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Abstract: The improvement of the performance of material handling tools (MHTs) and the work 

in process (WIP) in a discrete manufacturing system have a great importance for increasing the 

efficiency of the production. To this end, the static and dynamic status of MHTs are analyzed in 

this paper. A Markov decision process (MDP) is used to model the MHT problems. The quantified 

relationships between MHTs and WIP will be discussed within the CONWIP (constant WIP) and 

Little’s law methodologies. A dynamic programming (DP) based algorithm is developed to 

determine a solution for the MDP model. To reduce the computational complexity of the DP 

algorithm, an appropriate modification is introduced. Computational experiments are conducted in 

a discrete semiconductor factory and the proposed MDP+DP method is compared with simulation. 

The computational results show that the developed method produces rather good feasible 

solutions. 
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1. Introduction 

A material handling tool (MHT) is one of the essential components in a manufacturing system. 

Especially in a discrete manufacturing system, the MHT is responsible for the transitions of the 

lots between the stations. In the production planning period, the number of MHTs is one of the 

critical parameters to calculate the right production quantity in each week. In the production 

scheduling period, the scheduling of MHTs will impact the production process substantially. A 

wrong scheduling strategy of MHTs may cause a lack of work-in-process (WIP) at a bottleneck 

station and a loss of capacity. At the same time, the delivery of the lots will be strongly influenced, 

and the customer service level will be finally reduced. Production includes a processing time plus 

a queuing time. Except the processing time on the machines, a typical job spends the remaining 

time waiting on MHTs. Consequently, any improvement in the MHTs has a great potential for 

reducing the inventory, minimizing the cycle time for the production and enhancing the 

deliverable orders. In this paper, a Markov decision process (MDP) will be applied to model the 
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MHT system, and a dynamic programming algorithm will be used to solve this problem. So far, 

many approaches for analyzing the performance of MHTs have been proposed, e.g. a queuing 

theory model, a Markov chain model, etc. (Zhang et al. 2016). Due to the complexity of MHT 

problems, many researchers work under different aspects. However, only a few works deal with 

MHS problems considering the relationships with static and dynamic WIP control coherently.  

In this paper, the following two contributions are discussed: 

(1) A systematic management method of MHTs under a discrete manufacturing will be 

developed using a Markov decision process. The quantified relationships between MHTs and WIP 

will be discussed within the constant WIP (CONWIP) methodology and constant demand.  

(2) The dynamic MHT replenishment method of MHTs will be discussed within the theory of 

Little’s law. 

  This paper is organized as follows. Section 2 reviews the existing literature. Section 3 analyzes 

the MHT system in a discrete manufacturing system. Section 4 describes the Markov decision 

model. Section 5 develops a dynamic programming algorithm. Section 6 presents some 

experimental results. Finally, Section 7 gives some concluding remarks and suggests some 

subjects for future research.  

2. Literature Review 

There exist many works on MHT or MHS problems and in general, the approaches can be 

partitioned into simulation methods and mathematical methods.  

  Lau and Woo (2006) develop an agent-based dynamic routing strategy for a generic automated 

material handling systems (AMHS). A generic AMHS network is modeled with a simulation tool 

that represents a highly flexible material handling system in a typical distribution centre, where 

simulation studies are performed under normal and exceptional operating conditions. Huang et al. 

(2011) study the vehicle allocation problem in a typical 300 mm wafer fab. They formulate it as a 

simulation-optimization problem and propose a conceptual framework to handle the problem. A 

discrete event simulation model is developed to characterize the AMHS, and the technique of 

simulation-optimization is applied to obtain an optimal vehicle allocation for both interbay and 

intrabay systems. An empirical problem based on real data is conducted to show the viability of 

the proposed framework in practice. Chang et al. (2014) study the vehicle fleet sizing problem in 

semiconductor manufacturing and propose a formulation and solution method to facilitate the 

determination of the optimal vehicle fleet size that minimizes the vehicle cost while satisfying 

time constraints. The proposed approach is to construct sequentially a series of meta models to 

solve an approximate problem and evaluate the quality of the resulting solution. Extensive 

numerical experiments show that the presented methods outperform the existing methods and the 

computational advantage is increasing with the problem size and the level of the variance of the 

response variables. An empirical study based on real data is conducted to validate the viability of 

simulation sequential meta-modeling in practical settings.  

