo-polynomial algorithm exists and Boolean variables are used in
the sense that yes/no decisions have to be made. However, e.g., for
the knapsack problem, the graphical algorithm mostly reduces substan-
tially the number of states to be considered but the time complexity of

19

the algorithm remains pseudo-polynomial [1]. On the other side, e.g.
for the single machine problem of maximizing total tardiness, such a
graphical algorithm improved the complexity from O(n

∑
pj) to O(n2)

[9]. Thus, the graphical approach is not only of a practical but also of
a theoretical importance.

References
[1] A.A. Lazarev and F. Werner, A Graphical Realization of the

Dynamic Programming Method for Solving NP-hard Problems.
Computers & Mathematics with Applications. Vol. 58, No. 4,
2009, 619 – 631.

[2] A.V. Aho, J.E. Hopcroft and J.D. Ullman, Data Structures and
Algorithms, Addison-Wesley, London, 1983.

[3] H. Kellerer, U. Pferschy and D. Pisinger, Knapsack Problems,
Springer-Verlag, Berlin, 2004.

[4] D.X. Shaw and A. P. M. Wagelmans, An Algorithm for Single-
Item Capacitated Economic Lot Sizing with Piecewise Linear Pro-
duction Costs and General Holding Costs, Management Science,
Vol. 44, No. 6, 1998, 831–838.

[5] S. Kameshwaran and Y. Narahari, Nonconvex Piecewise Linear
Knapsack Problems, European Journal of Operational Research,
192, 2009, 56–68.

[6] E.R. Gafarov, A. Dolgui and F. Werner F.: Dynamic Program-
ming Approach to Design FPTAS for Single Machine Scheduling
Problems, Research Report LIMOS UMR CNRS 6158, 2012.

[7] S. Chubanov, M.Y. Kovalyov and E. Pesch, An FPTAS for
a Single-Item Capacitated Economic Lot-Sizing Problem with
Monotone Cost Structure, Math. Program., Ser. A 106, 2006, 453
– 466.

[8] K. Schmelev, X. Delorme, A. Dolgui, F. Grimaud and M.Y. Ko-
valev: Lot-Sizing on a Single Machine, ILP Models (submitted in
May 2012).

[9] E.R. Gafarov, A. Dolgui and F. Werner, Transforming a Pseudo-
Polynomial Algorithm for the Single Machine Total Tardiness
problem into a Polynomial One, Annals of Operations Research,
Vol. 196, 2012, 247 – 261.

20

