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Preface

No time like the present

The idea of our approach for solving a scheduling problem with uncertain
parameters arose at the United Institute of Informatics Problems of the
National Academy of Sciences of Belarus, when the first author investigated
the stability of an optimal schedule. This approach was further developed
at the Institute of Mathematical Optimization of the Otto-von-Guericke
University of Magdeburg, where the second author wrote her Ph.D. thesis
“Optimal scheduling with uncertainty in the numerical data on the basis of
stability analysis” under the supervision of the fourth author. Of course,
the ideas and even the results based on these ideas are only necessary (but
not sufficient) conditions for writing a monograph. What one needs else is
time. Such a time was ensured by the National Scientific Council of Taiwan
(projects NSC 94-2811-H-002-001, NSC 97-2410-H-002-107, NSC 98-2811-H-
002-005). Due to these projects, the book was written in Taipei, when the
first author visited the Department of Industrial and Business Management
of the National Taiwan University. These projects were headed by the third
author in the time from 1997 till 2009.

This book is about optimal scheduling with uncertain numerical data. A
schedule is considered as a mathematical object and so it does not matter
where the schedule is used. Optimal scheduling is considered as sequencing
the given activities over time in order to meet some given objective. Activ-
ities (jobs, operations) represent processes which use resources (machines)
to produce goods or provide services. In contrast to many other books that
addressed sequencing and scheduling [25, 36, 37, 51, 81, 84, 122, 129, 183,
248, 253, 269, 270, 278, 289, 299, 335, 352, 355, 357], this book addresses
the stability of an optimal schedule with respect to uncertainty of the input
data. This book shows how one can use the stability of an optimal (or near
optimal) sequence of the given activities to overcome the uncertainty of the
numerical input data.

It is obvious that there is no unique method that will fit all the different
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6 PREFACE

types of uncertainties arising in the real world, and the method described
in this book aims to complement but not to replace other methods to deal
with uncertainty in scheduling. In particular, a stochastic method (see the
second part of monograph [269] and articles [33, 95, 108, 120, 121, 171, 176,
178, 179, 226, 268, 274, 275, 302, 303] among others) is useful when one
has enough prior information to characterize the probability distributions
of the random activity durations and there is a large number of repetitions
of similar processes. However, a stochastic method may have a limited
significance for a small number of realizations of the process.

In contrast to a stochastic model and a fuzzy model (see book [299] and
articles [143, 196, 239, 254, 262, 280, 343] among others), we assume that
in spite of the uncertainty of the input data, the desired schedule has to fix
the unique place in the desired sequence for each given activity. Contrary to
most methods for dealing with uncertainty in scheduling, the main aim of our
method is to construct really an optimal schedule for the actual numerical
input data. Of course, this is only possible when the level of uncertainty is
not very high. Otherwise, a decision-maker has to use other approaches to
scheduling under uncertainty, e.g., those presented and reviewed in [24, 26,
61, 68, 89, 107, 123, 159, 162, 184, 193, 221, 234, 243, 255, 260, 264, 269,
299, 362, 364, 370].

In order to outline the approach considered in this book let us discuss a
connection between time which is necessary for solving a scheduling problem
and time which is necessary for the realization of a schedule. What is the
main role of time in practical scheduling? Since time has only one direction
for variation (from present to future) a decision-maker may have definitely
reliable information only about the activities which are already realized, and
there may be not enough information about the realization of the future
activities involved in a real schedule. In practice, it is often useful to take
into account that a unit of time may have a different “price” while solving a
scheduling problem. With this in mind, we distinguish several time phases in
decision-making depending on the static or dynamic scheduling environment.
The first, off-line, proactive, phase of scheduling is used before realization
of the given activities (static scheduling environment) while the subsequent,
on-line, reactive phases of scheduling are used when a part of the schedule
has already been realized (dynamic scheduling environment).

At the off-line phase of scheduling, there may be more time for decision-
making and as a result, the “price” of a time unit may be relatively low.
However, before realization of the activities, there is usually not enough
reliable information to construct actually an optimal schedule for the future
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realization of the given activities. Thus, at the off-line phase of scheduling,
it is necessary to create a solution (multiple schedules) to the scheduling
problem provided that the main numerical input data are uncertain. At the
off-line phase of scheduling, we propose to realize a stability analysis of the
constructed feasible schedules to deal with different contingencies that may
arise during the schedule execution.

At the on-line phases (in the dynamic scheduling environment when a part
of the schedule has already been realized), there is more reliable information
for the decision-making (the situation under consideration becomes more
certain, e.g., due to known durations of the activities already executed).
However, there is often not enough time for using this additional information
in order to construct an optimal schedule. The main idea of the approach
described in this book is to prepare for the on-line phases of scheduling when
the “price” of a time unit will be higher than that at the off-line phase of
scheduling.

We have to emphasize that the randomness of the activity durations
considered in this book is due to external forces in contrast to scheduling
problems with controllable durations [70, 71, 72, 76, 88, 165, 166, 173, 181,
296, 297, 345], where the objective is to determine optimally the durations
(which are under control of a decision-maker) and the schedule at the same
time. Another related yet different model is used for hoist scheduling (see
articles [65, 67, 209, 233, 236, 342, 347] among others). Hoist scheduling
problems arise in chemical, electroplating and medical industries, where the
objective is to minimize the cycle time of a repetitive process. Due to the
nature of the chemical process, the activity durations have to be strictly
controlled by a decision-maker within the given lower and upper bounds.

The processing systems considered in this book are those arising in prac-
tice for scheduling in continuous manufacturing industries (e.g., process in-
dustries) and in discrete manufacturing industries (e.g., cars, semiconduc-
tors). Continuous manufacturing industries often have two types of ma-
chines: Machines for the main operations (e.g., paper mills, steel mills, alu-
minum mills, chemical plants, refineries) and machines for finishing opera-
tions such as cutting of the material, bending, folding, painting and printing.
Medium and short term scheduling of the latter operations often leads to
single machine scheduling problems. Scheduling the main production opera-
tions leads to flow shop and job shop scheduling problems. The most general
processing system considered in this book is a so-called general shop.

Within this book, we widely use mixed graphs for modelling the schedul-
ing environment with different types of uncertainties. All chapters of the
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book are written as an independent one of others and as self-sufficient for
understanding. A summary, remarks and bibliographic notes are given at
the end of each chapter in the section titled “Comments and References”,
where publications are cited in which the results presented in the chapter
have been originally proven. We attempted to minimize the number of ref-
erences used within other sections of the book.

It is clear for us that we would not have been able to write this book with-
out many people that helped us. During the last more than ten years, where
we worked on the results presented in this book, we have received support of
many people from the United Institute of Informatics Problems of the Na-
tional Academy of Sciences of Belarus, the Otto-von-Guericke University of
Magdeburg, and the National Taiwan University. In particular, we acknowl-
edge Georgii V. Andreev and Natalja G. Egorova from the United Institute
of Informatics Problems for their qualified help in programming and testing
algorithms. We would like to thank Natalja M. Matsveichuk from the same
institute for her new results on the two-machine flow shop and job shop
problems with uncertain numerical data included in Chapter 3 of this book.
Special thanks go to Nina Sotskova and Ivan Mihov for their enthusiasm,
faith and love which were of great help for us during the period of writing
this book. We would like to gratefully acknowledge the collaborators of the
Department of Industrial and Business Management of the National Taiwan
University for their good attitude and for creating an optimal atmosphere
for our research and writing this book. As it was already mentioned, the
authors obtained support from the National Scientific Council of Taiwan.

We dedicate this book to Evangelina and Veronika Mihova.

Minsk, München, Taipei, Magdeburg
June 2010

Yuri N. Sotskov
Nadezhda Yu. Sotskova

Tsung-Chyan Lai
Frank Werner



Introduction

A schedule is the greatest
production of human spirit

K. Chapek

Scheduling concerns the allocation of given sets of activities (jobs) to given
resources (machines) over time. In real life, machines and jobs may take dif-
ferent forms, e.g., machines in a workshop and operations in a production
process, runways at an airport and take-offs and landings of aircrafts, crews
at the construction site and stages in the construction project, processing
units in a computing environment and executions of computer codes, teach-
ers at the university and student groups. Jobs may differ one from another
by processing times, priorities, release dates, due dates, machine types which
can execute it, etc.

Mathematical problems arising in scheduling are studied in scheduling
theory containing two main parts based on deterministic or stochastic mod-
els. Deterministic models have been introduced for scheduling environments
(see [37, 51, 122, 204, 278, 352, 355] among others) in which the processing
time (duration) of each job processed by a machine is supposed to be given
in advance (before applying a scheduling procedure) and assumed to be a
constant during the realization of a schedule. Often in real life, however,
exact numerical data are not known in advance, and difficulties arise when
some job processing times (which were assumed to be known in advance) will
vary due to a change in a dynamic environment. Even if all the processing
times are fixed before scheduling, one is forced to take into account possible
errors within the realization of a schedule, the precision of the equipment
for calculating the processing times, round-off errors in the calculation of
a schedule on the computer, machine breakdowns, arriving additional jobs
with high priority and so on. The inadequacy of a deterministic scheduling
problem in modelling real-world situations was emphasized in several publi-
cations, e.g., in [24, 59, 89, 100, 144, 152, 155, 159, 193, 235, 240, 241, 242,
243, 247, 264, 269, 273, 292].
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10 INTRODUCTION

More general scheduling settings have been considered using a stochastic
model [81, 269], where the job processing time is assumed to be a random
variable with a known probability distribution. In practice, difficulties may
still arise in some scenarios. First, one may not have enough prior infor-
mation to characterize the probability distribution of a random processing
time. Second, even if the probability distributions of all random processing
times are a priori known, these distributions are really useful for a large
number of realizations of similar scheduling environments, but they can be
of little practical sense for a unique or small number of similar realizations.

In this book, a model of one of the more realistic scheduling scenarios is
considered: It is assumed that in the realization of a schedule a processing
time (or other numerical parameter) may take any real value between the
lower and upper bounds given before scheduling. Obviously, a deterministic
model is a special case of the model under consideration (namely, if lower
and upper bounds are identically given for a processing time). The model
considered can also be interpreted as a stochastic one under strict uncer-
tainty when there is no sufficient a priori information about the probability
distribution of a random processing time (or more precisely, it is only known
that the random processing time will fall between the given lower and upper
bounds with probability one). In spite of obvious practical importance, the
model under such a strict uncertainty has attracted a limited attention in
the OR literature so far.

The general scheme of our approach for dealing with uncertainty in
scheduling may be described as follows. The whole scheduling problem is
decomposed into two (or more) sequential scheduling problems (phases).
At the off-line phase, a set of potentially optimal schedules has to be con-
structed under conditions of uncertainty of the given numerical input data.
It is assumed that only lower and upper bounds for the activity duration are
known at the first, off-line, phase of scheduling. Moreover, the probability
distributions of the random activity durations are assumed to be unknown
between their lower and upper bounds. For solving a scheduling problem
with uncertain input data we propose to use a stability analysis of an optimal
schedule with respect to possible variations of the given parameters. Since
the “price” of time is not high at the off-line phase of scheduling, a decision-
maker can use even a time-consuming algorithm for solving a scheduling
problem with uncertain numerical data. When some activities will be re-
alized, a decision-maker will have more reliable information which may be
used to find an optimal schedule. So, at the on-line phase of scheduling, it
is necessary to choose a schedule (from the set of potentially optimal sched-



11

ules constructed at the off-line phase) which has to be realized in an optimal
way. Such a schedule has to be optimal for the actual activity durations. To
solve a scheduling problem at the on-line phase, a decision-maker needs to
use fast polynomial-time algorithms. Next, we formally introduce the main
models.

We consider a multi-stage processing system (for brevity, a shop), which
consists of a set of machines M = {M1, M2, . . . , Mm} that have to process
a set of given jobs J = {J1, J2, . . . , Jn}. For the shop under consideration,
there are assumed five conditions, three of which are as follows.

Condition 1: At any time, each machine Mk ∈ M either processes one
job from the set J or is idle.

Condition 2: At any time, each job Ji ∈ J is either processed by one
machine from set M, waits for processing or is already completed.

Condition 3: The machine order (Mi1, Mi2, . . . , Mini
) for processing each

job Ji ∈ J , called the technological or machine route of job Ji, is fixed before
scheduling.

The processing of a job Ji ∈ J by a machine Mik ∈ M at the stage
k ∈ {1, 2, . . . , ni} of the technological route is called an operation denoted as
Oik. Let QJ be the set of all operations for processing all jobs from the set J :
QJ = {Oik : Ji ∈ J, k = 1, 2, . . . , ni}. Condition 3 means that processing of
a job from the set J includes the processing of the given set of operations in
the fixed order, provided that the distribution of the operations QJ to the
machines from the set M is also fixed via the machine routes of the jobs J .

If the technological routes are identically given for all jobs from set J , e.g.,
(M1, M2, . . . , Mm), then we have a flow shop, otherwise (if the technological
routes may be given differently for different jobs), we have a job shop. In the
former case, each job has to be processed once by each machine while in the
latter case, both repetitions and absence of a machine in the technological
route of a job are allowed. In both cases each operation is assigned to
a certain machine, and the technological route (Mi1, Mi2, . . . , Mini

) of job
Ji ∈ J defines completely ordered operations (a sequence) (Oi1, Oi2, . . . , Oini

)
such that operation Oik has to be processed by machine Mik ∈ M after
operation Oi,k−1 processed by machine Mik−1

∈ M and before operation
Oi,k+1 processed by machine Mik+1

∈ M , k ∈ {2, 3, . . . , ni − 1}.
For a flow shop, equality ni = m holds for each job Ji ∈ J while in the

general case of a job shop, the value ni may be smaller or larger than m

or equal to m for a job Ji. For both flow shop and job shop problems, it
is assumed that there are no other precedence constraints given a priory on
the set of operations QJ except those defined by the technological routes
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(Oi1, Oi2, . . . , Oini
), Ji ∈ J .

Since a flow shop is a special case of a job shop, all algorithms developed
for solving a job shop problem may be used for solving a flow shop problem
as well. On the other hand, if a special case of a flow shop problem is proven
to be NP-hard, the same special case of a job shop problem is NP-hard as
well. The following condition also holds for the shop-scheduling problems
considered in this book.

Condition 4: Preemptions of an operation are forbidden.
Condition 4 means that in any (feasible) schedule, operation Oij ∈ QJ

being started at time sij has to be processed up to its completion time
cij = sij + pij, where pij denotes the processing time of operation Oij.

Let QJ
k denote the set of all operations from the set QJ , QJ

k ⊆ QJ , which
have to be processed by machine Mk ∈ M . In a deterministic model, the
processing times pij are known in advance for all operations Oij, Ji ∈ J, j =
1, 2, . . . , ni. Therefore, a schedule may be defined as the set of starting times
sij (or completion times cij) of all operations QJ provided that Conditions
1 – 4 hold. Such a set of starting (or completion) times of operations QJ

defines a unique sequence for processing the operations QJ
k by each machine

Mk, k = 1, 2, . . . , m. Thus, a schedule uniquely defines m sequences (a
unique sequence of the operations QJ

k for each machine Mk ∈ M).
The objective of a scheduling problem is to find such a schedule

(i.e., to find such m sequences of the operations QJ
k on the machines

Mk, k = 1, 2, . . . , m) for which the value of the given objective function
Φ(C1, C2, . . . , Cn) is minimal. Hereafter, equality Ci = cini

holds, and so Ci

is equal to the completion time of job Ji ∈ J .
If the objective function Φ(C1, C2, . . . , Cn) is a non-decreasing one, such a

criterion is called regular [204]. In multi-stage scheduling, the most popular
regular criteria are the minimization of maximum flow time (makespan)

Φ(C1, C2, . . . , Cn) = max{Ci : Ji ∈ J} = Cmax

and the minimization of mean flow time

Φ(C1, C2, . . . , Cn) =
n∑

i=1
Ci =

∑ Ci.

Scheduling problems are usually classified by a triplet α/β/γ. The α field
describes the machine environment and usually contains a single entry (type
of the processing system) or double entries (type of the system and number
of machines m). The β field provides details of the processing characteristics
and may contain no entries, a single entry, or multiple entries (number of
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jobs, restrictions on the processing times, etc.). The γ field contains the
objective function to be minimized, and it usually contains a single entry.
Using such a three-field notation, the deterministic job shop problems con-
sidered in Chapter 1 are denoted by J //Cmax and J //

∑ Ci for the job shop
and by F//Cmax and F//

∑ Ci for the flow shop. The symbols J and F are
used to indicate a job shop and a flow shop, respectively.