  To overcome the shortcomings of simulation, some mathematical models are developed to 

quantify the parameters of a material handling system (MHS), such as a queuing theory model, a 

queuing network model and a Markov chain model (MCM). Another shortcoming is the 

calculation efficiency problem, and the mathematical method shows a much higher efficiency than 

the simulation tool (Zhang et al. 2015). Nazzal and McGinnis (2008) present a computationally 

effective analysis of the throughput performance of a closed-loop multi-vehicle automated 

material handling system (AMHS) used in highly automated 300 mm wafer fabrication facilities 
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(fabs). A probabilistic model is developed, based on a detailed description of the AMHS 

operations, and the system is analyzed as an extended Markov chain. The model represents the 

vehicle operations on the closed-loop considering the possibility of vehicle blocking. This analysis 

provides essential parameters such as the vehicle blocking probabilities and the throughput 

capacity of the AMHS. A numerical example is analyzed and simulated using Auto Mod to 

demonstrate and validate the stochastic model. Nazzal (2011) models a multi-vehicle material 

handling system as a closed-loop queuing network with finite buffers and general service times, 

and a new iterative approximation algorithm is presented that estimates the throughput capacity 

and decomposes the network consisting of S servers into S separate G/G/1 systems. Each 

subsystem is analyzed separately to estimate the work-in-process via a population constraint to 

ensure that the summation of the average buffer sizes across all servers equals the total number of 

vehicles. Numerical results show that the methodology proposed is accurate in a wide range of 

operating scenarios. Zhang et al. (2016) propose a modified Markov chain model (MMCM) to 

analyze and evaluate the performances of a closed-loop automated material handling system 

(AMHS) with shortcut and blocking in a semiconductor wafer fabrication system. The system 

characteristics are well considered in the MMCM, and the proposed MMCM is compared with a 

simulation analysis model. The results demonstrate that the proposed MMCM is an effective 

modeling methodology for a performance analysis of an AMHS at the system design stage. A 

comprehensive heuristic solution is evolved by Goswami and Tiwari (2006) to include all the three 

segments of a machine loading problem of flexible manufacturing systems. An iterative 

reallocation procedure has been devised to ensure a minimum positive system unbalance and a 

maximum throughput. A test problem is simulated to represent the real shop floor environment and 

the same has been solved using various steps of the proposed algorithm. Siegel et al. (2014) 

present a review about material handling systems. First, they survey the common maintenance 

practices of MHSs including three typical warehouse MHSs, like an automatic picking system 

(APS), goods to destination (GDS), and Erector. They also review previous works in predictive 

monitoring of MHSs categorized as the machine level, the component level, and the production 

level. 

  Based on the literature study, one can observe that there are only a few works reflecting the 

performance of an MHS with respect to WIP and cycle time simultaneously, and most papers 

consider an MHS under a constant demand scenario without dynamical considerations. In this 

paper, a Markov chain model will be proposed to measure the MHTs within a closed loop discrete 

manufacturing environment. As the MHT will be combined with the WIP together in the 

transportation and queuing time, the WIP quantity can be reflected together with the MHT state 

space. At the same time, another MHT inventory management method will be provided under a 

demand fluctuation scenario in a real life factory MHT management.  

3. Analysis of the MHT System 

In a discrete manufacturing factory, there exist many types of MHTs to carry the working lots 

between different stages. As shown in Figure 1, for the case of two types of vehicles, there might 

exist only two possible scenarios for each individual workstation - an MHT change or no change. 

If the MHT has no change, there exists only one MHT type X (or type Y) in the upload and load 

areas. If there is a change of the MHT, there are two types of an MHT at one station. The MHT X 

will be uploaded and the MHT Y will be loaded after processing the lots (or vice versa). For each 

station, the quantity of the arriving lots with the MHT is of stochastic nature (it has to meet the 
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throughput with some probability) in the area of the waiting queue. After processing at the station, 

a unique MHT is required in the load area to carry the lot to the next station. 
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Figure 1: MHT Cycle Classification 

3.1 Notations  

The MHT problem includes the following sets and vectors: 

(1) There is a non-empty set M of n  stations STi  . 

(2) There is an n-dimensional vector W of the WIP quantities at the n  stations. 

(3) There is an n-dimensional vector X of the numbers of vehicles of type X at the n  stations. 

(4) There is an n-dimensional vector Y of the numbers of vehicles of type Y at the n  stations. 

(5) There is a transition mode sequence  for all n  stations of the whole production line.  

In Table 1, the definition of sets and parameters used for the MHT problem formulation are 

summarized. 

Table 1: Parameters of the MHT problem. 

Sets and vectors Ranges of variables Description 

 1, 2,..., ,...,M ST ST STi STn   Set of stations  

 1 2, ,..., ,...,i nW w w w w   Vector of WIP 

quantities  

 1 2, ,..., ,...i nX x x x x   0,1, 2,...,ix X  

 1, 2,...,i n  

Vector of numbers of 

vehicles of type X  

 1 2, ,..., ,...,i nY y y y y   0,1, 2,...,iy Y  

 1, 2,...,i n  

Vector of numbers of 

vehicles of type Y  

 1 2= , ,..., ,...,i n       , , ,i a b c d 

 1, 2,...,i n  

Sequence of MHT 

transition modes 
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3.2 Assumptions 

(1) The processing time at each station is constant, and production meets an M/M/n queuing 

system. 

(2) A lot arrives according to an exponential distribution with the associated parameter  . 

(3) Each MHT transports the lots based on the FIFO (first-in-first-out) rule.  

(4) The loading time, the unloading time and the running speed of the vehicles have a 

deterministic value, and both acceleration and deceleration of vehicles are ignored.  

(5) The WIP quantity meets the CONWIP scenario and the desired WIP level is *w . 

