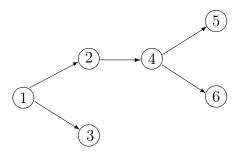
Fakultät für Mathematik Institut für Mathematische Optimierung Prof. Dr. F. Werner


Übungsaufgaben zur Vorlesung "Scheduling"

Serie 4

1. Gegeben sei ein Problem $1|tree| \sum w_i C_i$ mit 6 Jobs und folgenden Daten:

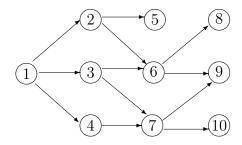
i	1	2	3	4	5	6
w_i	1	9	5	1	6	8
t_i	1	4	2	2	2	4

Der Graph der Vorrangbedingungen ist wie folgt:

- (a) Bestimmen Sie eine optimale Lösung und den optimalen Zielfunktionswert.
- (b) Wie lautet die optimale Lösung, wenn im Graphen der Vorrangbedingungen alle Bögen umgekehrt orientiert sind?
- 2. Gegeben sei ein Problem $1|C_i \leq d_i|\sum w_iC_i$ mit 6 Jobs und folgenden Daten:

i				4		
w_i	3	7	2	3	2	5
t_{i}	5	4	6	3	5	4
d_i	15	18	20	3 3 24	27	30

Bestimmen Sie eine Näherungslösung mittels Smith-Heuristik. Ist diese Lösung lokal optimal in der Left-Shift bzw. Right-Shift-Nachbarschaft?


3. Gegeben sei ein Problem $1|r_i,pmtn|\sum C_i$ mit 5 Jobs und folgenden Daten:

Bestimmen Sie eine optimale Lösung. Welche Lösung erhalten Sie bei Anwendung der SPT-Regel im Fall verbotener Unterbrechungen?

4. Gegeben sei das folgende $P3||C_{max}$ Problem:

- (a) Ermitteln Sie eine optimale Lösung mit dem Algorithmus von Rothkopf.
- (b) Ermitteln Sie eine Näherungslösung mit dem List Scheduling Algorithmus LPT.
- 5. Gegeben sei das $P2|prec|C_{max}$ Problem mit den Bearbeitungszeiten

und den Vorrangbedingungen:

- (a) Geben Sie eine untere Schranke für den optimalen Zielfunktionswert an. Bestimmen Sie eine Näherungslösung mit dem CP (Critical path) List Scheduling Algorithmus.
- (b) Verallgemeinern Sie die LNS-Regel für Probleme mit Einheitsbearbeitungszeiten auf den allgemeinen Fall und geben Sie die resultierenden Knotenbewertungen für das obige Beispiel an.