The job shop problem is NP-hard for most criteria considered in schedul-
ing theory even for a small number of machines and jobs. For exam-
ple, the following shop-scheduling problems are unary NP-hard: F3//Cmax,
F3//

∑ Ci, J 3/pij = 1/Cmax and J 2/pij ∈ {1, 2}/Cmax [126, 211, 212]. Prob-
lems F/n = 3/Cmax, F/n = 3/

∑ Ci, J 3/n = 2/Cmax and J 3/n = 2/
∑ Ci

are binary NP-hard [53, 308, 326]. Therefore, to solve a job shop problem
even with moderate numbers of machines and jobs one needs to develop
complicated enumerative algorithms.

The job shop problem J //Φ is a special case of a general shop problem
G//Φ, in which arbitrary precedence constraints may be given on the set of
operations. Hereafter, G indicates a general shop, and Φ denotes any given
regular criterion: Φ = Φ(C1, C2, . . . , Cn). A general shop is defined via a
partially ordered set of the given operations. For a general shop, the notion
of a job may lose its sense, e.g., for the Cmax criterion, and one can use a
more simple notation for the operations as follows.

Let Q = {1, 2, . . . , q} denote the set of all operations which have to be
processed in a general shop, and Qk denotes the set of all operations from the
set Q, Qk ⊆ Q, which have to be processed by machine Mk ∈ M . If i ∈ Qk,
then the non-negative real value pi denotes the processing time of operation
i by machine Mk ∈ M . Since a job shop is a special case of a general shop,
we can use the above general shop notations for the job shop and flow shop
as follows. Let QJi denote all operations belonging to job Ji ∈ J . Using
general shop notations, we assume that job J1 has the operations

{1, 2, . . . , n1} = QJ1, (1)

job J2 has the operations

{n1 + 1, n1 + 2, . . . , n1 + n2} = QJ2, (2)

and so on, job Jn has the operations⎧⎨⎩
n−1∑
j=1

nj + 1,
n−1∑
j=1

nj + 2, . . . ,
n∑

j=1
nj = q

⎫⎬⎭ = QJn. (3)
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After such an enumeration of the operations QJ = {Oij, Ji ∈ J, j =
1, 2, . . . , ni}, we obtain a one-to-one correspondence between the operations
of the sets QJ and Q (operations of the sets QJ

k and Qk). E.g., a completely
ordered set of the operations of job J1 is denoted as (O1,1, O1,2, . . . , O1n1

)
using the job shop notations, and it is denoted as (1, 2, . . . , n1) using the
general shop notations. Whenever it is possible, we shall use the general
shop notations (since it is more simple), otherwise, we shall use the job shop
notations. Such a principle of “rational sufficiency” is used within the whole
book. Some adjectives which may be omitted are given in parentheses, e.g.,
(undirected) edge in a graph and (directed) arc in a digraph.

Note that the notion of a general shop is used rather seldom in modern
scheduling theory (indeed, a general shop may be considered as a job shop
with additional precedence constraints given on the set of operations QJ

and assuming that a job Jk ∈ J may consist of only one operation {O1,1}).
However, we distinguish a general shop problem from a job shop problem
since the former is the main subject investigated in Chapters 1 and 2 of this
book. (A two-machine job shop and a flow shop are considered in Chapter
3.) Note also that the models and methods used for solving a general shop
problem G//Φ are close to those used for solving the more general resource
constrained project scheduling problem (for brevity, RCPSP) widely
studied in scheduling theory and widely used in practice. Reviews for the
RCPSP can be found in [52, 90, 127, 158, 159, 160, 162]. The generalization
of the RCPSP with respect to a general shop problem is connected with the
assumptions that in the resource constrained project scheduling problem an
operation may require some amount of one or more of the resources during its
duration of execution, and each resource has a maximum capacity expressing
the total amount of the resource that can be used at any time point by any set
of operations. The most common scheduling model considered in this book
is the general shop, however, some results presented in Chapters 1 and 2 and
the approach to deal with uncertainty in scheduling presented in Chapters
1 – 4 may be applied to the RCPSP with regular criteria based on the
objective function of the job completion times and the numbers of resources
used for processing the given activities. It should be noted that in resource
constrained project scheduling non-regular criteria were also considered (see,
e.g., [28, 102, 256, 373]).

The usual assumption, which is used in most theoretical settings of
scheduling problems, that durations of all operations are given in advance
(before scheduling) and cannot change during the execution of a schedule
restricts the usefulness of scheduling theory for practice. In Chapter 1,
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we present results for the calculation of the stability radius of an optimal
schedule for general and job shops. The stability radius denotes the largest
quantity of independent variations of the operation durations such that the
given schedule remains optimal. The main attention is paid to the results
on a stability analysis which are used further in Chapter 2. Some other
approaches to stability analysis and related results are discussed in the last
section of Chapter 1.

Chapters 2 and 3 deal with a mathematical model for scheduling scenarios
in which the processing time of each operation i ∈ Q may be uncertain
before applying a scheduling procedure and may take any value between a
given lower bound ai ≥ 0 and an upper bound bi ≥ ai. More precisely, in
these three chapters we consider a general shop (job shop and flow shop
as its special cases) when the structural input data are fixed while only a
lower bound ai ≥ 0 and an upper bound bi ≥ ai for the processing time
of operation i ∈ Q are given as numerical input data before applying a
scheduling procedure, i.e., the following condition holds.

Condition 5: The actual processing time pi of operation i ∈ Q may take
any real value between given lower and upper bounds:

ai ≤ pi ≤ bi, i ∈ Q. (4)

It should be noted that, while Conditions 1, 2, 3 and 4 are commonly
used in scheduling theory, Condition 5 is rather new. The main aim of
this book is to introduce Condition 5 into relevant settings of scheduling
problems. A general shop problem which satisfies Conditions 1 – 5 will be
denoted by G/ai≤pi≤ bi/Φ. On the one hand, problem G/ai≤pi≤bi/Φ can
be considered as a stochastic general shop problem under strict uncertainty,
when there is no prior information about the probability distributions of the
random processing times of operation i ∈ Q in the segment [ai, bi]. On the
other hand, if ai = bi for each operation i ∈ Q, problem G/ai ≤ pi ≤ bi/Φ
turns out to be a deterministic general shop problem G//Φ.

It is clear that not only the duration of the processing of operations
may be a source of uncertainty in a practical scheduling. Uncertainty may
also arise from machine breakdowns, unexpected arrivals of new jobs with
high priorities, late arrivals of raw materials, modifications of setup times,
release dates and due dates. As it will be shown in Chapter 1, all these
and some other sources of uncertainty may be treated in terms of problem
G/ai≤pi≤ bi/Φ.

Problem G/ai≤pi≤bi/Φ seems to be rather realistic, at least, it is not re-
strictive: Even if there is no prior information on the possible perturbations
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of the processing times pi, one can consider 0 as a lower bound of pi and
a sufficiently large number (e.g., the planning horizon) as an upper bound
for pi. Note that for a flow shop problem, fixing the structural input data
means only to fix the number n of jobs and the number m of machines.
Consequently, any two flow shop problems with the same number n of jobs
and the same number m of machines, i.e., problems Fm/n=k/Φ may differ
one from another only in their processing times. Since problem G//Φ is
a special case of problem G/ai ≤ pi ≤ bi/Φ, NP-hardness of problem G//Φ
implies NP-hardness of problem G/ai≤pi≤bi/Φ.

The material of the book is presented in an order from hard scheduling
problems to easier scheduling problems. Chapters 1 and 2 deal with gen-
eral and job shop problems and Chapter 3 with two-machine flow and job
shop problems. Such an order of problems allows us to present mathemat-
ical results in the opposite order: from evident and simple results to more
complicated and deep ones.

We tested algorithms coded in Fortran-77 for a stability analysis, in which
an optimal schedule has already been constructed and the question is to de-
termine such maximal variations of the operation processing times, which do
not destroy schedule optimality. These computational results are presented
in Chapter 1. In Chapter 2, we present computational results for solving
randomly generated problems J /ai ≤ pi ≤ bi/Cmax and J /ai ≤ pi ≤ bi/

∑ Ci

using algorithms coded in Fortran-77. Chapter 3 contains computational
results for solving randomly generated problems F2/ai ≤ pi ≤ bi/Cmax and
randomly generated two-machine minimum-length flow shop and job shop
scheduling problems with limited machine availability. The algorithms de-
veloped in Chapter 3 have been coded in C++.

For the convenience of the reader, common notations are summarized
in Table 2.22 at the end of Chapter 2 (page 178). Along with common
notations, we summarize general shop notations in Table 1.5 at the end of
Chapter 1 (page 80). Notations for two-machine flow and job shops are
given in Table 3.41 at the end of Chapter 3 (page 288). Each chapter is
written mainly as an independent one from the others. In the last section
of each chapter and in the conclusion of the book, we summarize the known
results with references and outline some topics for future research.



Chapter 1

Stability Radius of an Optimal
Schedule

I am a believer in punctuality
though it makes me very lonely

E.V. Lucas

The usual assumption that the processing times of all operations (setup
times, release dates, due dates, and other numerical parameters) are exactly
known before scheduling restricts practical aspects of modern scheduling
theory since it is often not valid for real-world processes. This chapter is
devoted to some results obtained for the stability analysis of an optimal
schedule which may help to extend the significance of scheduling theory
for real production scheduling problems. The terms “stability analysis”,
“sensitivity analysis” or “post-optimal analysis” are used for the phase of an
algorithm at which a solution of an optimization problem has already been
found, and additional calculations are performed in order to investigate how
this solution depends on the numerical input data.

In this chapter, we prove some results on job and general shop scheduling
problems for the calculation of the stability radius of an optimal schedule,
when the objective is to minimize mean or maximum flow time or, in general,
to minimize any given non-decreasing function of the job completion times.
The stability radius of an optimal schedule denotes the largest quantity of
independent variations of the processing times of the operations (and other
changeable numerical parameters) such that this schedule remains optimal.
The extreme values of the stability radius are considered more in detail.

The results presented in this chapter may be considered as a post-optimal
analysis of scheduling problems with uncertain numerical data when the aim

17
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is to study the influence of round-off errors or changes of the processing
times (and other numerical parameters) on the property of a schedule to be
optimal. The main reason for performing such a stability analysis is that
in most practical cases the processing times of the operations (and other
numerical input data) are inexact or uncertain before applying a scheduling
procedure. In such cases, a stability analysis is necessary to investigate the
credibility of an optimal schedule at hand.

On the one hand, if possible errors of the numerical parameters are larger
than the stability radius of an optimal schedule, this schedule may not be
the best in a practical realization, and there is not much sense in likely large
efforts to construct an optimal schedule: It may be more advisable to restrict
the scheduling procedure to the construction of an approximate or heuristic
solution. On the other hand, this is not the case when the possible change
of each numerical parameter is less than or equal to the stability radius of
an optimal schedule: An a priori constructed optimal schedule will remain
optimal (the best for the given objective) in the practical realization.

Another reason for calculating the stability radius is connected with the
need to solve a set of similar scheduling problems. In reality, the main
characteristics of a shop (such as the number of machines, the technological
routes, the range of variations of the processing times and so on) do not
change quickly, and it may be possible to use previous computations of
an optimal schedule for solving a new similar scheduling problem. Since
the majority of scheduling problems is NP-hard, enumeration schemes such
as branch-and-bound are often used for finding an optimal schedule. To
this end, it is necessary to construct a solution tree, which is often huge.
Unfortunately, most of the information contained in the solution tree is lost
after having solved the problem. In such a situation, the stability radius of
the optimal schedule constructed gives the possibility to use a part of this
information for solving further similar scheduling problems.

The rest of this chapter is organized as follows. In Section 1.1, we in-
troduce a mixed (disjunctive) graph model to represent the input data of a
general shop scheduling problem G//Φ. It is shown that various scheduling
problems may be represented as extremal problems on mixed graphs, and
the only requirement for such a representation is the prohibition of opera-
tion preemptions (Condition 4 on page 12). In Section 1.2, we describe how
the stability radius of an optimal schedule (digraph) for problem G//Φ can
be calculated via the reduction to a non-linear mathematical programming
problem. The advantage of studying the stability of an optimal digraph in-
stead of the stability of an optimal schedule is demonstrated in Section 1.1
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and in Section 1.2. The calculation of the stability radius along with char-
acterizations of its extreme values for problems G//Cmax and G//

∑ Ci are
considered in Section 1.3 and in Section 1.4, respectively. Algorithms for
calculating the stability radius are given in Section 1.5. Section 1.6 contains
computational results for the calculation of the stability radius of optimal
schedules for randomly generated job shop scheduling problems. In Sec-
tion 1.7, we survey different approaches to stability analysis in combinatorial
optimization.

1.1. Mixed Graphs for Modelling a General Shop

We consider a general shop in which the given partially ordered set of
operations Q = {1, 2, . . . , q} has to be processed by a set of machines M =
{M1, M2, . . . , Mm}. It is assumed that each operation j ∈ Q is assigned to
one machine from the set M , and at any time each machine can process at
most one operation (Condition 1 on page 11).

Let pj denote the processing time (duration) of operation j ∈ Q and
cj denote the completion time of operation j. Operation preemptions are
not allowed (Condition 4 on page 12): If an operation j starts at time sj,
its processing is not interrupted until operation j is completed (up to time
cj = sj + pj). The problem of finding an optimal schedule minimizing the
given objective function Φ of the job completion times is denoted as G//Φ.
In this book, only regular criteria are considered, i.e., it is assumed that the
objective function Φ(C1, C2, . . . , Cn) is non-decreasing, where Ci denotes the
completion time of job Ji.

The set of operations Q is partially ordered by the given precedence
constraints (temporal constraints) →. Given two operations i ∈ Q and
j ∈ Q, the notation i → j means that operation i is a predecessor of
operation j. In other words, if i → j, then inequality

ci + pj ≤ cj (1.1)

must hold for any feasible schedule. Let Qk be the set of operations processed
by machine Mk ∈ M and {Qk : k = 1, . . . , m} be a partition of the set Q:

Q =
m⋃

k=1
Qk, Qk �= ∅, Qk

⋂
Ql = ∅, if k �= l, k = 1, . . . , m, l = 1, . . . , m.

We say that the above partition defines capacity constraints (resource con-
straints). Since at any time each machine Mk ∈ M can process at most one
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operation (Condition 1) and operation preemptions are not allowed (Con-
dition 4), the two inclusions i ∈ Qk and j ∈ Qk imply one of the following
inequalities:

ci + pj ≤ cj or cj + pi ≤ ci. (1.2)

For the case of a job shop problem J //Φ, along with the above partition,
the set of operations Q is also partitioned into n chains (linearly ordered
sets):

Q =
n⋃

i=1
QJi, QJi �= ∅, QJi

⋂
QJj = ∅, if i �= j, i = 1, . . . , n, j = 1, . . . , n,

(1.3)
where each chain includes the set QJi of operations for processing job Ji, 1 ≤
i ≤ n. This chain represents the (technological) route of job Ji. For a job
shop, all ordered sets QJi are known in advance (before scheduling).

For problem G//Φ, the processing time pi of each operation i ∈ Q is also
fixed before scheduling, and therefore, a schedule of the operations Q on the
machines M may be defined by the completion times ci or by the starting
times si = ci − pi of all operations i ∈ Q.

If the operation processing times are not fixed before scheduling (Condi-
tion 5 on page 15), it is not possible to define si and ci for all operations
i ∈ Q. Therefore, in the general case of problem G/ai ≤ pi ≤ bi/Φ, the goal
is to determine a sequence for processing the set of operations Qk on each
machine Mk ∈ M = {M1, M2, . . . , Mm}. Such a set of m sequences sat-
isfying both the given precedence constraints (1.1) and the given capacity
constraints (1.2) may be defined as a schedule for problem G/ai≤pi≤bi/Φ.
The general shop problem is to find such a schedule, which minimizes the
value of the given non-decreasing objective function Φ(C1, C2, . . . , Cn).

A mixed (disjunctive) graph is often introduced to model a deterministic
scheduling problem. We follow this approach and represent the structural
input data for a general shop problem by means of a mixed graph G =
(Q, A, E), where

• the set Q of operations is the set of vertices;

• the precedence constraints (1.1) are represented by the set of non-
transitive (directed) arcs A: If operation i has to be processed before
operation j starts, i.e., precedence constraint i → k holds and there is
no other operation k such that i → k and k → j hold, then arc (i, j)
has to belong to set A:

A = {(i, j) : i → j, i, j ∈ Q, there is no k ∈ Q such that i → k → j};
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• the capacity constraints (1.2) are represented by the set E of (undi-
rected) edges [i, j] connecting the unordered operations i and j, which
have to be processed by the same machine:

E = {[i, j] : i ∈ Qk, j ∈ Qk, k = 1, . . . , m, i �→ j, j �→ i}.

For a deterministic problem G//Φ, the processing times pi of all opera-
tions i ∈ Q are known before scheduling, and we can associate a non-negative
weight pi with each vertex i ∈ Q in the mixed graph G = (Q, A, E) con-
structed for problem G//Φ. As a result, we obtain the weighted mixed
graph G(p) = (Q(p), A, E) with p = (p1, p2, . . . , pq), which represents both
the structural and numerical input data for the general shop scheduling
problem G//Φ.