(6) The route of the MHT at a specific work station for one specific product is fixed within the 

product design period. 

(7) The delivery quantity is aligned with the demand D of the master production schedule (MPS).  

(8) Only one product is considered in this paper. 
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Figure 2: Model of a physical MHT system in discrete manufacturing 

3.3 Dynamic analysis of the MHT system 

In this subsection, we analyze the dynamic numbers of vehicles of types X and Y. According to the 

description of the model in Figure 2, the variable numbers of vehicles ix and iy  as well as the 

corresponding WIP quantities iw are influenced by the transition mode vector 

 1 2, ,..., n    ，which is defined specifically based on the design of the product route. The 

ratio between the number of vehicles ix of type X and the WIP quantity iw  is denoted as A 

which means that a vehicle of type X can contain A units, and the ratio between the number of 

vehicles of type Y and the WIP quantity iw  is denoted as B which means that a vehicle of type Y 

can contain B units. In this paper, we consider two types of MHTs X and Y in the production line. 
Thus, we have four types of a transition mode : , : , : , :   a X X b X Y c Y Y d Y X  

which are subsequently described in detail. The transition modes a and c characterize a 
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continuous working status of the MHT, b and d describe a transition status of the MHT. If 

i a  , the vehicle does not change in the load and unload areas with vehicle X at station STi , 

and the mode a is described by  / 1, 0, 1,2,...,i i ix w A y i n      ,where /iw A    

denotes the smallest integer not smaller than /iw A . If i b  , the vehicle will change from 

type X to type Y during the load and unload area, and the mode b is described by 

 / , 1, 1, 2,...,i i ix w A y i n     . After the vehicle change from type X to type Y, the vehicle 

Y will load the WIP and moves forward to the next stations.  If i c  , the vehicle Y does not 

change in the load and unload areas, and the mode c is described by 

 0; / 1, 1,2,...,     i i ix y w B i n . The last scenario is that the vehicle changes from type 

Y to type X, and the mode i d   is described by  1, / , 1, 2,...,i i ix y w B i n     . Since 

the real time WIP quantity iw can be exported by the factory manufacturing execution system 

(MES), we can derive the real time numbers of the vehicles accordingly. According to the above 

quantitative relationships, the variables ix  and iy  can be calculated using the iw  values, and 

then we can determine the total number of vehicles of type X in the whole production line 

as
1

( )



n

i
i

sum X x  and the total number of vehicles of type MHT Y in the whole production line 

as 
1

sum( )



n

i
i

Y y .  

3.4 Static analysis of the MHT system 

In the production planning process, the numbers of the MHTs need to be determined such that the 

vehicles can sustain the weekly manufacturing operations. Thus, one needs to analyze the steady 

numbers of the MHTs. According to Little’s law: THCTWIP  (Hopp and Spearman 1990), 

this means that the WIP quantity can be obtained from the cycle time CT and the throughputTH . 

Once we have determined the static WIP quantity, we can determine the numbers of vehicles 

based on their quantitative relationships. The cycle time iCT  of station STi  satisfies the 

equation i i iCT PT QT  , where iPT  is the processing time at station STi  and iQT  is the 

queueing time at station STi . So the expectation value of the cycle time can be obtained as 

1

( ) )


 
n

s
ii i

i

E CT p PT QT（ , where iPT  is the expectation value of the processing time 
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according to the station engineering definition and iQT  is the expectation value of the queueing 

time at station STi . Both these values iPT and iQT can be obtained from the average value of 

the history. Moreover, s
ip is the priority coefficient for each station STi  which is defined 

according to the priority of station STi  and it is set to a value between 0.8 and 1.2 in this paper. 

The throughput TH  can be obtained from the weekly demand D and is given by
D

TH
T

 , 

whereT denotes the weekly hours, i.e., T = 247=168 hours. After one has confirmed the cycle 

time CT and the throughputTH , we can determine the expectation value of the WIP level 

*

1

( ) ( + )
n

s
i i i

i

D
E w p PT QT

T

   

for the whole production line. At the same time, by the static analysis, we can also determine the 

expected WIP level for station STi  according to  

     *  i i iE w E CT E TH ,  

and the expected WIP level for the bottleneck station STk is 

( ) +k k kkE w E PT QT TH （ ） .  

Using the transition mode sequence  , the expectation values of the vehicles of both types 

*( )E X and *( )E Y can be determined accordingly.  

4. Development of the MDP Model  

For developing a model, we use an MDP which can be described by the following 5-tuple: 

 , transT  S,A,P , v(SA)  

HereT describes the set of time moments, S denotes the state space, A describes the set of 

actions (policy set), transP gives the transition probabilities, and  v(SA)  denotes the reward 

function for a solution SA  described by a feasible sequence of states and actions. Subsequently, 

we describe the particular components more in detail. 

1) Definition of decision times T   
The supervisor of the production floor will decide which lots of production tasks will be released 

based on the numbers of available vehicles and the recycle status at each time  = 0,1, 2,...,t T L , 

where L is the length of the defined production cycle. The following components are defined for 

each time t T , but for simplicity of the description, we omit t  subsequently. 

2) Definition of the set of states S   

The set of states S is composed of n sets 1 2, ,..., nS S S .For stage i , representing station STi , the 

set of states can be defined as   , {0,1, 2,..., }, {0,1,2,..., }i i i i i iS s x y x X y Y    , 
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{1, 2,..., }i n , where ix  and iy  denote the numbers of vehicles of type X and Y, respectively, 

at station STi  at a particular time t . Since the WIP will be kept in the vehicles to wait for the 

production or on the machine for processing, the numbers of the vehicles have direct relationships 

with the WIP quantity iw . 

3) Definition of the set of actions A  

The operation supervisors will schedule the vehicles according to certain scheduling policies. This 

means that at a decision moment t , the decision maker will take the action {0,1}ia and 

according to the transition probability  ' ,trans i i iP P s s a  described subsequently, the numbers 

of vehicles at station STi may change from state is  at time t to state '
is at 

time +1, {1,2,..., }t i n . The vector  1 2, ,..., ,..., i nA a a a a  with {0,1}, {1, 2,..., } ia i n , is 

the production strategy vector. According to the CONWIP methodology, if the WIP is higher than 

the desired value at station STi , the station needs to stop running to avoid an excessive inventory, 

this means that the action =0ia is taken, otherwise the WIP is running normally according to the 

first-in-first-out (FIFO) strategy, and the action =1ia  is taken. At time  0,1, 2,...,t T = L , 

once a decision ia has been taken, the lots will be released with the vehicle. 

4) State transition probabilities transP  

(a) It is assumed that the vehicles arrive at station STi  according to a Poisson distribution with 

the mean arrival rate i . Thus, the probability that k vehicles arrive is given by 

= ( )
!

ik
a i

i

e
P P X k

k

 

  .  

In the production environment, i  is equal to the mean throughput of the preceding 

station 1iTH . 

(b) It is assumed that the breakdown rate of work station STi  is d
iq and thus, the probability of 

the effective utilization of station STi  is 

( ) (1- )  
  
 

ii M kb d k d
i i i

M
P q q

k
,  

where iM  is equal to the number of machines at station STi . 
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(c) It may happen that abnormal lots are encountered, which will be cancelled. It is assumed that 

the lot cancellation rate is c
lq , so the probability of the interruption of k  lots is 

( ) (1- )  
  
 

ii M kc c k c
i l l

M
P q q

k
.  

Normally, the lots will be processed one by one at each station and follow an M/M/1 queue. The 

numbers of vehicles of type X and Y, respectively, are in linear relationship with the WIP quantity. 

The state will change when new lots arrive, tasks are cancelled or a machine has a breakdown. 

These three events can separately occur and so the state transition probability from state is at the 

current time t to state '
is at the next time +1t  is 

 '   a b c
trans i i i i iP s s P P P  for  1, 2,...,i n .  

 

5) Reward Function v(SA)  

One can note that both a higher or lower WIP level is not good for a smooth production process. 

An overflowing WIP will have the potential risk that a bottleneck station is blocked by a vehicle 

shortage and it also induces an inventory cost. On the other hand, a lower WIP will reduce the 

utilization rate of the station and waste productivity. The purpose of the vehicle management is to 

minimize the penalties for late deliveries of each product and to control the WIP level in the whole 

line within certain lower and upper limits.  

To reach this goal, we can formulate the following optimization problem for finding an optimal 

solution (i.e., an optimal sequence of states and actions) SA with maximal total reward value: 

0 1

( ) [ ( , ) ( , ), {0,1}]
 

  
L n

t i i i i i i
t i

v SA MaxE R s a s x y a                  (1) 

s.t. 

( , )


 tD
t i iR s a e



                                            (2) 

1

= ( )



n

t i
i

D w                                             (3) 

1

n

i
i

x X


                                                  (4) 

1

n

i
i

y Y


                                                  (5) 

* *

1 1 

  
n n

i i
i i

w w w                                          (6) 

The reward function can be obtained according to equation (1). Constraints (2) and (3) denote 
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the reward ratio 
1

( )

( , )









n

t i
i

t

D w

D
t i iR s a e



 depending on the state is and action ia  which is used 

to maintain a rather constant WIP status (within lower and upper bounds), where 

1

( )



n

t i
i

D w is the standard deviation to measure the offset-overflow or shortage between the 

demand tD  at time t and the overall WIP quantity 
1


n

i
i

w of all stations. Thus, the reward 

function measures the decision cost to avoid an overflow and a shortage. Constraints (4) and (5) 

denote that the numbers of vehicles of type X and Y are not allowed to exceed the upper 

bounds X  and Y , respectively. Constraint (6) expresses that the total WIP quantity should be not 

greater than the total desired WIP level * *

1

=



n

i
i

w w . 

5. Algorithm  

5.1 MHT Calculation Algorithm  

According to the analysis of Subsection 3.3, the WIP quantity iw  has a linear relationship with the 

variable numbers ix , iy and i . If we know the WIP quantity iw , we can obtain the numbers of 

vehicles ix and iy  according to the transition mode i . In Figure 3, the algorithm is described to 

calculate the numbers of vehicles of types X and Y. 