For solving problem G//Φ using the mixed graph G, it is necessary to
replace the edge [i, j] ∈ E by an arc incident to the same vertices i and j.
Indeed, due to Condition 1 (given on page 11), if edge [i, j] belongs to set
E, then for the pair of operations i and j there exist two possibilities: To
complete operation i ∈ Qk before operation j ∈ Qk starts on their common
machine Mk ∈ M and to provide the first inequality from (1.2) (in this case
the edge [i, j] has to be replaced by the arc (i, j)), or to complete operation
j before operation i starts and to provide the second inequality from (1.2)
(in this case the edge [i, j] has to be replaced by the arc (j, i)).

Instead of a mixed graph G = (Q, A, E), often a disjunctive graph is used
with the same purpose. Let

E∗ =
⋃

[i,j]∈E

{(i, j), (j, i)}.

The term “disjunctive graph” is associated with the choice of one of the
above two possibilities for each pair of arcs {(i, j), (j, i)} ⊆ E∗ called dis-
junctive arcs. This means that for solving problem G//Φ using the disjunc-
tive graph (Q, A, E∗), one of these arcs must be added to a subset Es ⊂ E∗

of chosen arcs, while the other one must be rejected from the disjunctive
graph (Q, A, E∗):

(*) Arc (i, j) belongs to set Es if and only if (j, i) ∈ E∗\Es.

In terms of a mixed graph G = (Q, A, E), the above choice of arc (i, j)
from the set E∗ is equivalent to the replacement of the edge [i, j] ∈ E by
the arc (i, j). If such a replacement (choice, respectively) is done for each
edge [i, j] ∈ E (for each pair of disjunctive arcs {(i, j), (j, i)} ⊂ E∗), then we
obtain the same set of arcs Es. As a result, the mixed graph G = (Q, A, E)
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(disjunctive graph (Q, A, E∗)) is transformed into the same resulting digraph
Gs = (Q, A ∪ Es, ∅).

It is clear that not each of such subsets Es may be feasible for constructing
a feasible schedule for problem G//Φ since the set of chosen arcs Es may
cause a contradiction, i.e., the arc set A∪Es may imply that ‘some operations
have to be started before they are completed’. When an arc (i, j) is chosen,
all disjunctive arcs that are made redundant due to the transitive and anti-
reflexive nature of the precedence constraints, should be excluded. It is easy
to convince that a feasible schedule s is defined by a subset Es ⊂ E∗ such
that along with the above condition (*), the following condition (**) has to
be satisfied:

(**) Digraph Gs = (Q, A ∪ Es, ∅) contains no circuit.

In what follows, we mainly use the terminology based on a mixed graph
modelling. The digraph Gs = (Q, A∪Es, ∅) generated from the mixed graph
G = (Q, A, E) by an orientation of all edges of the set E is called feasible if
and only if condition (**) holds: Gs contains no circuit.

Let Λ(G) = {G1, G2, . . . , Gλ} be set of all feasible digraphs Gs = (Q, A∪
Es, ∅). In other words, a digraph Gs = (Q, A ∪ Es, ∅) is generated from the
disjunctive graph G = (Q, A, E∗) and satisfies both conditions (*) and (**).
We need the following definition of semiactive schedules.

Definition 1.1 A schedule is called semiactive if no operation i ∈ Q can
start earlier without delaying the processing of some other operation from
the set Q or without altering the processing sequence of the operations on
any of the machines M .

For solving problem G//Φ, we can restrict ourselves to the consideration
of the set S of all semiactive schedules only since the following claim holds.

Lemma 1.1 If the objective function Φ(C1, C2, . . . , Cn) is non-decreasing, it
is sufficient to check only semiactive schedules while solving problem G//Φ.

Proof. Let schedule s be optimal for problem G//Φ. If the schedule s

belongs to set S, we are done.
Otherwise, we can construct a semiactive schedule s′ ∈ S from schedule

s by starting each operation i ∈ Q as early as possible without delaying
the processing of other operations from the set Q and without altering the
processing sequence of the operations on any of the machines M . Since
operation preemptions are forbidden (see Condition 4 on page 12), the com-
pletion time of each operation i ∈ Q in schedule s′ is less than or equal to
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that in the initial schedule s. Since the objective function Φ(C1, C2, . . . , Cn)
is non-decreasing, the optimality of schedule s implies the optimality of the
semiactive schedule s′.

�

Next, we show that there exists a one-to-one correspondence between all
semiactive schedules S = {1, 2, . . . , λ} constructed for problem G//Φ and all
feasible (i.e., circuit-free) digraphs Λ(G) = {G1, G2, . . . , Gλ} generated from
the mixed graph G by orienting all edges from the set E.

Lemma 1.2 Each feasible digraph Gs = (Q, A ∪ Es, ∅) ∈ Λ(G) uniquely
defines a semiactive schedule s ∈ S for problem G//Φ, and vice versa.

Proof. On the one hand, given a vector p = (p1, p2, . . . , pq) of the operation
processing times, a feasible digraph Gs = (Q, A∪Es, ∅), Gs ∈ Λ(G), defines
the weighted digraph Gs(p) = (Q(p), A ∪ Es, ∅) which uniquely defines the
earliest completion time ci(s) of each operation i ∈ Q. Consequently, the
weighted digraph Gs(p) defines the unique semiactive schedule

s = (c1(s), c2(s), . . . , cq(s)).

On the other hand, each semiactive schedule s ∈ S defines m sequences of
the operations Qk on the machines Mk, k = 1, 2, . . . , m. These m sequences
define a unique digraph Gs(p) ∈ Λ(G).

�

Given a vector p = (p1, p2, . . . , pq), a digraph Gs ∈ Λ(G) and a weighted
digraph Gs(p) will be called optimal if and only if schedule s ∈ S is optimal.
Due to Lemma 1.2, we can use a digraph Gs ∈ Λ(G) (an optimal digraph
Gs) instead of a schedule s ∈ S (instead of an optimal schedule s). The
digraph Gs ∈ Λ(G) uniquely defines a set of m sequences for processing the
operations Qk by machine Mk ∈ M = {M1, M2, . . . , Mm}, and vice versa.

It should be noted that digraph Gs ∈ Λ(G) is more appropriate for solv-
ing problem G/ai ≤ pi ≤ bi/Φ and when performing a stability analysis
for problem G//Φ since it is ‘more stable’ than the corresponding sched-
ule s ∈ S with respect to variations of the operation durations (and other
numerical parameters involved in the schedule s). It is more useful to con-
sider a stability analysis for an optimal digraph Gs ∈ Λ(G) (defining the
set of m optimal sequences for processing the operations Qk by machine
Mk ∈ {M1, M2, . . . , Mm}) than for the optimal schedule s ∈ S. Frequently,
a production process is controlled by the operation sequences and not the
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actual starting and completion times of the operations provided by a sched-
ule. Also, even a small change in a processing time changes an optimal
schedule (and other schedules). Therefore, the practical need to reschedule
occurs only when the operation sequence changes. Large and more mean-
ingful ranges of numerical parameter changes are obtained when considering
the digraph Gs ∈ Λ(G) instead of schedule s ∈ S. Note that the starting
and completion times of the operations Q, the value of the objective func-
tion and other characteristics of a semiactive schedule s, corresponding to
an acyclic weighted digraph Gs(p), can be easily determined using longest
path calculations.

Given a fixed vector p = (p1, p2, . . . , pq) of the operation processing times,
in order to construct an optimal schedule for problem G//Φ using the mixed
graph model, one may enumerate (explicitly or implicitly) feasible digraphs
G1(p), G2(p), . . . , Gλ(p) generated by orienting all edges of the mixed graph
G and then select an optimal digraph, i.e., a feasible digraph with minimal
value of the objective function. Unfortunately, the number λ of such feasible
digraphs (i.e., the number of semiactive schedules) grows exponentially in
the number of edges |E|, and an overall enumeration of feasible digraphs is
practically impossible for large numbers of jobs and machines. Of course,
the cardinality of the set Λ(G) of feasible (circuit-free) digraphs is less than
2|E|, but a procedure for testing whether a digraph is circuit-free or not may
take also running time. Nevertheless, for some computational experiments,
we use an explicit enumeration of the feasible digraphs for rather small job
shop problems in order to calculate the stability radii for all the optimal
schedules.

Although problem G//Φ is unary NP-hard for any given regular criterion
Φ considered in modern scheduling theory, the running time of calculating
an optimal schedule s = (c1(s), c2(s), . . . , cq(s)) may be restricted by an
O(q2)-algorithm after having constructed an optimal digraph Gs(p). Thus,
the main difficulty of problem G//Φ (in terms of the mixed graph approach)
is to construct an optimal digraph Gs = (Q, A∪Es, ∅), i.e., to find the best
set Es of arcs generated by orienting the edges of the set E. Due to the
particular importance of the set Es, it is called a signature of schedule s.
Each feasible digraph Gs = (Q, A∪Es, ∅) is uniquely defined by its signature,
i.e., by the set of arcs Es which replaces the set of edges E.

As it was noted in [35], the mixed graph model “has mostly replaced the
solution representation by Gantt charts as described in [124]”. We can give
the following comments to elaborate this kind of preference. First, while a
Gantt chart is useful for the graphical presentation of a particular solution,
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the mixed graph model is suitable for the whole scheduling process from the
initial mixed graph G(p) (representing the input data) until a final digraph
Gs (representing a schedule s ∈ S) has been found. Second, a Gantt chart is
a representation of one particular situation when there are no changes both
in the a priori known processing times (and other numerical input data) and
in the calculated starting times and completion times of all the operations Q.
However, such a situation is ‘ideal’ (at least, it occurs rather seldom in real
life). Thus, a Gantt chart seems to be more appropriate ‘after realization’
of the process (when all the processing times, starting times and completion
times are known exactly) while ‘before realization’ a mixed graph G(p) and
a digraph Gs seem to be more useful since they are stable with respect to
possible changes of the above ‘times’. Third, while a Gantt chart is simply a
picture in the plane, a digraph is a mathematical (i.e., abstract) object and
can assume different graphical presentations. In particular, one can view a
Gantt chart as a diagram of the weighted digraph Gs(p) in the plane.

Next, we will show how a mixed graph model may be introduced in the
case of a job shop problem J //Φ when an operation of a job Ji ∈ J is given
as Oij. For a more convenient notation for the job shop, we will often use a
double subscript designated to operations.

Mixed Graph for a Job Shop Problem

To present the structural input data for problem J //Φ, one can use a
mixed graph (QJ , AJ , EJ) with the following sets of vertices, arcs and edges:

• QJ = {Oij : Ji ∈ J, j = 1, 2, . . . , ni};
• AJ = {(Oij, Oi,j+1) : Ji ∈ J, j = 1, 2, . . . , ni − 1};
• EJ = {[Oij, Ouv] : Oij ∈ Qk, Ouv ∈ Qk, Ji �= Ju}.
The set of arcs AJ defines precedence constraints (technological routes)

as follows. Since each job Ji ∈ J may be processed by at most one machine
from the set M at a time (Condition 2 on page 11) and the technological
route is fixed for each job (Condition 3 on page 11), operation Oij has to be
completed before operation Oi,j+1 (1 ≤ j ≤ ni − 1) starts: cij ≤ si,j+1. The
machine route of job Ji ∈ J defines linearly ordered operations (a sequence)
(Oi1, Oi2, . . . , Oini

). At the stage k ∈ {1, 2, . . . , ni} of the machine route of
job Ji, operation Oik has to be processed by machine Mik ∈ M.

The set of edges EJ defines capacity constraints as follows. The set QJ
k is

the set of operations which has to be processed by machine Mk ∈ M . Since
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any machine Mk ∈ M can process at most one operation at a time (Condi-
tion 1 on page 11) and operation preemptions are not allowed (Condition 4
on page 12), operation Oij ∈ QJ

k has to precede operation Ouv ∈ QJ
k or vice

versa: cij ≤ suv or cuv ≤ sij.

Since a job shop is a special case of a general shop, one can use the
notations of a general shop for the job shop as well, assuming that job J1

consists of the set of operations QJ1 defined in (1), job J2 of the operations
QJ2 defined in (2), and so on, job Jn of the operations QJn defined in (3).

It is often more convenient to use the following notation for the above
enumeration of the operations. Let

w(i) =
i−1∑
k=0

nk (1.4)

denote the last operation of job Jk−1 with k ∈ {2, 3, . . . , n + 1} and let
n0 = 0. Then job J1 consists of the linearly ordered operations QJ1 =
(w(1) + 1, w(1) + 2, . . . , w(1) + n1), job J2 of the linearly ordered opera-
tions QJ2 = (w(2) + 1, w(2) + 2, . . . , w(2) + n2), and so on, job Jn of the
linearly ordered operations QJn = (w(n) + 1, w(n) + 2, . . . , w(n) + nn). Due
to this enumeration of the operations for problem J //Φ, one can use the
mixed graph G = (Q, A, E) with Q =

⋃n
i=1 QJi for modelling a job shop

similarly as a general shop.
If operation processing times (or other numerical parameters), which are

given before applying a scheduling procedure, may vary in the realization of a
schedule, it is not sufficient to construct only an optimal digraph Gs ∈ Λ(G)
for solving problem G//Φ. It is also important to analyze the question of
how much the processing times (durations) of the operations (and other
numerical parameters) may vary so that the digraph Gs remains optimal.

In the rest of this chapter, we study the following stability analysis ques-
tion. What are the limits to processing time changes such that the schedule
at hand remains optimal? Of course, other numerical parameters of a prac-
tical scheduling problem may be also changeable. Next, we show that due
to the generality of the above mixed graph model with any given regular ob-
jective function, one can analyze other changeable parameters of a general
shop scheduling problem (like release dates, due dates, job weights, setup
times and removal times, etc) in terms of the mixed graph model G.

In particular, including in the mixed graph G a dummy operation 0 which
proceeds the first operation w(i) + 1 of a job Ji ∈ J , i.e., 0 ∈ Q and
(0, w(i) + 1) ∈ A, allows one to consider the processing time p0 of this
dummy operation as a release date of job Ji. The number w(i) is defined in
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(1.4). Let d be a sufficiently large number. Including in the mixed graph G
a dummy operation q + 1 which succeeds the last operation w(i) + ni of job
Ji, i.e., (q + 1) ∈ Q and (w(i) + ni, q + 1) ∈ A, allows one to consider the
processing time pq+1 = d− di of the dummy operation q + 1 as a due date di

of job Ji.
If machine Mk ∈ M needs a sequence-independent setup time τi ≥ 0

before starting operation j ∈ Qk after the completion of operation i ∈ Qk,
[i, j] ∈ E, then the weight (processing time) of operation i has to be increased
by the value τi (pi := pi + τi). If job Ji ∈ J needs a sequence-independent
transportation time ϑi ≥ 0 before starting operation (i + 1) ∈ QJi after the
completion of operation i ∈ QJi, (i, i + 1) ∈ A, then the weight (processing
time) of operation i has to be increased by the value ϑi (pi := pi + ϑi).

If the given setup times τij ≥ 0 (or transportation times ϑij ≥ 0) are
sequence-dependent, then we have to consider also weighted arcs and edges
in the mixed graph G. Namely, the arc (i, j) ∈ A must have the weight τij

(weight ϑij respectively). The edge [i, j] ∈ E must have two weights: the
weight τij (weight ϑij) for a possible orientation (i, j) ∈ Es of edge [i, j], and
the weight τji (weight ϑji) for a possible orientation (j, i) ∈ Es of this edge.
Job weights may be taken into account in the given objective function Φ.

Remark 1.1 The mixed graph model G allows one to consider other pa-
rameters (like release dates, due dates, setup times and transportation times,
etc.) than the processing times (weights) of the operations (vertices) from
set Q or those of dummy operations included in the set Q.

In the following sections of this chapter, we present some results for the
stability ball of an optimal digraph Gs(p), i.e., a closed ball in the space
of the numerical input data such that within this ball a schedule s remains
optimal. For simplicity, due to Remark 1.1, we will continue to consider
operation durations (processing times) as the only changeable parameters.
The next section contains a formal definition of the stability radius, which
is the maximal value of the radius of such a stability ball.

1.2. Regular Criterion

In the rest of this chapter the main question is as follows. How can
one vary the processing times pi, i ∈ Q, simultaneously such that a given
schedule s ∈ S, which is optimal for problem G//Φ with the processing
times pi, i ∈ Q, remains optimal for the new processing times, and how
can one calculate the largest quantity of such simultaneous and independent
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variations of the processing times?