/ 1; 0i i ix w A y     / ; 1i i ix w A y    0; / 1i i ix y w B     1; /i i ix y w B    

ix iy

 

Figure 3: Vehicle calculation algorithm 
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5.2 Dynamic Programming Solution 

The MDP model will be solved by a dynamic programming algorithm, where both forward and 

backward runs are used in the recurrence process. This dynamic programming algorithm has to be 

run for each time t T . To reduce the computational times, improve the effectiveness of the 

algorithm and ensure at the bottleneck station both the desired WIP and vehicle status, the whole 

set of stages are grouped into 3 parts: a bottleneck group, a front group and a backend group. The 

CONWIP methodology is used for the front group and the FIFO rule is used for the backend group.  

First, we determine the set of actions and the reward function values for the bottleneck 

station STk , then the front area from station 1ST  to station  1ST k   will be considered in a 

second part, and finally the group of backend stations will be considered from station  +1ST k  

to station STn . In Steps 1 - 5 below and in Figure 4, we describe and illustrate the algorithm for a 

fixed but arbitrary time t T  in more detail.  

Step 1: Initialization: Determine the n  stages representing the stations for the problem and the 

states to be considered at each stage. Here we can reduce the number of states at each stage since 

we maintain a WIP level within lower and upper bounds. The actions will be taken at 

stage i , {1, 2,.., ,.., }i k n , for station STi . To stage k , there is assigned ks  as the initial state, 

i.e., { }k kS s . Both the front groups and the backend groups are initialized from stage k to 

make sure that the whole line WIP is controlled by the bottleneck station. 

Step 2: Since the bottleneck station STk is considered as the initial stage in this algorithm, we 

assign to action ka and the WIP kw  the desired initial numbers. Then the reward value for any 

state ( , ) , { 1, 2,...,1}    i i i is x y S i k k , of the front group can be determined by means of 

ks  in the next step. 

Step 3: Evaluate the recurrence equations from stage 1k  to stage 1 and calculate the reward 

function value for each possible stage of the front group. Let ( , )i i iv s a be the reward combination 

for station STi  when action ia is taken for state is , and  1 ( , ( )) i i i i is tr s a s  be the state in 

stage 1i resulting from the action ( )i ia s applied to is . The reward function for state is  is given 

by  * *
+1 +1( ) max ( , ( )) ( ) ( ) {0,1}  i i i i i i i i i if s v s a s f s a s , = 1, 2,...,1 i k k . 

Step 4: Evaluate the recurrence equations from stage +1k  to stage n and calculate the reward 

function value for each possible stage of the backend group. Let -1 ( , ( ))i i i i is tr s a s  be the state 

in stage -1i resulting from the action ( )i ia s applied to is .The reward function for state is  is 

given by  * *
-1 -1( ) max ( , ( )) ( ) ( ) {0,1}  i i i i i i i i i if s v s a s f s a s , = +1, +2,...,i k k n . 
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Step 5: Determine the states *
1 1s S and * n ns S with the maximal reward function values 

 * * *
1 1 1 1( ) max ( ) f s f s s S and  * * *( ) max ( ) n n n nf s f s s S .  

Combine the optimal solution * * * * * * *
1 1 1 2 2 2( , ( ), , ( ),..., )k ks a s s a s s s  for the front group and the 

optimal solution for the backend group * * * * * * *
1 1 1( , ( ), , ( )..., )  k k k k k k k ns s a s s a s s .  

Accordingly, we can obtain an optimal state and action sequence 

* * * * * * * * * * * * *
1 1 1 2 2 2 1 1 1( , ( ), , ( ),..., , ( ), , ( ),..., )  t

k k k k k k nSA s a s s a s s a s s a s s  for time t .  

If such an optimal sequence tS has been determined for each t T , the overall solution 

0 1( , ,..., ,..., )t LSA SA SA SA is obtained for the production cycle of length L . 

*( )k kf s

*
1 1( )f s

* *
2 2 1 1( ) ( )k kf s to f s 

*
+1 +1( )k kf s

* *
2 2 1 1( ) ( )k k n nf s to f s   

*( )n nf s

* * * * * * * * * * * * *
1 1 1 2 2 2 1 1 1( , ( ), , ( ),..., , ( ), , ( ),..., )t

k k k k k k nSA s a s s a s s a s s a s s  

0 1( , ,..., ,..., )t LSA SA SA SA

0 1

( )

[ ( , )]
 




L n

t i i
t i

v SA

MaxE R s a

 

Figure 4: Workstation flow in the case factory 

 

6. Development of the MHT platform and Design of the Experiments 

6.1 Analysis of parameters 

We implemented our approach in a 300 mm semiconductor assembly and test factory and 

collected the required data for performing the experiments. As shown in Figure 5, there are 8 key 

stations in this semiconductor factory.  