Any variation pi ± ε, ε > 0, of a processing time pi in problem G//Φ im-
plies the change of at least one completion time ci(s) of an operation i ∈ Q
in any feasible semiactive schedule and also in an optimal semiactive sched-
ule s = (c1(s), . . . , ci(s), . . . , cq(s)) ∈ S. As a result, the schedule s has to be
transformed into another schedule: (. . . , ci(s) + ε, . . .) or (. . . , ci(s) − ε, . . .)
in order to be feasible. Fortunately, the optimal digraph Gs = (Q, A∪Es, ∅)
for the new problem G//Φ obtained due to such a variation of the processing
time pi may often remain the same if ε is sufficiently small, since the signa-
ture Es of an optimal schedule s is more stable with respect to a variation
pi ± ε, ε > 0, of processing time pi than the optimal semiactive schedule
s = (c1(s), . . . , ci(s), . . . , cq(s)). Note that it is often more important in
practice to keep in mind not the calendar times when the operations have
to be started and have to be completed, but only m sequences in which
the operations Qk, k = 1, 2, . . . , m, have to be processed on each machine
Mk ∈ M (these sequences are uniquely defined by digraph Gs).

This section is devoted to the stability of an optimal digraph Gs(p) which
represents a solution to problem G//Φ. The above question may be con-
cretized as follows. Under which largest simultaneous and independent
changes in the components of the vector p = (p1, p2, . . . , pq) of the oper-
ation processing times remains digraph Gs(p) optimal?

Next, we introduce these notions in a formal way. Let Rq be the space of
all q-dimensional real vectors p with the maximum (Chebyshev) metric, i.e.,
the distance d(p, p′) between the vectors p ∈ Rq and p′ = (p′1, p

′
2, . . . , p

′
q) ∈ Rq

is defined as follows:

d(p, p′) = max
i∈Q

|pi − p′i|, (1.5)

where |pi − p′i| denotes the absolute value of the difference pi − p′i.
Let Rq

+ be the space of all q-dimensional non-negative real vectors:

Rq
+ = {x = (x1, x2, . . . , xq) : xi ≥ 0, i ∈ Q},

and schedule s ∈ S be optimal for problem G//Φ with the non-negative real
vector p ∈ Rq

+ ⊂ Rq of the operation processing times.

Definition 1.2 The closed ball O�(p) with the radius 	 ∈ R1
+ and the center

p ∈ Rq
+ in the space of q-dimensional real vectors Rq is called a stability ball

of schedule s ∈ S (of digraph Gs ∈ Λ(G)) if for any vector p′ ∈ O�(p) ∩ Rq
+

of the processing times, schedule s (digraph Gs(p
′)) remains optimal. The

maximum value 	s(p) of such a radius 	 of a stability ball O�(p) of schedule
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s (of digraph Gs) is called the stability radius of schedule s (of digraph Gs):

	s(p) = max{	 ∈ R1
+ : If p′ ∈ O�(p) ∩ Rq

+, digraph Gs is optimal}. (1.6)

We denote the stability radius by 	s(p) for an arbitrarily given regular
criterion Φ. For the criterion Cmax, the stability radius is denoted by 	̂s(p),
and for the criterion

∑ Ci by 	s(p). In what follows, we use whenever appro-
priate the notion “stability radius of an optimal digraph Gs ∈ Λ(G)” instead
of “stability radius of an optimal schedule s ∈ S”. Due to the maximum
metric (1.5), the set O�(p) ∩ Rq

+ is a polytope for any positive 	 ∈ R1
+.

Definition 1.2 implies a general approach for calculating 	s(p), which is
discussed in the rest of this section for any regular criterion Φ and which is
concretized for Φ = Cmax and for Φ =

∑ Ci in Section 1.3 and in Section 1.4,
respectively. Formulas for calculating the stability radius for the makespan
criterion and the characterization of the extreme values of 	̂s(p) are proven
in Section 1.3. The same questions for the mean flow time criterion are
considered in Section 1.4.

Next, the calculation of the stability radius 	s(p) is reduced to the solution
of a non-linear programming problem. We give this reduction for the general
shop problem G//Φ provided that the set of all operations Q = {1, 2, . . . , q}
is partitioned into n linearly ordered subsets of the operations QJi defining
the technological routes of the jobs Ji ∈ J = {J1, J2, . . . , Jn} (see partition
(1.3)). It should be noted that partition (1.3) does not cause any restriction
on the generality of problem G//Φ since one can assume that |QJi| = 1 for
a job Ji ∈ J , i.e., this job consists of only one operation and as a result, any
precedence constraints may be given on the set of operations Q.

We denote by {μ} the set of vertices which form a path μ in digraph Gk

and by lp(μ) the weight of this path:

lp(μ) =
∑

i∈[μ]
pi. (1.7)

Let operation ji ∈ QJi ⊆ Q be the last operation in the technological
route of job Ji, 1 ≤ i ≤ n, and H̃ i

k denote the set of all paths in digraph
Gk = (Q, A ∪ Ek, ∅) ∈ Λ(G) ending in vertex ji ∈ QJi ⊆ Q. Obviously, the
completion time Ci(k) = cji

(k) of job Ji in a semiactive schedule k ∈ S is
equal to the value maxμ∈H̃i

k
lp(μ) of the largest weight of a path in the set

H̃ i
k. While calculating cji

(k), Ji ∈ J, it is sufficient to consider only a subset
of the set H̃ i

k due to the following dominance relation defined on the set of
paths.
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Definition 1.3 The path μ ∈ H̃ i
s is called dominant if there is no path

ν ∈ H̃ i
s such that {μ} is a proper subset of set {ν}: {μ} ⊂ {ν}. Otherwise,

if set {μ} is a proper subset of set {ν}, path μ is dominated by path ν.

The dominance relation given in Definition 1.3 is a strict order since both
the transitivity property and the anti-reflexivity property hold. Indeed, the
inclusions {μ} ⊂ {ν} and {ν} ⊂ [τ ] imply {μ} ⊂ [τ ] (transitivity) and the
inclusion {μ} ⊂ {μ} does not hold for any path μ (anti-reflexivity). Let
H i

k denote the set of all dominant paths in the set H̃ i
k. Since pi ≥ 0 for all

operations i ∈ Q, we obtain

Ci(k) = cji
(k) = max

μ∈Hi
k

lp(μ).

Thus, the value of the objective function Φ(C1, C2, . . . , Cn) for the semi-
active schedule s = (c1(s), c2(s), . . . , cq(s)) ∈ S may be calculated as follows:

Φ(max
μ∈H1

s

lp(μ), max
μ∈H2

s

lp(μ), . . . , max
μ∈Hn

s

lp(μ)).

Therefore: The semiactive schedule s = (c1(s), c2(s), . . . , cq(s)) ∈ S is
optimal for problem G//Φ with a regular criterion Φ if and only if

Φ(max
μ∈H1

s

lp(μ), . . . , max
μ∈Hn

s

lp(μ)) = min
k=1,2,...,λ

Φ(max
ν∈H1

k

lp(ν), . . . , max
ν∈Hn

k

lp(ν)). (1.8)

For brevity, we denote Φp
s = Φ(maxμ∈H1

s
lp(μ), . . . , maxμ∈Hn

s
lp(μ)).

Let the subset SΦ(p) of set S, SΦ(p) ⊆ S, denote the set of all optimal
semiactive schedules for problem G//Φ with the vector p = (p1, p2, . . . , pq) ∈
Rq

+ of the operation processing times and let inclusion s ∈ SΦ(p) hold. Then,
due to Definition 1.2, the stability radius 	s(p) may be defined as follows:

	s(p) = inf{d(p, x) : x ∈ Rq
+, s /∈ SΦ(x)}. (1.9)

While equality (1.6) defines the stability radius 	s(p) as the maximal real
number which may be a radius of a stability ball O�(p), equality (1.9) defines
the value of 	s(p) as the infimum of the non-negative real numbers that
cannot be a radius of a stability ball O�(p). From equalities (1.8) and (1.9),
it follows that, in order to calculate the stability radius 	s(p), it is sufficient
to calculate the optimal value of the objective function f(x1, x2, . . . , xq) of
the following non-linear programming problem:

Minimize f(x1, x2, . . . , xq) = max
i=1,2,...,q

|xi − pi| (1.10)
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subject to

Φx
s > min{Φx

k : k = 1, 2, . . . , λ; k �= s}, (1.11)

xi ≥ 0, i = 1, 2, . . . , q. (1.12)

If condition (1.11) is not satisfied for any non-negative vector x ∈ Rq
+,

then digraph Gs(p) is optimal for all vectors x ∈ Rq
+ of the operation pro-

cessing times: s ∈ SΦ(x), x ∈ Rq, and we obtain⎧⎨⎩ Φx
s ≤ min{Φx

k : k = 1, 2, . . . , λ; k �= s},
xi ≥ 0, i = 1, 2, . . . , q.

In this case, we say that the stability radius 	s(p) is infinitely large. To
indicate that the stability radius is infinitely large we write: 	s(p) = ∞.

In all other cases, there exists an optimal value f ∗ of the objective function
of problem (1.10) – (1.12): f ∗ = inf maxi=1,2,...,q |xi − pi|, where the infimum
is taken over all vectors x satisfying conditions (1.11) and (1.12). To find
the value f ∗, it is sufficient to calculate a solution x0 = (x0

1, x
0
2, . . . , x

0
q)

of the following non-linear programming problem (1.13) – (1.15) which is
obtained from problem (1.10) – (1.12) due to the replacement of the sign >

in inequality (1.11) by the sign ≥:

Minimize f(x1, x2, . . . , xq) = max
i=1,2,...,q

|xi − pi| (1.13)

subject to

Φx
s ≥ min{Φx

k : k = 1, 2, . . . , λ; k �= s}, (1.14)

xi ≥ 0, i = 1, 2, . . . , q. (1.15)

It is clear that equalities

f ∗ = max
i=1,2,...,q

|x0
i − pi| = d(x0, p) = 	s(p)

hold. For any small ε > 0, there exists a vector xε = (xε
1, x

ε
2, . . . , x

ε
q) ∈ Rq

+

such that d(xε, p) = 	s(p) + ε and s �∈ SΦ(xε).

It may occur that the given vector p is itself a solution to the non-
linear programming problem (1.13) – (1.15). In the latter case, equalities
	s(p) = d(p, p) = 0 hold and it means that the optimality of digraph Gs(p)
is unstable: For any small real ε > 0, there exists a vector p′ ∈ Rq

+ such that
s �∈ SΦ(p′) and d(p, p′) = ε. In this case, we say that the optimal digraph
Gs(p) is unstable.

If the given vector p is not a solution of problem (1.13) – (1.15), we
have the strict inequality 	s(p) > 0. In this case, the optimal digraph



32 CHAPTER 1. STABILITY RADIUS OF AN OPTIMAL SCHEDULE

Gs(p) is stable. The direct use of the solution of problem (1.13) – (1.15)
for calculating the stability radius 	s(p) is only possible for a general shop
scheduling problem G//Φ with a very small size since we have to know all
λ feasible semiactive schedules s ∈ S for this problem and for each digraph
Gs, we have to know the sets H i

k of all dominant paths ending in the last
operation ji of each job Ji.

1.3. Maximum Flow Time

The best studied case of the general shop problem G//Φ (and of the
job shop and flow shop problems) is the one with Φ = Cmax, where the
objective is to find an optimal schedule for the makespan criterion, i.e., to
find a feasible schedule s = (c1(s), c2(s), . . . , cq(s)) with a minimum value of
the maximum flow time max{ci(s) : i ∈ Q} among all semiactive schedules
S. In this section, the stability radius of a solution of problem G//Φ with
Φ = Cmax is considered.

Let H̃k (H̃, respectively) be the set of all paths in digraph Gk(p) ∈ Λ(G)
(in digraph (Q, A, ∅)) constructed for the general shop problem G//Cmax.
Let H and Hk denote the set of all dominant paths in digraph (Q, A, ∅) and
in digraph Gk ∈ Λ(G), respectively (see Definition 1.3). Thus, we can write

Hk = {ν ∈ H̃k : Inclusion {ν} ⊂ {μ} does not hold for any path μ ∈ H̃k}.
The set H ⊆ H̃ is defined similarly. The value of maxn

i=1 Ci of a schedule
s is given by the weight of a maximum-weight path (called a critical path)
in the weighted digraph Gs(p). Obviously, at least one critical path in Gs(p)
is dominant and for any path μ ∈ H, there exists a path ν ∈ Hs such that
either ν dominates path μ or inclusion μ ∈ Hs holds. Thus, equality (1.8)
for problem G//Cmax is converted into the following one:

max
μ∈Hs

lp(μ) = min
k=1,2,...,λ

max
ν∈Hk

lp(ν). (1.16)

Therefore: The schedule s = (c1(s), c2(s), . . . , cq(s)) ∈ S is optimal for prob-
lem G//Cmax with the makespan criterion if and only if equality (1.16) holds.

Zero Stability Radius

Let Hk(p) denote the set of all critical dominant paths in the weighted
digraph Gk(p), Gk ∈ Λ(G). Obviously, we have Hk(p) ⊆ Hk. To prove
necessary and sufficient conditions for the equality 	̂s(p) = 0, we need the
following auxiliary claim.
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Lemma 1.3 There exists a real ε > 0 such that the set Hk\Hk(p) contains
no critical path of digraph Gk ∈ P (G) for any vector of the processing times
pε = (pε

1, p
ε
2, . . . , p

ε
q) ∈ Oε(p) ∩ Rq

+ : Hk(p
ε) ⊆ Hk(p).

Proof. We can calculate the positive real number

εk = min
ν∈Hk\Hk(p)

lpk − lp(ν)

2q
. (1.17)

Hereafter lpk denotes the critical weight of digraph Gk ∈ P (G) which
defines the value of the objective function Cmax for the schedule k with the
vector p of processing times:

lpk = max
μ∈Hk

lp(μ) (1.18)

For any real ε, which satisfies the inequalities 0 < ε < εk, the difference
in the right-hand side of equality (1.17) remains positive when vector p is
replaced by any vector pε ∈ Oε(p) ∩ Rq

+. Indeed, the number of vertices in
any path ν in digraph Gk is at most equal to q and, therefore, the difference
lpk − lp(ν) may not be ‘overcome’ by a vector pε if d(p, pε) < εk.

�

Theorem 1.1 For an optimal schedule s ∈ SΦ(p), Φ = Cmax, of problem
G//Cmax, equality 	̂s(p) = 0 holds if and only if there exists another optimal
schedule k ∈ SΦ(p), k �= s, and there exists a path μ∗ ∈ Hs(p) such that
there does not exist a path ν∗ ∈ Hk(p) with {μ∗} ⊆ {ν∗}.
Proof. Sufficiency. We have to prove that, if the conditions of the theorem
are satisfied, then we obtain 	̂s(p) < ε for any given ε > 0.

To this end, we construct a vector p∗ = (p∗1, p
∗
2, . . . , p

∗
q) with

p∗i =

⎧⎨⎩ pi + ε∗, if i ∈ {μ∗}
pi otherwise,

where ε∗ = min{εk, εs, ε} with εs and εk defined as in (1.17). If

max
ν∈Hk

lp
∗
(ν) = lp

∗
(ν0),

then due to Lemma 1.3 and the inequalities p∗i ≥ pi, i ∈ Q, we obtain

lp
∗
(ν0) = max

ν∈Hk(p)
lp

∗
(ν)

= lp(ν∗) + ε∗|{μ∗} ∩ {ν∗}| = lp(μ∗) + ε∗|{μ∗} ∩ {ν∗}|.
(1.19)
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Since inclusion {μ∗} ⊆ {ν∗} does not hold for any ν∗ ∈ Hk(p), inequality
|{μ∗}∩{ν∗}| < |{μ∗}| holds and we can continue (1.19) in the following way:

lp(μ∗) + ε∗|{μ∗} ∩ {ν∗}| < lp(μ∗) + ε∗|{μ∗}| = lp
∗
(μ∗) = max

μ∈Hs

lp
∗
(μ).

Thus, we obtain lp
∗

k < lp
∗

s and s /∈ SΦ(p∗), which imply inequality 	̂s(p) < ε

because of the condition d(p, p∗) = ε∗ ≤ ε.

Necessity. We prove necessity by contradiction. Suppose that 	̂s(p) = 0
but the conditions of the theorem are not satisfied. We consider two cases
i) and ii) of violating these conditions.

i) Assume that there does not exist another optimal makespan schedule:
SΦ(p) = {s}. Then we calculate the real number

ε0 =
1

2q
min{lpt − lps : t = 1, 2, . . . , λ; t �= s}.

Since s is the only optimal schedule, we obtain ε0 > 0. For any positive
real ε < ε0, the difference lpt − lps remains positive when vector p is replaced
by an arbitrary vector p0 ∈ Oε(p) ∩ Rq

+. So, we can conclude that digraph
Gs remains optimal for any vector p0 of the processing times. Therefore, we
have 	̂s(p) ≥ ε > 0 which contradicts the assumption 	̂s(p) = 0.

ii) Assume that |SΦ(p)| > 1 and for any schedule k ∈ SΦ(p), k �= s,
and for any path μ∗ ∈ Hs(p), there exists a path ν∗

k ∈ Hk(p) such that
{μ∗} ⊆ {ν∗

k}. In this case, we can take any ε that satisfies the inequalities

0 < ε < min

{
min

k∈φmax(p)
εk,

1

2q
min{lpt − lps : t = 1, 2, . . . , λ; t �∈ SΦ(p)}

}
.

From Lemma 1.3, due to inequality ε < εs, we get equality

lp
0

s = max
μ∈Hs(p0)

lp
0

(μ) = max
μ∈Hs(p)

lp
0

(μ) (1.20)

for any vector p0 ∈ Oε(p)∩Rq
+. Since inequalities ε < εs and ε < εk hold, and

there exists a path ν∗
k ∈ Hk(p), k ∈ SΦ(p), k �= s, for any path μ∗ ∈ Hs(p)

such that {μ∗} ⊆ {ν∗
k}, we obtain inequality

max
μ∈Hs(p)

lp
0

(μ) ≤ max
ν∈Hk(p)

lp
0

(ν). (1.21)

Thus, due to (1.20) and (1.21), we obtain

lp
0

s ≤ max
ν∈Hk(p)

lp
0

(ν) (1.22)
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for any optimal schedule k ∈ SΦ(p), k �= s. Since inequality

ε <
1

2q
min{lpt − lps : t = 1, 2, . . . , λ; t �∈ SΦ(p)}

holds, condition t �∈ SΦ(p) implies t �∈ SΦ(p0). Taking into account (1.22)
and the latter implication, we can conclude that s ∈ SΦ(p0) for any vector
p0 ∈ Rq

+ with d(p, p0) ≤ ε. Consequently, we obtain 	̂s(p) ≥ ε > 0, which
contradicts the assumption 	̂s(p) = 0.

�

Obviously, the conditions of Theorem 1.1 are violated if Hs(p) ⊆ H.
Therefore, the following corollary holds.

Corollary 1.1 If s is an optimal schedule for problem G//Cmax and
Hs(p) ⊆ H, then 	̂s(p) > 0.

For the following corollary from Theorem 1.1, it is not necessary to know
the set Hs(p).

Corollary 1.2 If s is a unique optimal schedule for problem G//Cmax, then
	̂s(p) > 0.

Infinite Stability Radius

Next, we prove the following characterization of an infinitely large stabil-
ity radius.

Theorem 1.2 For an optimal schedule s ∈ SΦ(p), Φ = Cmax, of problem
G//Cmax, the stability radius 	̂s(p) is infinitely large if and only if for any
path μ ∈ Hs\H and for any digraph Gt(p) ∈ Λ(G), there exists a path ν ∈ Ht

such that {μ} ⊆ {ν}.

Proof. Necessity. Following the contradiction method, we suppose that
	̂s(p) = ∞ but there exist a path μ ∈ Hs\H and a digraph Gt ∈ P (G) such
that for any ν ∈ Ht relation {μ} ⊆ {ν} does not hold.

We set ε′ = maxq
i=1 pi and consider the vector p′ = (p′1, p

′
2, . . . , p

′
q) ∈ Rq

+,
where

p′i =

⎧⎨⎩ ε′, if i ∈ {μ}
0 otherwise.
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For any path ν ∈ Ht, we have lp
′
(ν) = ε′|{μ}∩{ν}|. Since relation {μ} ⊆

{ν} does not hold, we obtain lp
′
(ν) < lp

′
(μ). Therefore, lp

′
t < lp

′
(μ) = lp

′
s and

hence s �∈ SΦ(p′). We get a contradiction:

	̂s(p) < d(p′, p) ≤ q
max
i=1

pi < ∞.

Sufficiency. Let ε be a positive number as large as desired. We take
any vector p0 ∈ Oε(p) ∩ Rq

+ and suppose that lp
0

s = lp
0

(μ). If μ ∈ H, then

inequality lp
0

(μ) ≤ lp
0

t holds for every t = 1, 2, . . . , λ. If μ ∈ Hs\H, then,
due to the conditions of the theorem, for any feasible schedule t, there exists
a path ν ∈ Ht such that {μ} ⊆ {ν}. Therefore, we get lp

0

(μ) ≤ lp
0

(ν) ≤ lp
0

t .
Thus, in both cases we obtain s ∈ SΦ(p0).

�

Directly from the above proof of necessity we obtain the following corol-
lary which gives a simple upper bound for the stability radius 	̂s(p).

Corollary 1.3 If 	̂s(p) < ∞, then 	̂s(p) ≤ maxq
i=1 pi.

Due to Theorem 1.2, one can identify a general shop problem G//Cmax

whose optimal schedule is implied only by the precedence constraints given
on the set of operations Q and by the given distribution of the operations
Q to the machines from the set M , but independent of the processing times
p ∈ Rq

+ of the operations Q. However, because of the generality of problem
G//Cmax, it is practically difficult to check the conditions of Theorem 1.2.

Next, it is shown that for a job shop problem J //Cmax, there are necessary
and sufficient conditions for 	̂s(p) = ∞ which can be verified in O(q2) time.
To present the latter conditions, we need the following notations.

Let Ak (Bk, respectively) be the set of all operations i ∈ Q such that
i → j (j → i) and j ∈ Qk, i �∈ Qk:

Ak = {i : i → j, i ∈ Q ∩ Qk, j ∈ Qk};
Bk = {j : i → j, j ∈ Q ∩ Qk, i ∈ Qk}.

For a set B of operations, let n(B) denote the number of jobs in the set
J having at least one operation in the set B.

Theorem 1.3 For problem J //Cmax, there exists an optimal digraph Gs(p)
with an infinitely large stability radius if and only if the following two con-
ditions hold:
1) Inequality max{|Ak|, |Bk|} ≤ 1 holds for any machine Mk with n(Qk) > 1;
2) If there exist two operations g ∈ Ak and f ∈ Bk of job Jl, then there exists
a path from vertex f to vertex g in digraph (Q, A, ∅) (possibly f = g).
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Proof. Necessity. Let 	̂s(p) = ∞, but |Ak| > 1.

If n(Ak) > 1, then there exist at least two jobs Ju and Jv, u �= v,
which have to be processed by different machines and after that, both jobs
have to be processed by the same machine Mk. We can choose operations
i ∈ Qk ∩Q(u), f ∈ Ak ∩Q(u), j ∈ Qk ∩Q(v) and g ∈ Ak ∩Qv such that both
relations f → i and g → j hold. Since 	̂s(p) = ∞, digraph Gs has to be
optimal for any vector p ∈ Rq

+ of operation processing times.

In particular, digraph Gs has to be optimal for vector p with pf = pj = 1
and ph = 0 for the operations h ∈ {1, 2, ..., q} \ {f, j}. Since operations f
and j are processed by different machines, we obtain Cmax(s) = 1. Hence,
arc (j, i) has to belong to set Es: (j, i) ∈ Es.

On the other hand, if we consider vector p′ with p′g = p′i = 1 and p′h = 1
for the operations h ∈ {1, 2, ..., q} \ {g, i}, then similarly, we obtain that arc
(i, j) has to belong to set Es: (i, j) ∈ Es. Thus, we obtain a contradiction,
which implies that there is no digraph Gs ∈ Λ(G) which remains optimal
for any vector p ∈ Rq

+ of operation processing times. In this case, inequality
	̂s(p) < ∞ must hold for any digraph Gs ∈ Λ(G).

Next, we have to consider the case when |Ak| > 1, but n(Ak) = 1. It is
clear that the set of all operations Ak has to belong to the same job, say,
job Jw.

(a) Since |Qk/J | > 1, there exist an operation j ∈ Qk \ QJw and an
operation b ∈ QJw ∩ Qk such that in digraph (Q, A, ∅), there exists a path
of the form (g, ..., b, ..., f) with two operations {g, f}, which do not belong
to set Qk and inclusion [j, b] ∈ E holds.

Let Gs ∈ Λ(G) be an optimal digraph with an infinitely large stability
radius: 	̂s(p) = ∞. If we set pg = pj = 1 and we set ph = 0 for any other h ∈
{1, 2, ..., q}\{g, j}, then for such a vector p ∈ Rq

+ of the operation durations
arc (j, b) has to belong to set Es. On the other hand, if we consider vector
p′ with p′j = p′f = 1 and with p′h = 0 for any other h ∈ {1, 2, ..., q} \ {j, f},
then arc (b, j) has to belong to set Es. Hence, it is impossible to construct
a digraph Gs ∈ Λ(G) which remains optimal for any vector p ∈ Rq

+ of
operation processing times: 	̂s(p) < ∞.

Thus, condition 	̂s(p) = ∞ implies inequality |Ak| ≤ 1. Similarly, we can
prove that equality 	̂s(p) = ∞ implies |Bk| ≤ 1.

(b) If there exists a job Jl ∈ J such that Ak ∩ QJl = g and Bk ∩ QJl = f

and there exists a path from vertex g to vertex f in digraph (Q, A, ∅), then
similarly as in case (a), one can prove that 	̂s(p) < ∞.

Sufficiency. Obviously, the set of machines satisfying the conditions of
Theorem 1.3 can be partitioned into the following five subsets:
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1) |Ak| = |Bk| = 0;
2) |Ak| = 1, |Bk| = 0;
3) |Ak| = 0, |Bk| = 1;
4) |Ak| = |Bk| = 1 and there exists a job Jl such that there exists a path
from vertex f ∈ Bk∩QJl to vertex g ∈ Ak∩QJl in digraph (Q, A, ∅) (possibly
f = g);
5) |Ak| = |Bk| = 1 and there is no set QJl containing both sets Ak and Bk.

Now, we can consider any mixed graph G in which for any machine
Mk ∈ M with n(Qk) > 1 one of the conditions 1) – 5) holds. Then we
construct a digraph Gs ∈ Λ(G) using the following algorithm.

Algorithm RAD 	̂s(p) = ∞

Input: Mixed graph G = (Q, A, E) for problem J //Cmax.
Output: Digraph Gs with 	̂s(p) = ∞ (if such a digraph exists).

Step 1: IF for machine Mk condition 1) holds THEN
orient all edges incident with operations Qk

arbitrarily without circuit appearance.
Step 2: IF for machine Mk condition 4) holds THEN

partition the set QJl ∩ Qk into two subsets R

and L, where set R (set L) contains each vertex h,
if there exists a path from vertex h (vertex g)
to vertex g (vertex h) in digraph (Q, A, ∅).

Step 3: Orient the edges of set Ek incident to
operations from set Qk as follows:
IF an edge is incident with vertices from

set R (the set L, respectively)
THEN the generated arcs are leaving

(entering) the vertices from set R (set L).
The remaining edges have to be oriented
arbitrarily without circuit appearance.

Step 4: IF for machine Mk one of the conditions
2), 3) or 5) holds

THEN the edges incident with Qk have to be
oriented as follows: Edges incident with vertex
QL, QL ∩ Ak �= ∅, have to be replaced by the arcs
entering the operations QJl; edges incident with
vertex QL, QL ∩ Ak �= ∅, have to be replaced
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by the arcs leaving the operations QJl.
The remaining edges have to be oriented
arbitrarily without circuit appearance. STOP

Obviously, inclusion Gs ∈ Λ(G) holds. It is also easy to convince that for
any path μ in digraph Gs, either there exists a machine Mk ∈ M such that
{μ} ⊆ Qk or there exists a job Jl ∈ J such that {μ} ⊆ QJl. Therefore, for
the digraph Gs constructed by Algorithm RAD 	̂s(p) = ∞, equality

Cmax = max

⎧⎪⎨⎪⎩max
k

∑
i∈Qk

pi, max
l

∑
i∈QJl

pi

⎫⎪⎬⎪⎭
holds. Consequently, digraph Gs is optimal. This digraph remains optimal
for any vector p ∈ Rq

+ of operation processing times, and so 	̂s(p) = ∞.
�

From Theorem 1.3 it follows that there are job shop problems J //Cmax

with an optimal schedule having an infinitely large stability radius for any
given number of jobs n and number of machines m. Next, we show that
testing the conditions of Theorem 1.3 takes O(q2) time.

Let the input data given for problem J //Cmax include the set of jobs J =
{J1, J2, ..., Jn}, the sets Q1, Q2, ..., Qm and the technological routes of jobs J .
For testing inequality |Ak| > 2 (inequality |Bk| > 2) for each k = 1, 2, ..., m,
it is sufficient for each operation i ∈ Qk to find the operation which follows
after i. It is easy to see that such a testing needs O(

∑n
k=1(q|Qk| + q)) time,

i.e., O(q2) time. If |Ak| ≤ 2 and |Bk| ≤ 2 for each k, then it is sufficient
to consider machine Mk such that equalities |Ak| = |Bk| = 1 hold and to
test the condition of Theorem 1.3 which needs O(q) time. Hence, O(q2)
time is sufficient to test whether a problem J //Cmax has a solution with an
infinitely large stability radius.

Note that for a flow shop problem, such a schedule can exist only if n or
m is equal to 1. Indeed, for problem F//Cmax, we have n(Ak) > 1 for any
machine Mk with k ≥ 2 provided that n ≥ 2 and m ≥ 2. Thus, Theorem
1.3 implies the following corollary.

Corollary 1.4 For problem F//Cmax with n ≥ 2 and m ≥ 2, inequality
	̂s(p) > 0 holds.

In the next section, it is shown that there does not exist an optimal
schedule s with 	s(p) = ∞ for a problem J //Φ with all other regular criteria
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Φ which are considered in contemporary scheduling theory (these criteria are
given, e.g., in [204]).

Formula for Calculating the Stability Radius

Next, we derive a formula for calculating the stability radius 	̂s(p). This
calculation is reduced to the solution of an extremal problem on the set of
digraphs Λ(G) = {G1, G2, . . . , Gλ} with a variable vector of weights assigned
to the vertices of digraph Gk ∈ Λ(G). The main objects for the calculation
are the sets of dominant paths Hk, k = 1, 2, . . . , λ.

Assume that inequality 	̂s(p) < ∞ holds for a given optimal schedule
s ∈ SΦ(p), Φ = Cmax, of problem G//Cmax. Using equality (1.16), we can
conclude that equality (1.9) for criterion Φ = Cmax is converted into the
following one:

	̂s(p) = inf {d(p, x) : x ∈ Rq
+, max

μ∈Hs

lx(μ) > min
k=1,2,...,λ; k �=s

max
ν∈Hk

lx(ν)}.

Therefore, to find the stability radius 	̂s(p) it is sufficient to construct a
vector x ∈ Rq

+ that satisfies the following three conditions.
(a) There exists a digraph Gk ∈ Λ(G), k �= s, such that lxs = lxk , i.e.,

max
μ∈Hs

lx(μ) = max
ν∈Hk

lx(ν). (1.23)

(b) For any given real ε > 0, which may be as small as desired, there
exists a vector pε ∈ Rq

+ such that d(x, pε) = ε and inequality

max
μ∈Hs

lp
ε

(μ) > max
ν∈Hk

lp
ε

(ν) (1.24)

is satisfied for at least one digraph Gk ∈ Λ(G).
(c) The distance d(p, x) achieves its minimal value among the distances

between the vector p and the other vectors in the vector space Rq
+ satisfying

both the above conditions (a) and (b).
After having constructed such a vector x ∈ Rq

+, one can define the stabil-
ity radius of digraph Gs as follows: 	̂s(p) = d(p, x), since the critical path in
digraph Gs becomes larger than that of digraph Gk for any vector pε ∈ Rq

+

with a positive real ε, which may be as small as desired (see condition (b)),
and so digraph Gs is no longer optimal, while for any vector from the in-
tersection of the ball Od(p,x)(p) ⊂ Rq with the set Rq

+ digraph Gs remains
optimal (see condition (c)). Digraph Gk, which satisfies conditions (a), (b)
and (c) is called a competitive digraph for the optimal digraph Gs.
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Thus, the calculation of the stability radius may be reduced to a rather
sophisticated extremal problem on the given set of digraphs Λ(G) =
{G1, G2, . . . , Gλ} with a variable vector of weights assigned to the vertices of
each digraph Gk ∈ Λ(G). As it follows from (1.23) and (1.24), the main ob-
jects for such a calculation are the sets of dominant paths Hk, k = 1, 2, . . . , λ.

To satisfy conditions (a), (b) and (c), we look next for a vector x = p(r) =
(p1(r), p2(r), . . . , pq(r)) ∈ Rq

+ with the components pi(r) ∈ {pi, pi + r, pi − r}
on the basis of a direct comparison of the paths from the set Hs and the
paths from the sets Hk, where k = 1, 2, . . . , λ and k �= s.