X Y

 
Figure 5: Workstation flow in the case factory 



  

- 13 - 

Table 2: Production Parameters of the case factory 

STi  ST1 ST2 ST3 ST4 ST5 ST6 ST7 ST8 

iTH (thousand 

units) 
3.87 5.13 4.52 3.245 3.67 4.12 4.656 5.84 

iTH (lots/hour) 3.23  4.28  3.77  2.70  3.06  3.43  3.88  4.87  

iCT (days) 0.74  1.05  0.93  0.57  0.73  0.79  1.01  1.10  
*( )iE w  2.38  3.59  3.50  1.85  2.24  2.70  3.91  4.27  

The cycle time iCT  can be obtained according to the formula  

1

( ) )


 
n

s
ii i

i

E CT p PT QT（   

(note that iPT  and iQT can be obtained from the MES system of the case factory) and iTH  

can be obtained based on the factory design. According to the analysis of Subsection 3.4, one can 

obtain 

*

1

( ) ( + )
n

s
i i i

i

D
E w p PT QT

T

 ,  

and these values are displayed in Table 2. 

  According to the parameters in Table 3 and the analysis in Subsections 3.3 and 3.4, one can 

obtain the expected numbers of vehicles of ( )iE X  and ( )iE Y  for station STi . Then the total 

numbers of vehicles of type X and Y can be determined as given in Table 4. 

 

Table 3: Expected WIP quantity and expected numbers of vehicles of types X and Y 

STi  ST1 ST2 ST3 ST4 ST5 ST6 ST7 ST8 
*( )iE w  2.38  3.59  3.50  1.85  2.24  2.70  3.91  4.27  

 i   a b c c d a a a 

( )iE X  3  4 0  0  1  3  4  5 

( )iE Y  0  1  4 3  3 0  0  0  

 

Table 4: Investigated factors 

Factor Number  

X 20 

Y 11 

A 1200 units 

B 1200 units 

 

The breakdown rate d
mq  and the lot cancellation rate c

lq are set based on historical data. These 

parameters together with the values i  are summarized in Table 5.  
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Table 5: Parameter values of the work stations 

STi  ST1 ST2 ST3 ST4 ST5 ST6 ST7 ST8 

i  3.64 3.87 5.13 4.52 3.245 3.67 4.12 4.656 

b
iq  0.028 0.077 0.02 0.04 0.03 0.005 0.007 0.055 

c
iq  0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 

 

Table 6: Initial transition parameters  

STi  ST1 ST2 ST3 ST4 ST5 ST6 ST7 ST8 
a

iP  0.096  0.081  0.030  0.049  0.126  0.093  0.067  0.044  
b

iP  0.069  0.132  0.087  0.090  0.121  0.024  0.067  0.111  
c

iP  0.134  0.205  0.188  0.141  0.244  0.274  0.127  0.233  

 

  We use the time interval of one hour and each simulation cycle has a length of 12 hours as one 

shift which means  = 0,1,2,...,t T L  with L =12. An action of the MDP will be taken at the 

beginning of each hour. At the start time =0t , the initial state transition probability can be 

determined using the values of parameters given in Table 6. As the initialization, we use the state 

with ( )i ix E X , ( )i iy E Y , and the numbers of vehicles with the WIP quantity at each station 

are equal to the expected numbers ( )iE X  and ( )iE Y of vehicles of type X and Y, respectively.  

6.2 Comparison of the approaches and discussion of the results 

Based on the experimental data for the case factory, the MDP model is comprehensively compared 

with the simulation model. We tested the performance for different release rates representing 

different capacity levels of constraint scenarios in the same factory, namely in total three scenarios 

were considered with a release of the lots according to a Poisson distribution with the following 

release rates  : 1 =3.64 lots/hour, 2 =4.42 lots/hour, and 3 =3.09 lots/hour). For each 

scenario, we run the experiments 14 times (14 shifts  12 hours/shift=168 hours for one 

experiment), so in total we considered 2352 hours on overall. The simulation was developed under 

VS2008 C# and SQL Server 2008 in the Win7 x64 version.  

The major goal was the comparison of the three indicators (WIP quantity, cycle time and mean 

vehicle utilization rate). The results are presented in the following Tables 7-9 and Figures 4-6. In 

the tables, we compare the mean values of the three indicators obtained in the 14 experiments 

while in the figures; we visualize graphically the mean values and the standard deviations of the 

three indicators. In Table 7 and Figure 6, the results are given for 1 =3.64 lots/hour. In Table 7, 

the mean values of the relative deviations of the three indicators WIP quantity, cycle time and 

mean vehicle utilization between MDP+DP and simulation are 1.55%, 2.09%, and 2.58%, 

respectively. It can be noted that on average, all three indicators are improved when applying the 

MDP+DP approach. In particular, the MDP+DP approach obtained a lower WIP quantity in 13 

runs, a shorter cycle time in 13 runs and a higher vehicle utilization rate in 10 runs of the 14 
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experiments. 