Let the value lp(ν) be greater than the length of a critical path in an
optimal digraph Gs. To satisfy equality (1.23), the length of a path ν ∈ Hk

has to be not greater than that of at least one path μ ∈ Hs and there must
be a path ν ∈ Hk with a length equal to the length of a critical path in Gs.
Thus, if we have calculated

rν = min
μ∈Hs

lp(ν) − lp(μ)

|{μ} ∪ {ν}| − |{μ} ∩ {ν}| , (1.25)

we obtain equality

max
μ∈Hs

lp(r)(μ) = lp(r)(ν) (1.26)

for the vector p(r) = p(rν) with the components

pi(r) = pi(rν) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pi + rν, if i ∈ {μ},
pi − rν, if i ∈ {ν}\{μ},
pi, if i �∈ {μ} ∪ {ν}.

(1.27)

Further, we shall use the following remark: Due to (1.25), vector p(r)
calculated in (1.27) is the closest one to the given vector p among all vectors
for which equality (1.26) holds.

To reach equality (1.23) for the whole digraph Gk, we have to repeat
calculation (1.25) for each path ν ∈ Hk with inequality lp(ν) > lps. Thus, in-
stead of vector p(rν) we have to consider the vector p(r) = p(rGk

) calculated
according to formula (1.27), where

rGk
= min

μ∈Hs

max
ν∈Hk; lp(ν)>lps

lp(ν) − lp(μ)

|{μ} ∪ {ν}| − |{μ} ∩ {ν}| . (1.28)

Next, we consider inequality (1.24). Since the processing times are non-
negative, this inequality may not be valid for a vector pε ∈ Rq

+ if path μ is
dominated by path ν. Thus, we can restrict our consideration to the subset
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Hsk of the set Hs of all paths, which are not dominated by paths from the
set Hk:

Hsk = {μ ∈ Hs : There is no path ν ∈ Hk such that {μ} ⊆ {ν}}.

Hence, we can replace Hs in equality (1.28) by Hsk. To obtain the
desired vector x ∈ Rq

+, we have to use equality (1.28) for each digraph
Gk ∈ Λ(G), k �= s. Let r denote the minimum of such a value rGk

:

r = rGk∗ = min{rGk
: Gk ∈ Λ(G), k �= s}

and let ν∗ ∈ Hk∗ and μ∗ ∈ Hsk∗ be paths at which value rGk∗ has been
reached:

rGk∗ = rν∗ =
lp(ν∗) − lp(μ∗)

|{μ∗} ∪ {ν∗}| − |{μ∗} ∩ {ν∗}| .

Taking into account (1.27), we note that, if rν∗ ≤ pi for each
i ∈ {ν∗}\{μ∗}, vector p(r) = p(rν∗) does not contain negative com-
ponents, i.e., p(r) ∈ Rq

+. Due to the remark given after for-
mula (1.27), we have obtained a lower bound for the stability radius:

	̂s(p) ≥ r

= min
k=1,2,...,λ; k �=s

min
μ∈Hsk

max
ν∈Hk; lp(ν)>lps

lp(ν) − lp(μ)

|{μ} ∪ {ν}| − |{μ} ∩ {ν}| .
(1.29)

The bound (1.29) is tight: If 	̂s(p) ≤ pi for each i ∈ {ν∗} \ {μ∗}, then
	̂s(p) = r. For example, we have 	̂s(p) = r in (1.29) if 	̂s(p) ≤ min{pi : i ∈
Q}. To obtain the exact value of 	̂s(p) in the general case, we construct a
vector x = p∗(r) = (p∗1(r), p

∗
2(r), ..., p

∗
q(r)) with the components

p∗i (r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pi + r, if i ∈ {μ},
max{0, pi − r}, if i ∈ {ν} \ {μ},
pi, if i �∈ {μ} ∪ {ν}

instead of vector p(r) defined in (1.27). As it follows from the remark given
after formula (1.27), such a vector p∗(r) is the closest one to vector p among
all vectors x ∈ Rq

+ which satisfy both conditions (a) and (b).

For calculating the maximal value r for vector p∗(r), we can consider the
operations of the set {ν} \ {μ} in non-decreasing order of their processing
times. Let pνμ

(0) be equal to zero and let

(pνμ
(0), p

νμ
(1), . . . , p

νμ
(ωνμ)) (1.30)
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denote a non-decreasing sequence of the processing times of the operations
from the set {ν} \ {μ}, where wνμ = |{ν} \ {μ}|. Now, it is easy to obtain
the following assertion.

Theorem 1.4 If Gs is an optimal digraph for problem G//Cmax, s ∈
SΦ(p), Φ = Cmax, and inequality 	̂s(p) < ∞ holds, then

	̂s(p) = min
k=1,2,...,λ;k �=s

r̂ks, (1.31)

where

r̂ks = min
μ∈Hsk

max
ν∈Hk, lp(ν)≥lps

max
β=0,1,...,wνμ

lp(ν) − lp(μ) − ∑β
α=0 pνμ

(α)

|{μ} ∪ {ν}| − |{μ} ∩ {ν}| − β
.

(1.32)

Equalities (1.31) – (1.32) mean that one has to compare an optimal di-
graph Gs(p) with all other feasible digraphs Gk(p). Note that the formulas
in Theorem 1.4 turn into 	̂s(p) = ∞ if Hsk = ∅ for any k = 1, 2, . . . , λ, k �= s

(see Theorem 1.2). Moreover, if only a subset of the processing times (say,
P ⊆ {p1, p2, . . . , pq}) can be changed but the other ones cannot be changed,
formula (1.29) and Theorem 1.4 remain valid provided that the difference
|{μ}∪{ν}|−|{μ}∩{ν}| is replaced by |{{μ}∪{ν}}∩P |−|{{μ}∩{ν}}∩P |.

In Section 2.3, it will be shown how it is possible to restrict this enu-
meration and the comparisons (see Corollary 2.5 on page 116). We coded
these formulas in Fortran-77 and tested them on randomly generated job
shop problems J //Cmax.

1.4. Mean Flow Time

In this section, we consider the stability radius 	s(p) of an optimal sched-
ule for problem G//

∑ Ci with the criterion
∑ Ci. If Φ =

∑ Ci, conditions
(1.8) and (1.9) for the general shop problem G//Φ are converted into the
following conditions (1.33) and (1.34):

n∑
i=1

max
μ∈Hi

s

lp(μ) = min
k=1,2,...,λ

n∑
i=1

max
ν∈Hi

k

lp(ν), (1.33)

	s(p) = inf {d(p, x) : x ∈ Rq
+,

n∑
i=1

max
μ∈Hi

s

lx(μ) > min
k=1,2,...,λ; k �=s

n∑
i=1

max
ν∈Hi

k

lx(ν)}.
(1.34)

Here set H i
k, H i

k ⊆ H̃ i
k, is the set of all dominant paths in the digraph

Gk ending in the fixed vertex u ∈ QJi (where u = w(i) + ni is the last
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operation in the technological route of job Ji), and starting from different
vertices v ∈ QJr , r = 1, 2, . . . , n (where v = w(r) + 1 is the first operation
in the technological route of job Jr).

Obviously, the value Ci for a digraph Gs(p) is equal to the largest weight
of a path from the set H i

s, and hence, to solve problem G//
∑ Ci, it is sufficient

to find a digraph Gs(p) such that equality (1.33) holds.
Due to equality (1.34), to find the stability radius 	s(p), it is sufficient to

construct a vector x ∈ Rq
+ that satisfies the following three conditions.

(a’) There exists a digraph Gk(p) ∈ Λ(G), k �= s, such that

n∑
i=1

max
μ∈Hi

s

lx(μ) =
n∑

i=1
max
ν∈Hi

k

lx(ν). (1.35)

(b’) For any given real ε > 0, which may be as small as desired, there
exists a vector pε ∈ Rq

+ such that d(x, pε) = ε and inequality

n∑
i=1

max
μ∈Hi

s

lp
ε

(μ) >
n∑

i=1
max
ν∈Hi

k

lp
ε

(ν) (1.36)

is satisfied for at least one digraph Gk(p) ∈ Λ(G).
(c’) The distance d(p, x) achieves its minimal value among the distances

between the vector p and the other vectors in the vector space Rq
+ which

satisfy both above conditions (a’) and (b’).
Similarly as in the previous section (see conditions (a), (b) and (c)), after

having constructed such a vector x ∈ Rq
+, one can calculate the stability

radius of digraph Gs(p) as follows: 	s(p) = d(p, x). Thus, due to (1.35) and
(1.36), the calculation of the stability radius may be reduced again to an
extremal problem on the set of weighted digraphs Λ(G). However, in this
case we are forced to consider sets of representatives of the family of sets
H i

k, 1 ≤ i ≤ n, which may be defined as follows.
Let Ωu

k be a set of representatives of the family of sets (H i
k)1≤i≤n. More

precisely, the set Ωu
k includes exactly one path from each set H i

k, 1 ≤ i ≤
n. Since H i

k ∩ Hj
k = ∅ for each pair of different jobs Ji and Jj, we have

|Ωu
k| = n and there exist ωk =

∏n
i=1 |H i

k| different sets of representatives for
each digraph Gk, namely: Ω1

k, Ω
2
k, . . . , Ω

ωk
k . For each set Ωu

k, we can calculate
the integer vector n(Ωu

k) = (n1(Ω
u
k), n2(Ω

u
k), . . . , nq(Ω

u
k)), where nj(Ω

u
k), j ∈

Q = {1, 2, ..., q}, is equal to the number of paths in Ωu
k which include vertex

j. Since a path ν ∈ H i
k includes vertex j ∈ Q at most once, the value

nj(Ω
u
k) is equal to the number of copies of vertex j contained in the multiset

{{ν} : ν ∈ Ωu
k}. Similarly to the proof of Theorem 1.4, one can find a vector

x satisfying conditions (a’) and (b’) in the form x(r) = (x1(r), x2(r), . . .,
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xq(r)) with the components xi(r) from the set {pi, pi + r, pi − r} on the
basis of a direct comparison of the set Ωu

s ∈ Ωs,k of representatives of the
family of sets (H i

s)1≤i≤n, and the set Ωu
k of representatives of the family of

sets (H i
k)1≤i≤n, where k = 1, 2, . . . , λ, k �= s, and

Ωsk = {Ωv
s : There does not exist a set Ωu

k such that

ni(Ω
v
s) ≤ ni(Ω

u
k) for each i = 1, 2, . . . , q}.

As a result, the following lower bound for the stability radius has been
obtained:

	s(p) ≥ r = min
k=1,2,...,λ; k �=s

min
Ωv

s∈Ωs,k

max
u∈{1,2,...,ωk}

rΩu
k ,Ωv

s
, (1.37)

where

rΩu
k ,Ωv

s
=

∑
ν∈Ωu

k
lp(ν) − ∑

μ∈Ωv
s
lp(μ)∑q

i=1 |ni(Ωu
k) − ni(Ωv

s)|
.

This bound is tight. Indeed, we obtain 	s(p) = r in (1.37) if r ≤ min{pi :
i ∈ Q}. It is easy to see that it may happen that the above vector x(r) ∈ Rq

does not belong to set Rq
+ since subtracting value r from some component

of vector p may result in a negative number. To obtain the exact value of
	s(p), one can use the vector x∗(r) = (x∗

1(r), x
∗
2(r), . . . , x

∗
q(r)) with

x∗
i (r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pi + r, if ni(Ω

u
k) < ni(Ω

v
s),

max{0, pi − r}, if ni(Ω
u
k) > ni(Ω

v
s),

pi, if ni(Ω
u
k) = ni(Ω

v
s).

In contrast to vector x(r), vector x∗(r) necessarily has no negative com-
ponents. Let the set of operations Q be ordered in the following way:

i1, i2, . . . , im, im+1, . . . , iq, (1.38)

where niα(Ω
u
k) ≤ niα(Ω

v
s) for each α = 1, 2, . . . , m and niα(Ω

u
k) > niα(Ω

v
s) for

each α = m + 1, m + 2, . . . , q. For sequence (1.38), the inequalities pim+1
≤

pim+2
≤ . . . ≤ piq have to be satisfied. Using the sequence of operations

(1.38), it is easy to derive the following formula for calculating 	s(p).

Theorem 1.5 If Gs is an optimal digraph for problem G//
∑ Ci, then

	s(p) = min
k=1,2,...,λ;k �=s

rks, (1.39)

where

rks = min
Ωv

s∈Ωs,k

max
u=1,2,...,ωk

max
β=0,1,...,q−m

∑m+β
α=1 piα|niα(Ω

u
k) − niα(Ω

v
s)|∑m+β

α=1 |niα(Ω
u
k) − niα(Ω

v
s)|

. (1.40)



46 CHAPTER 1. STABILITY RADIUS OF AN OPTIMAL SCHEDULE

If only a subset of the processing times can be changed but the other ones
cannot be changed, formulas similar to (1.39) and (1.40) can be derived (see
the remark after Theorem 1.4).

Zero Stability Radius

Next, we consider the case of 	s(p) = 0. Similarly to the notions of a
critical path and a critical weight, which is important for problem G//Cmax

(see Section 1.3), we introduce the notions of a critical set of paths Ωu∗
k and a

critical sum of weights for problem G//
∑ Ci. The set Ωu∗

k , u∗ ∈ {1, 2, . . . , ωk},
is called a critical set if the value of the objective function

Lp
k = max

u∈{1,2,...,ωk}
∑

ν∈Ωu
k

lp(ν) (1.41)

for the weighted digraph Gk(p) is reached on this set:∑
ν∈Ωu∗

k

lp(ν) = max
u∈{1,2,...,ωk}

∑
ν∈Ωu

k

lp(ν) = Lp
k.

The value Lp
k defined in (1.41) is called a critical sum of weights for

digraph Gk(p). Obviously, a critical set Ωu∗
k may include a path ν ∈ H i

k, i =
1, 2, . . . , n, if and only if lp(ν) = maxμ∈Hi

k
lp(μ) and so for different vectors

p ∈ Rq
+ of the processing times, different sets Ωu

k, u ∈ {1, 2, . . . , ωk}, may
be critical. Let Ωk(p) denote the set of all critical sets Ωu∗

k of digraph Gk(p)
for the vector p = (p1, p2, . . . , pq) ∈ Rq

+ of operation processing times and let
Ωk denote the set {Ωu

k : u = 1, 2, . . . , ωk}. To prove necessary and sufficient
conditions for 	s(p) = 0, we need the following auxiliary claim.

Lemma 1.4 There exists a real number ε > 0 such that the set Ωk\Ωk(p)
contains no critical set of digraph Gk(p) ∈ Λ(G) for any vector p′ ∈ Oε(p)∩
Rq

+ of the processing times, i.e., Ωk(p
′) ⊆ Ωk(p).

Proof. After having calculated the value

εk =
1

2qn
min

⎧⎪⎨⎪⎩Lp
k −

∑
ν∈Ωu

k

lp(ν) : Ωu
k ∈ Ωk\Ωk(p)

⎫⎪⎬⎪⎭ , (1.42)

one can verify that for any real ε, which satisfies the inequalities 0 < ε <
εk, the difference in the right-hand side of equality (1.42) remains positive
when vector p is replaced by any vector p′ ∈ Oε(p) ∩ Rq

+. Indeed, for any
u ∈ {1, 2, . . . , ωk}, the cardinality of set Ωu

k may be at most equal to qn.
Thus, it is not possible to ‘overcome’ the difference Lp

k − ∑
ν∈Ωu

k
lp(ν) using

any vector p′ if inequality d(p, p′) < εk holds.
�
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Next, we prove necessary and sufficient conditions for equality 	s(p) = 0.

Theorem 1.6 Let Gs be an optimal digraph for problem G//
∑ Ci with pos-

itive processing times pi > 0 of all operations i ∈ Q. The equality 	s(p) = 0
holds if and only if the following three conditions hold:
1) There exists another optimal schedule k ∈ SΦ(p), Φ =

∑ Ci, k �= s;
2) There exists a set Ωv∗

s ∈ Ωs(p) such that for any set Ωu∗
k ∈ Ωk(p), there

exists an operation i ∈ Q for which condition

ni(Ω
v∗
s ) ≥ ni(Ω

u
k), Ωu

k ∈ Ωk(p), (1.43)

holds (or condition

ni(Ω
v∗
s ) ≤ ni(Ω

u
k), Ωu

k ∈ Ωk(p), (1.44)

holds);
3) Inequality (1.43) (or inequality (1.44), respectively) is satisfied as a strict
one for the set Ωu∗

k .

Proof. We prove necessity by contradiction. Assume that 	s(p) = 0 but
the conditions of the theorem are not satisfied. We consider the three cases
(j), (jj) and (jjj) of violating these conditions.

(j) Assume that there does not exist another optimal schedule, i.e., we
have SΦ(p) = {s} with Φ =

∑ Ci. Then we consider a real number ε such
that inequalities

0 < ε <
1

2qn
min
t �=s

{Lp
t − Lp

s}
hold. Similarly to the proof of Lemma 1.4, we can show that digraph Gs

remains optimal for any vector p0 = (p0
1, p

0
2, . . . , p

0
q) ∈ Rq

+ of the processing
times provided that d(p, p0) ≤ ε. Therefore, we obtain the inequalities
	s(p) ≥ ε > 0 which contradict the assumption 	s(p) = 0.

(jj) We assume that |SΦ(p)| > 1 and for any optimal schedule k ∈ SΦ(p)
with k �= s and for any set Ωv

s ∈ Ωs(p), there exists a set Ωu∗
k ∈ Ωk(p) such

that ni(Ω
v
s) = ni(Ω

u∗
k ) for any operation i ∈ Q.

In this case, we can take any ε that satisfies the inequalities

0 < ε < min

{
εs, εk,

1

2qn
min

t �∈φΣ(p)
{Lp

t − Lp
s}

}
. (1.45)

From Lemma 1.4, due to inequality ε < εs, we get that equality

Lp0

s = max
Ωv

s∈Ωs(p)

∑
μ∈Ωv

s

lp
0

(μ) (1.46)
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holds for any vector p0 ∈ Oε(p) ∩ Rq
+. Since there exists a set Ωu∗

k ∈ Ωk(p)
for any set Ωv

s ∈ Ωs(p) and any k ∈ SΦ(p), k �= s, such that ni(Ω
v
s) =

ni(Ω
u∗
k ), i ∈ Q, we obtain the inequality

max
Ωv

s∈Ωs(p)

∑
μ∈Ωv

s

lp
0

(μ) ≤ max
Ωu

k∈Ωk(p)

∑
ν∈Ωu∗

k

lp
0

(ν),

because of ε < εs and ε < εk. Therefore, due to (1.46), we have

Lp0

s ≤ max
Ωu

k∈Ωk(p)

∑
ν∈Ωu∗

k

lp
0

(ν) (1.47)

for any optimal schedule k ∈ SΦ(p), k �= s. Since ε < 1
2qn mint �∈SΦ(p){Lp

t −
Lp

s}, condition t �∈ SΦ(p) implies t �∈ SΦ(p0). Thus, taking into account
(1.45) and the latter implication, we conclude that s ∈ SΦ(p0) for any vector
p0 ∈ Rq

+ provided that d(p, p0) ≤ ε. Consequently, we obtain the inequalities
	s(p) ≥ ε > 0, which contradict the assumption 	s(p) = 0.

(jjj) We assume that |SΦ(p)| > 1 and for any optimal schedule k ∈
SΦ(p), k �= s, and for any set Ωv

s ∈ Ωs(p), there exists a set Ωu∗
k ∈ Ωk(p)

such that for any operation i ∈ Q with ni(Ω
v
s) > ni(Ω

u∗
k ), there exists a set

Ωu0

k ∈ Ωk(p) such that ni(Ω
v
s) < ni(Ω

u0

k ). Arguing in the same way as in case
(jj), we can show that 	s(p) ≥ ε > 0, where ε is as in (1.45) since for any
vector p0 ∈ Oε(p) ∩ Rq

+, the value
∑

μ∈Ωv∗
s

lp
0

(μ) is less than or equal to the

value
∑

ν∈Ωu∗
k

lp
0

(ν) or value
∑

ν∈Ωu0
k

lp
0

(ν).

Sufficiency. We show that, if the conditions of Theorem 1.6 are satisfied,
then 	s(p) < ε for any given ε > 0.

We construct a vector p∗ = (p∗1, p
∗
2, . . . , p

∗
q) ∈ Rq

+ with the components
p∗i ∈ {pi, pi + ε∗, pi− ε∗}, where ε∗ = min{εk, ε, mini∈Q pi} using the following
rule: For each Ωu∗

k ∈ Ωk(p) mentioned in Theorem 1.6, we set p∗i = pi + ε∗,
if inequalities (1.43) hold, or we set p∗i = pi − ε∗, if inequalities (1.44) hold.
Note that ε∗ > 0 since pi > 0, i ∈ Q.

After changing at most |Ωk(p)| components of vector p according to the
above rule, we obtain a vector p∗ of processing times for which inequality∑

μ∈Ωv∗
s

lp
∗
(μ) >

∑
ν∈Ωu∗

k

lp
∗
(ν)

holds for each set Ωu∗
k ∈ Ωk(p). Due to inequality ε∗ ≤ mini∈Q pi, we obtain

p∗ ∈ Rq
+. Since ε∗ ≤ εk, we have

Lp∗
k = max

u∈{1,2,...,ωk}
∑

ν∈Ωu
k

lp
∗
(ν)

= max
Ωu

k∈Ωk(p)

∑
ν∈Ωu

k

lp
∗
(ν) =

∑
ν∈Ωu∗

k

lp
∗
(ν) <

∑
μ∈Ωv∗

s

lp
∗
(μ) ≤ Lp∗

s .
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We conclude that s /∈ SΦ(p∗) with d(p, p∗) = ε∗ which implies 	s(p) < ε∗ ≤ ε.
�

Theorem 1.6 directly implies the following assertion.

Corollary 1.5 If s ∈ S is a unique optimal schedule for problem G//
∑ Ci,

then 	s(p) > 0.

It is easy to prove the following upper bound for the stability radius of
an optimal schedule for problem G//

∑ Ci.

Theorem 1.7 If s ∈ S is an optimal schedule for problem G//
∑ Ci with

λ > 1 and pi > 0 for at least one operation i ∈ Q, then 	s(p) ≤ maxi∈Q pi.

Proof. We consider the vector p0 ∈ Rq
+ with zero components: p0

i = 0
for each operation i ∈ Q. For this vector of processing times, each feasible
digraph Gt ∈ Λ(G) is optimal and each set of representatives Ωu

t is critical.
We can take a schedule k ∈ SΦ(p0) which has only one arc (j, i) ∈ Ek dif-
ferent from the arcs in set Es, i.e., (i, j) ∈ Es and Es\{(i, j)} = Ek\{(j, i)}.
It is easy to see that there exist sets Ωv

s ∈ Ωs(p) and Ωu
k ∈ Ωk(p) such that

ni(Ω
v
s) > ni(Ω

u
k). Setting pε

i = ε > 0 and pε
l = 0 for each operation l ∈ Q\{i},

we obtain s /∈ SΦ(pε) and d(pε, p) < max{pi : i ∈ Q}.
�

Remark 1.2 As follows from Theorem 1.7, problem J //
∑ Ci with λ > 1

cannot have an optimal schedule with an infinitely large stability radius in
contrast to problem J //Cmax (see Section 1.3).

Note that all results presented in this section and in Section 1.3 remain
valid for any general shop scheduling problem. However, we use the parti-
tion of the set of operations Q into n chains Q(i), i = 1, 2, . . . , n, (which is
necessary for the job shop and flow shop but is not necessary for the general
shop) for a better presentation of the results.

In scheduling theory, the open shop problem is also considered when the
technological routes for processing the jobs are not fixed before scheduling,
i.e., for each job Ji ∈ J only the set of operations QJi is given but the
order of these operations is not fixed before scheduling. While solving an
open shop problem O//Φ, it is necessary to find the optimal orders of the
operations QJi for each job Ji ∈ J along with the optimal orders of the
operations on each machine Mk ∈ M . Similarly to the flow shop problem,
each job Ji ∈ J has to be processed by each machine exactly once. The open
shop problem is a special case of the general shop problem and therefore, all
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results obtained above for the stability analysis remain valid for the open
shop as well. The classical job shop is often considered in scheduling theory
for which each job has to be processed exactly once on each machine. For
our considerations, this restriction is not important. In fact, we consider the
job shop problem Jm//Φ with recirculation, which may occur when a job
may visit a machine from the set M more than once.

1.5. Calculation of the Stability Radius

This section is devoted to the calculation of the stability radius of an
optimal schedule for a job shop problem when the objective is to minimize
mean or maximum flow times. The used approach may be regarded as an
a posteriori analysis. We investigate the influence of errors and possible
changes of the processing times on the property of a schedule to be optimal.
To this end, extensive numerical experiments with randomly generated job
shop problems are performed. Due to the developed software, we have the
possibility to compare the values of the stability radii, the numbers of opti-
mal schedules and some other ‘numbers’ for the two criteria Cmax and

∑ Ci.
The main question we try to answer is how large the stability radius is, on
average, for randomly generated job shop problems. The formulas for calcu-
lating the stability radii 	̂s(p) and 	s(p) of an optimal digraph Gs(p), derived
in [44, 311, 339] (see Chapter 1), were coded in Fortran-77. Due to these for-
mulas (1.31), (1.32) and (1.39), (1.40), the calculation of the stability radii
based on a direct comparison of the paths of an optimal digraph Gs and of
each feasible digraph Gk ∈ Λ(G), k �= s, for Cmax and subsets of paths of Gs

and of Gk ∈ Λ(G), k �= s, for
∑

Ci is very complicated and time-consuming.
Nevertheless, such an ‘unpractical’ calculation for sample problems allows
us to derive some properties of job shop problems, which may be used in
practically efficient methods for determining lower and/or upper bounds for
the stability radii. Next, we present the formal algorithm for calculating the
stability radius 	̂s(p) on the basis of the coded formulas (1.31) and (1.32).
We calculate the set of stability radii R̂ = {	̂1(p), 	̂2(p), . . . , 	̂opt(p)} for the
set of all optimal digraphs G1(p), G2(p), . . . , Gopt(p) from the set Λ(G) gener-
ated from a weighted mixed graph (Q, A, E). Here opt indicates the number
of optimal schedules.

Algorithm RAD 	̂s(p)

Input: Mixed graph (QJ , AJ , EJ) with the vector p ∈ Rq
+
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of job processing times.

Output: Set R̂ of the stability radii for all optimal digraphs.

Step 1: Construct the set of feasible digraphs
{G1(p), G2(p), . . . , Gopt(p), . . . , Gλ(p)} generated
from (QJ , AJ , EJ) and index them in non-decreasing
order of their makespans:
lp1 = lp2 = . . . = lpopt < lpopt+1 ≤ lpopt+2 ≤ . . . ≤ lpλ.

Set R̂ = ∅. IF opt = 1 THEN s = 1 GOTO Step 4.
Step 2: FOR s = 1 TO opt DO

BEGIN
Step 3: IF there exists a path μ∗ ∈ Hs(p) such that for digraph

Gk(p), k �= s, k ≤ opt, lps = lpk, there does not exist a
path ν∗ ∈ Hk(p) with [μ∗] ⊆ [ν∗]

THEN 	̂s(p) = 0; R̂ := R̂ ∪ {	̂s(p)}
IF s < opt THEN GOTO Step 2 ELSE STOP

ELSE
Step 4: 	̂s(p) := ∞

IF the conditions of Theorem 1.3 hold for digraph Gs(p)

THEN R̂ := R̂ ∪ {	̂s(p)}
IF s < opt THEN GOTO Step 2 ELSE STOP

ELSE
Step 5: FOR k = 1, k �= s TO λ DO

BEGIN
Step 6: Construct the set Hsk = {μ ∈ Hs :

There is no path ν ∈ Hk such that [μ] ⊆ [ν]}.
IF Hsk = ∅

Step 7: IF k = λ
IF Hst = ∅ for each digraph Gt(p), t �= s,

t ∈ {1, 2, . . . , λ}
THEN R̂ := R̂ ∪ {	̂s(p)}

IF s < opt THEN GOTO Step 2 ELSE
STOP

ELSE
ELSE GOTO Step 5

ELSE rk = 0
Step 8: FOR μ ∈ Hsk DO

BEGIN
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Step 9: FOR ν ∈ Hk : lp(ν) ≥ lps DO
BEGIN

Step 10: Set rβ = 0.
Construct a sequence (pνμ

(0), p
νμ
(1), . . . , p

νμ
(wνμ)),

where pνμ
(0) = 0 and (pνμ

(1), p
νμ
(2), . . . , p

νμ
(wνμ))

is a non-decreasing sequence of the
processing times of the operations from
the set [ν] \ [μ] with wνμ = |[ν] \ [μ]|.

FOR β = 0 TO ωνμ DO
BEGIN

rβ = max {rβ,
lp(ν)−lp(μ)−∑β

α=0 pνμ
(α)

|[μ]+[ν]|−β }
END

END
rk := max{rk, rβ}

END
Step 11: 	̂s(p) := min{	̂s(p), rk}
Step 12: FOR k := k + 1 TO λ + 1 Do

BEGIN

IF 	̂s(p) >
lpk−lps

q THEN GOTO Step 5

END

R̂ := R̂ ∪ {	̂s(p)}
IF s < opt THEN GOTO Step 2 ELSE STOP

END
END STOP

Computational results for randomly generated job shop problems are pre-
sented in this chapter. The stability radii have been calculated for more than
10,000 randomly generated job shop problems.

At the worst, the calculation of 	̂s(p) (in just the same way as the
calculation of 	s(p)) implies not only to have an optimal digraph Gs(p),
which is already an NP-hard problem, but to construct all feasible digraphs
G1(p), G2(p), . . . , Gλ(p) (see Step 1) and for each of them, which has to be
compared with the optimal digraph, Algorithm RAD 	̂s(p) finds all domi-
nant paths (see Step 6) introduced in Definition 1.3. We can avoid such a
time-consuming comparison in the two following cases.

First, if there are two or more optimal digraphs it is possible that the
stability radius of one of them or the radii of both are equal to zero (see
Theorem 1.1). In Step 3, we check such a condition for 	̂s(p) = 0. Second,
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there are two cases of an infinitely large stability radius 	̂s(p) = ∞. One of
them follows from the graph construction: There is identified a problem class
whose optimal solutions are implied only by the given structural input data
and even independently from the numerical input data (see Theorem 1.3).
Thus, the necessary and sufficient conditions of Theorem 1.3 for an infinitely
large stability radius J //Cmax can be verified in polynomial time O(q2) in
Step 4 (q is the number of operations, q = |Q|). The second condition for an
infinitely large stability radius follows directly from Theorem 1.2 and it is
checked in Step 7. More exactly, from Theorem 1.2 and the definition of the
set Hsk it follows that, if Hsk = ∅ for each feasible digraph Gk(p), k �= s, then
	̂s(p) = ∞. From Step 7 to Step 11, we calculate the value r̂ks according to
formula (1.32). In Algorithm RAD 	̂s(p), the value

r̂ks := 	̂s(p) := min{	̂s(p), rk}
is finally defined in Step 11. To restrict the number of digraphs Gk with
which an optimal digraph has to be compared, Algorithm RAD 	̂s(p) uses
the bounds (2.34) in Step 12. (In Chapter 2, these bounds will be proven
for the more general case of the relative stability radius.) Note that Steps 5
and 7 are rather complicated. So, for scheduling problems with a small
size of the input data the program starts with generating all feasible di-
graphs Λ(G) (see Step 1). Algorithm RAD 	̂s(p) compares each optimal
digraph Gs(p), 1 ≤ s ≤ opt, consecutively with the digraphs Gk(p), k �= s,

from the set Λ(G). After that, Theorem 1.4 is used for calculating the
stability radius 	̂s(p). Using Algorithm RAD 	̂s(p), we construct a set
R̂ = {	̂1(p), 	̂2(p), . . . , 	̂opt(p)} of the stability radii. As it will follow from
Remark 2.4, this algorithm is more effective than Algorithm SOL Cmax(2).
So, if R̂ is not a single-element set, then a decision-maker can use one of
the optimal digraphs Gs(p), s = 1, 2, . . . , opt, which is more stable, i.e., a
schedule with the largest value of the stability radius 	̂1(p) ∈ R̂. Next, we
present the formal algorithm for the calculation of the stability radii 	s(p),
which uses the formulas (1.39) and (1.40) derived for the job shop problem.

Algorithm RAD 	s(p)

Input: Mixed graph (QJ , AJ , EJ) with the vector p ∈ Rq
+ of job

processing times.
Output: Set R = {	1(p), 	2(p), . . . , 	opt(p)} of the stability radii

for all optimal digraphs.
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Step 1: Construct the set of feasible digraphs {G1(p), G2(p), . . . ,
Gopt(p), . . . , Gλ(p)} generated from (QJ , AJ , EJ) and index
them in non-decreasing order of the objective function
values: Lp

1 = Lp
2 = . . . = Lp

opt < Lp
opt+1 ≤ Lp

opt+2 ≤ . . . ≤ Lp
λ.