Table 7: Comparison of the performance between MDP+DP and simulation for the arrival rate 

1 =3.64 lots/hour 

 WIP quantity Cycle time Mean vehicle utilization rate 

 MDP+DP Simulation Deviation MDP+DP Simulation Deviation MDP+DP Simulation Deviation 

Exper1 84.289  85.976  -2.00% 6.748  6.917  -2.50% 0.818  0.709  13.42% 

Exper2 84.159  85.235  -1.28% 6.715  6.894  -2.66% 0.948  0.937  1.14% 

Exper3 83.854  84.201  -0.41% 6.741  6.917  -2.60% 0.897  0.918  -2.41% 

Exper4 83.852  85.437  -1.89% 6.811  6.680  1.92% 0.918  0.965  -5.06% 

Exper5 83.825  85.035  -1.44% 6.637  6.828  -2.89% 0.993  0.812  18.24% 

Exper6 83.466  85.098  -1.96% 6.661  6.903  -3.63% 0.885  0.872  1.42% 

Exper7 82.889  86.026  -3.78% 6.662  6.835  -2.58% 0.946  0.852  9.97% 

Exper8 83.937  84.885  -1.13% 6.649  6.932  -4.25% 0.820  0.735  10.39% 

Exper9 83.508  83.496  0.01% 6.713  6.943  -3.42% 0.992  0.893  9.93% 

Exper10 83.956  85.710  -2.09% 6.689  6.818  -1.93% 0.939  0.884  5.85% 

Exper11 84.163  85.429  -1.50% 6.741  6.894  -2.27% 0.855  0.884  -3.42% 

Exper12 83.830  85.231  -1.67% 6.811  6.917  -1.55% 0.992  0.834  15.92% 

Exper13 83.860  84.885  -1.22% 6.637  6.680  -0.65% 0.749  0.970  -29.51% 

Exper14 83.941  85.091  -1.37% 6.661  6.680  -0.28% 0.890  0.977  -9.74% 

Mean 83.82 85.12 -1.55% 6.71 6.85 -2.09% 0.90 0.87 2.58% 

 

81.0000
82.0000
83.0000
84.0000
85.0000
86.0000
87.0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

MDP+DP Simulation

WIP Quantity (Mean)ku

7.0000

7.5000

8.0000

8.5000

9.0000

9.5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

MDP+DP Simulation

WIP Quantity (Stdev)ku

6.4

6.5

6.6

6.7

6.8

6.9

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14

MDP+DP Simulation

Cycle time  (Mean)Day

1

1.05

1.1

1.15

1.2

1.25

1 2 3 4 5 6 7 8 9 10 11 12 13 14

MDP+DP Simulation

Cycle time  (Stdev)Day

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14

MDP+DP Simulation

Vehicle mean utilization rate (Mean)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

MDP+DP Simulation

Vehicle mean utilization rate (Stdev)

 

Figure 6: Statistical results for the arrival rate 
1 =3.64 lots/hour 

In Table 8 and Figure 7, we present the results for the release rate 2 =4.42 lots/hour. In Table 8, 

the mean relative deviations of the three indicators WIP quantity, cycle time and mean vehicle 

utilization between MDP+DP and simulation are 2.00%, 10.21%, and 5.56%, respectively. In this 

scenario, the relative deviations for all three indicators are larger than for the release rate 
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1 =3.64 lots/hour. With an increase of the release rate, more WIP enters the floor and induces a 

higher variability of the WIP quantity. From Figure 5, we also see that the MDP+DP approach 

obtained a lower WIP quantity in 11 runs, a shorter cycle time in 13 runs and a higher vehicle 

utilization rate in 10 runs of the 14 experiments. 

In Table 9 and Figure 8, we present the results for the release rate 3 =3.09 lots/hour. From 

Table 9, it can be seen that the mean relative deviations of the WIP quantity, the cycle time and the 

mean vehicle utilization rate of the MDP+DP approach from simulation are 3.66%, 2.45%, and 

2.58%, respectively. In this scenario, the indicators and the relative deviations of the mean values 

of the three indicators are similar to the release rate 1 =3.64 lots/hour. From Figure 6, it also can 

be observed that the indicators are mostly improved by the MDP+DP approach compared with 

simulation. We obtained a lower WIP quantity in 13 runs, a shorter cycle time in 14 runs and a 

higher vehicle utilization rate in 9 runs of the 14 experiments. It can be observed that the strongest 

superiority of the MDP+DP approach was obtained for the cycle time. From the experiments with 

the three different release rates, one can observe that the variability of the release rate has also a 

large impact on the variability of the indicators WIP quantity, cycle time and vehicle utilization 

rate.  

 

Table 8: Comparison of the performance between MDP+DP and simulation for the arrival rate 

2 =4.42 lots/hour 

 WIP quantity Cycle time Mean vehicle mean utilization rate 

 MDP+DP Simulation Deviation MDP+DP Simulation Deviation MDP+DP Simulation Deviation 

Exper1 81.7651  82.8140  -1.28% 7.5019  7.4703  0.42% 0.9529  0.9345  1.93% 

Exper2 83.0154  87.2711  -5.13% 6.7054  7.0748  -5.51% 0.9099  0.8623  5.23% 

Exper3 82.0781  86.6749  -5.60% 6.4165  7.0356  -9.65% 0.8766  0.7415  15.42% 

Exper4 80.8538  82.0996  -1.54% 6.3995  7.6853  -20.09% 0.8356  0.7103  15.00% 

Exper5 83.5931  86.0189  -2.90% 6.4901  7.5032  -15.61% 0.8374  0.9670  -15.48% 

Exper6 79.4867  84.6598  -6.51% 6.9107  7.0351  -1.80% 0.8576  0.8690  -1.33% 

Exper7 81.1687  78.1917  3.67% 6.6120  7.6032  -14.99% 0.8760  0.8115  7.36% 

Exper8 80.6953  82.0031  -1.62% 6.8537  6.8089  0.65% 0.9306  0.7279  21.78% 

Exper9 80.9692  84.1201  -3.89% 6.5695  6.9850  -6.32% 0.8150  0.9295  -14.04% 

Exper10 80.5327  83.2525  -3.38% 6.4704  7.2999  -12.82% 0.8893  0.7098  20.19% 

Exper11 82.6439  82.6467  0.00% 6.3382  7.6959  -21.42% 0.8262  0.7213  12.70% 

Exper12 85.5853  88.1202  -2.96% 6.3388  7.7315  -21.97% 0.8746  0.7053  19.35% 

Exper13 85.3632  83.9843  1.62% 6.5725  6.9354  -5.52% 0.7681  0.9829  -27.97% 

Exper14 79.0825  77.8280  1.59% 6.9921  7.5773  -8.37% 0.8754  0.7205  17.69% 

Mean 81.92  83.55  -2.00% 6.66  7.32  -10.21% 0.87  0.81  5.56% 
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Figure 7: Statistical results for the arrival rate 
2 =4.42 lots/hour 

Table 9: Comparison of the performance between MDP+DP and simulation for the arrival rate 

3 =3.09 lots/hour 

 WIP quantity Cycle time Mean vehicle utilization rate 

 MDP+DP Simulation Deviation MDP+DP Simulation Deviation MDP+DP Simulation Deviation 

Expert1 92.7774  95.4862  -2.92% 8.1257  8.4437  -3.91% 0.8184  0.7085  13.42% 

Expert2 91.6990  94.0675  -2.58% 8.1658  8.2839  -1.45% 0.9478  0.9370  1.14% 

Expert3 86.5577  95.1051  -9.87% 8.1336  8.4072  -3.36% 0.8967  0.9184  -2.41% 

Expert4 92.5697  97.8664  -5.72% 8.1923  8.5123  -3.91% 0.9183  0.9648  -5.06% 

Expert5 90.9228  92.8304  -2.10% 8.2055  8.4288  -2.72% 0.9934  0.8122  18.24% 

Expert6 90.1575  93.0872  -3.25% 8.1550  8.2649  -1.35% 0.8850  0.8724  1.42% 

Expert7 87.7126  95.3625  -8.72% 8.1608  8.2924  -1.61% 0.9464  0.8520  9.97% 

Expert8 91.3620  93.0272  -1.82% 8.1714  8.2444  -0.89% 0.8205  0.7352  10.39% 

Expert9 93.2541  93.7638  -0.55% 8.2106  8.3904  -2.19% 0.9920  0.8935  9.93% 

Expert10 91.4546  92.7630  -1.43% 8.1254  8.4911  -4.50% 0.9386  0.8837  5.85% 

Expert11 89.9360  95.1985  -5.85% 8.2029  8.2360  -0.40% 0.8552  0.8845  -3.42% 

Expert12 91.0359  98.0639  -7.72% 8.1670  8.3596  -2.36% 0.9922  0.8342  15.92% 

Expert13 94.7863  90.9042  4.10% 8.2382  8.4962  -3.13% 0.7491  0.9701  -29.51% 

Expert14 91.1242  93.6827  -2.81% 8.2637  8.4743  -2.55% 0.8902  0.9769  -9.74% 

Mean 91.10  94.37  -3.66% 8.18  8.38  -2.45% 0.90  0.87  2.58% 
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Figure 8: Statistical results for the arrival rate 3 =3.09 lots/hour 

7. Concluding Remarks 

MHTs play a critical role for the transitions of the lots between the stations in a discrete 

manufacturing system. In order to improve the performance of the MHTs and the WIP quantity 

effectively, we analyzed the process of the MHTs and quantified the relationships between the 

related parameters of the MHTs. According to the “no memory” property of an MHT transition, 

we applied an MDP to build up the model and used DP to determine an optimal solution for the 

underlying mathematical problem. For our experiments, we considered a 300mm semiconductor 

assembly and test factory, collected the required data and compared the developed MDP+DP 

approach with simulation for different release rates of the lots. The results of the experiments 

showed some improvements of the MDP+DP approach over simulation for the majority of the 

runs and confirmed that the proposed approach is both feasible and effective.  

   For future work, a first extension is to further discuss the queueing status of the MHT model 

with the combination of queueing theory and the Markov chain methodology. Another possible 

extension consists in an effective traceability method for the MHTs for the daily operations. In this 

way, we want to provide a practical method for manufacturing managers and supervisors.  
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