Set R = ∅. IF opt = 1 THEN set s = 1 GOTO Step 4.
Step 2: FOR s = 1 TO opt DO

BEGIN
Step 3: IF there exists a set Ωv∗

s ∈ Ωs(p) such that for any
set Ωu∗

k ∈ Ωk(p), there exists an operation Oij ∈ QJ

such that condition nij(Ω
v∗
s ) ≥ nij(Ω

u∗
k )

(or condition nij(Ω
v∗
s ) ≤ nij(Ω

u∗
k )) holds

and this inequality has the sign > (or <)

for at least one set Ωu0

k ∈ Ωk(p)
THEN set 	s(p) = 0 and R := R∪ {	s(p)}

IF s < opt THEN GOTO Step 2 ELSE STOP
ELSE

Step 4: Set 	s(p) := ∞.
Step 5: FOR k = 1, k �= s TO λ DO

BEGIN
Step 6: Construct the set Ωsk = {Ωv

s : There does not exist
a set Ωu

k such that nij(Ω
v
s) ≤ nij(Ω

u
k) for each

i = 1, 2, . . . , n, j = 1, 2, . . . , ni}. Set rk = 0.
Step 7: FOR v = 1 TO ωs DO

BEGIN
Step 8: FOR each Ωu

k ∈ Ωk, u = 1, 2, . . . , ωk, with∑
ν∈Ωu

k
lp(ν) ≥ Lp

s

DO
BEGIN

Step 9: Set rβ = 0. Order the set of operations QJ :
Oij(1)

, Oij(2)
, . . . , Oij(m)

, Oij(m+1)
, . . . , Oij(q)

,

where for each α = 1, 2, . . . , m inequality
nij(α)

(Ωu
k) ≤ nij(α)

(Ωv
s) holds and for each

α ∈ {m + 1, m + 2, . . . , q} inequalities
nijα

(Ωu
k) > nijα

(Ωv
s);

pij(m+1)
≥ pij(m+2)

≥ . . . ≥ pij(q)
hold.

FOR β = 0 TO q − m DO
BEGIN

rβ = max {rβ,
∑m+β

α=1 pij(α)
(nij(α)

(Ωu
k)−nij(α)

(Ωv
s))∑m+β

α=1 |nij(α)
(Ωu

k)−nij(α)
(Ωv

s)| }
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END
END

Set rk := max{rk, rβ}
END

Step 10: Set 	s(p) := min{	s(p), rk}.
Step 11: FOR k := k + 1 TO λ + 1 DO

BEGIN

IF 	s(p) >
Lp

k−Lp
s

nq−n THEN GOTO Step 5

END
R := R∪ {	s(p)}
IF s < opt THEN GOTO Step 2 ELSE STOP

END
END STOP

If there exist at least two optimal schedules, i.e., if opt > 1, we verify in
Step 3 the condition for a zero stability radius on the basis of Theorem 1.6.
In Step 4, we set 	s(p) := ∞ (note that 	s(p) < ∞ due to Theorem 1.7 and
Remark 1.2). Theorem 1.5 is used for the calculation of the stability radius
	s(p), 0 < 	s(p) < ∞, for each optimal digraph Gs, s = 1, 2, . . . , opt, (see
Steps 6 - 10). As it will be shown in Lemma 2.8 in Chapter 2, we can reduce
the set of digraphs in the considerations in Step 11.

Both above formal algorithms were coded in Fortran-77. So, for a small
problem size the program starts with generating all feasible digraphs and for
each of them, which has to be compared with the optimal digraph, it finds
dominant paths (see Definition 1.3). Then formulas (1.31) and (1.32) are
used for calculating 	̂s(p) and formulas (1.39) and (1.40) from Section 1.4
are used for calculating 	s(p). To restrict the number of digraphs Gk with
which an optimal digraph has to be compared, one can use the bound (2.63)
(see Chapter 2) for the mean flow time criterion.

Note that the software developed is rather general. In principle, it allows
us to calculate the exact or approximate values of 	̂s(p) and 	s(p) for most
scheduling problems (since there exists a possibility to represent them as
extremal problems on a mixed graph, see Section 1.1). The only ‘theoretical’
requirement for such problems is the prohibition of preemptions of operations
(see Assumption 2). However, in the simulation study we are forced to
take into account also ‘practical’ requirements: The running time and the
memory of the computers. Remind that the most critical parameter of the
problem under consideration is the number of edges in the mixed graph
G because the whole number of feasible (without a circuit) and infeasible
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(with circuit) digraphs generated from G is equal to 2|E|. Moreover, for each
feasible digraph Gk, we have to find all dominant paths for Cmax and (what
is essentially larger) all subsets of the set of dominant paths for

∑
Ci.

1.6. Experimental Design and Results

In this section, computations were restricted to job shop problems. We
considered three different levels of the simulation study in dependence on
running time and memory limits. The stability region of an optimal digraph
Gs (the whole set of non-negative q-dimensional vectors, for which Gs is
optimal) is a closed cone [354, p. 326]. Indeed, if Gs is optimal for the
vector p ∈ Rq

+ of processing times, it remains optimal for the processing
times αp11, αp12, . . . , αpnnn

with any real α > 0 (obviously, the stability
radius is the largest radius of a stability ball, which is fully contained in
the stability region). So, when considering the influence of ‘load leveling’
factors (numbers and distributions of operations per machines and per jobs)
on the stability radius, we consider the same range of variations of the
processing times for the problems of the first level: The processing times of
the operations are uniformly distributed real numbers (with four digits after
the decimal point) between the same bounds 10 and 100.

First, we generated small instances with 12 operations in each case, for
which the exact values of the stability radii 	̂s(p) and 	s(p) may be calculated
on a PC 386 usually within some seconds using only internal memory of the
computer. For each combination of the number of jobs from 3 to 7 and of
the number of machines from 4 to 8, we randomly generated and solved 50
instances. Moreover, at the first level simulation includes four different types
of problems in dependence on the distribution of the number of operations
to the machines (evenly or randomly) and the operations, distributed to the
same machine, to the jobs (evenly or randomly). Thus, we consider at the
first level problems of the four types:

EE (evenly, evenly), ER (evenly, randomly),

RE (randomly, evenly), RR (randomly, randomly).

At the first level, we calculated the stability radii for 5000 job shop problems
(5000 = 4 · 5 · 5 · 50 = 4 (types) · 5 (combinations of the number of jobs n)
· 5 (combinations of the number of machines m) · 50 (randomly generated
instances in each series)) with 12 operations in each instance. Note that, if
there were two or more optimal schedules for a sample problem, we calcu-
lated the stability radius for each of them. After solving the above problems
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(without using external memory on a hard disk), we considered series of
instances for each combination of the number of jobs from 8 to 10 and of the
number of machines from 4 to 8, and for each combination of the number
of jobs from 3 to 10 and m = 3. The number of operations in each instance
was equal to 12. Since the number of edges in the mixed graph exceeded 20
(and so the number of generated feasible and infeasible digraphs exceeded
220 = 1, 048, 576), we had to use external memory on a hard disk for such
instances and the running time for some of them achieved one or even two
hours on a PC 486. So, we were forced to restrict the number of considered
instances in the most difficult series for such combinations of the numbers
of jobs and the numbers of machines to 10.

On the basis of the obtained information within the first level of exper-
iments (for the instances with 12 operations), we designed the second and
third ones. First, we decided to consider only instances generated for an
evenly distributed number of operations to the machines and evenly dis-
tributed operations on the same machine to the jobs (i.e., type EE). At the
second level, we calculated the exact values of the stability radii for job shop
problems with 16 and 20 operations, considering 10 instances in each series
while considering the influence of ‘load leveling’ factors. Note that for some
of the instances at the second level, the CPU time of a Pentium PC ex-
ceeded 10 hours. Along with ‘load leveling’ factors, other ones also influence
the complexity and stability of scheduling problems, e.g., the variability of
pij, Oij ∈ Q, across the entire shop and the variability of the average pro-
cessing time from job to job or from machine to machine are also important
factors of the complexity of shop scheduling problems (remind the famous
job shop problem with 10 jobs and 10 machines given in [119], which was so
difficult to attain due to a special processing time variability). Therefore,
at the second level we also investigated the influence of the latter factors for
random modifications of the processing times of the job shop problem with
the same mixed graph G.

More precisely, for the same randomly generated mixed graph G at the
second level of the simulation study, we considered six different ranges of
variations of the given processing times, namely: [1, 10], [1, 100], [1, 1000],
[10, 100], [10, 1000] and [100, 1000]. Obviously, the intervals [10, 100] and
[100, 1000] may be obtained from the interval [1, 10] after multiplying with
10 and 100, respectively. However, the number of optimal schedules, and
the number of problems with a zero value of the stability radius may be
different for these three intervals since we consider all real numbers with a
fixed number of decimal places. Due to the same reason, we consider the
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intervals [1, 100] and [10, 1000]. For the above segments, we calculated 	̂s(p)
and 	s(p) for each optimal schedule s in series with 50 instances. Moreover,
we investigated instances in which different jobs had different ranges of the
variations of the given processing times. At the third level, we considered
a well-known job shop test problem with 6 jobs and 6 machines from [119]
with different ranges of the variations of the given processing times across
the entire shop and across different jobs. In Figures 1.1 and 1.2, we present
the maximal, average and minimal values of the stability radii for each com-
bination of the number of jobs n and the number of machines m, considered
at the first level when the number of operations are evenly distributed to
the machines and the operations on a machine are evenly distributed to the
jobs (type EE). While the processing times are real numbers between 10
and 100, the stability radii are approximately between 0.001 and 50 for Cmax

and between 0.001 and 35 for
∑ Ci. Similar data for the other three types of

distributing the operations are given in Figures 1.3 and 1.4 (types ER, RE
and RR). The largest value of 	̂s(p) was about 90, and the largest value of
	s(p) was about 70. For all types EE, ER, RE and RR, the average value
of 	̂s(p) was larger than that of 	s(p). An obvious conclusion from these di-
agrams is that an optimal makespan schedule (Figures 1.1 and 1.3) is more
stable than an optimal mean flow time schedule (Figures 1.3 and 1.4). An
important issue from Figures 1.1 - 1.4 is also that for each series of instances
the smallest value of 	̂s(p) and 	s(p) is greater than zero.

The results for the sample problems of the second level for ‘load leveling’
factors are presented in Table 1.1, where the minimal (MIN), average (AVE)
and maximal (MAX) values of the stability radius divided by the maximal
processing times (pMAX) are given in columns 2, 3, and 4, and similar values
divided by the average processing times (pAV E) are given in columns 5, 6,
and 7. During our experiments, we also determined the largest number γ
of competitive digraphs in the sequence (Gi1, Gi2, . . . , Giγ , . . . , Giλ′ , . . . , Giλ)
(where the digraphs are ordered according to non-decreasing objective func-
tion values) and the number λ′ of the digraph, which was the last considered
one in this sequence while calculating the exact value of the stability radius.
Column 8 contains the average values of the percentage of digraphs, which
may be a competitive digraph for the optimal one (100t/λ). For the set of
instances presented in Table 1.1 with the mean flow time criterion, these
values are bounded by 2.42%. When minimizing the makespan, these val-
ues are larger, but the latter results are mostly due to the large numbers
of optimal makespan schedules (the average and maximal numbers NOS of
optimal semiactive schedules for an instance are given in columns 9 and 10,



1.6. EXPERIMENTAL DESIGN AND RESULTS 59

m
=3

m
=4

m
=5

m
=6

m
=7

m
=8

m
=3

m
=4

m
=5

m
=6

m
=7

m
=8

m
=3

m
=4

m
=5

m
=6

m
=7

m
=8

n=3

n=6

n=90

5

10

15

20

25

30

35

40

45

50

n=3 15,71 15 17,71 29,48 28,4 31,56 4,33 4,3 4 6,83 7,12 7,43 0,01 0,14 0,03 0,15 0,01 0,08

n=4 8,6 20,49 17,04 26,74 35,86 34,85 2,84 3,11 3,58 5,86 7,38 8,2 0,14 0,01 0,16 0,03 0,06 0,34
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n=6 20,96 27,11 21,63 34,9 30,88 43,82 3,34 3,58 4,13 5,62 6,13 7,32 0 0,01 0,03 0 0,12 0

n=7 26,16 31,69 38,68 39,84 40,99 35,63 4,47 4,44 5,88 5,57 5,57 7,83 0 0 0,08 0,11 0,05 0,15

n=8 32,69 32,4 38,18 32,47 14 20,91 10,2 5,18 7,71 8,45 7,74 6,53 0 0 0,01 0,53 2,89 0,17
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Figure 1.1: Maximal, average and minimal values of �̂s(p) for the problems of type EE
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Figure 1.2: Maximal, average and minimal values of �s(p) for the problems of type EE
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n=7 25,1 29,22 36,58 44,9 49,43 7,32 5,89 7,9 11,22 9,64 0 0 0 0 0,05
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Figure 1.3: Maximal, average and minimal values of �̂s(p) for the problems of types ER,
RE and RR
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n=5 9,45 9,11 11,83 20,48 49,67 2,15 2,83 2,74 3,75 6,13 0,06 0,1 0,11 0,05 0,17
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Figure 1.4: Maximal, average and minimal values of �s(p) for the problems of types ER,
RE and RR
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respectively). Note that for some 6 x 6 instances (i.e., those with 6 jobs
and 6 machines), 7 x 7 instances and 8 x 8 instances, the number λ of all
semiactive schedules was not calculated in our experiments, and therefore,
the values of 100γ/λ are not presented for these series. If there is more than
one optimal schedule, we calculate the differences of their stability radii.
The average and maximal values of these differences (DIFF) are presented
in columns 11 and 12, respectively. We can also note that for the mean flow
time criterion, an optimal schedule is usually uniquely determined, and even
if there are two optimal mean flow time schedules, they have often the same
stability radius. Consequently, for the mean flow time criterion we have not
much need to look for an optimal schedule with the largest stability radius.
Next, we present the randomly generated mixed graph G for the job shop

Table 1.1: Randomly generated problems

n x m RADIUS / pMAX RADIUS / pAV E
100γ

λ NOS DIFF
MIN AVE MAX MIN AVE MAX AVE MAX AVE MAX

1 2 3 4 5 6 7 8 9 10 11 12
Maximum flow time

6 x 6 0.01 0.62 4.26 0.02 1.09 7.40 - 21.50 78 1.60 3.83
7 x 7 0.07 1.76 11.16 0.12 3.45 23.59 - 15.60 43 2.71 9.72
8 x 8 0.07 3.43 12.66 0.13 6.00 17.80 - 17.00 70 4.91 12.20
9 x 9 0.00 3.97 11.52 0.00 6.91 22.14 4.43 28.90 144 6.07 11.38

10 x 10 0.18 3.33 21.90 0.32 5.97 41.38 1.54 12.40 48 5.68 18.84
Mean flow time

6 x 6 0.33 1.28 5.10 0.59 2.25 8.67 2.27 1.10 2 0.00 0.00
7 x 7 0.23 1.33 6.57 0.40 2.32 11.19 2.42 1.20 2 0.00 0.00
8 x 8 0.26 1.86 6.54 0.51 3.28 11.85 0.03 1.20 2 0.00 0.00
9 x 9 0.60 2.20 4.41 1.10 3.84 8.22 0.10 1.10 2 0.00 0.00

10 x 10 0.46 3.83 8.05 0.75 6.79 13.69 0.57 1.00 1 0.00 0.00

problem J 6/n = 4/Φ with 4 jobs and 6 machines, which is used for the
simulation study of the influence of the variability of the processing times:

Q = {O1,1, O1,2, . . . , O4,4}; E = {[O1,1, O2,1], [O1,1, O3,4], [O2,1, O3,4],

[O1,2, O2,3], [O1,3, O2,2], [O1,3, O4,2], [O2,2, O4,2], [O1,4, O3,2], [O1,4, O4,1],

[O3,2, O4,1], [O2,4, O3,1], [O2,4, O4,4], [O3,1, O4,4], [O3,3, O4,3]}
(see Figure 1.5). Computational results for this mixed graph are given in
Tables 1.2 and 1.3. Table 1.2 presents the computational results for differ-
ent ranges of the processing times for the same mixed graph G, which is
described above. Both criteria Cmax and

∑ Ci are considered for the same 50
examples for which the obtained results are presented in the corresponding
rows of Table 1.2 (row i for Cmax corresponds to row i + 6 for

∑ Ci).
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Figure 1.5: Randomly generated mixed graphs (QJ , AJ , EJ) for problem J 6/n=4/Φ

Table 1.2: Problem J 6/n=4/Φ, Φ∈{Cmax,
∑ Ci}, with different ranges of the variations

of the job processing times pij

Bounds for pij RADIUS/pMAX RADIUS/pAV E
100γ

λ
100λ′

λ NOS NMO DIFF
LB UB MIN AVE MAX MIN AVE MAX AVE MAX AVE MAX
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Maximum flow time
1 10 0.07 2.37 8.48 0.13 4.40 17.15 0.48 2.93 2.80 12 34 0.15 0.75
1 100 0.02 2.31 12.11 0.04 4.91 27.38 0.71 5.02 3.58 21 34 2.35 10.53
1 1000 0.00 3.63 13.83 0.00 8.33 36.71 0.73 8.66 4.26 36 32 30.93 132.28

10 100 0.13 2.52 10.78 0.26 4.64 21.18 0.50 4.71 2.74 12 31 2.36 9.53
10 1000 0.01 3.08 13.06 0.01 6.23 31.36 0.62 8.07 4.60 30 41 26.90 123.57

100 1000 0.04 2.88 11.89 0.07 5.20 24.85 0.53 4.18 2.30 12 25 20.63 108.90
Mean flow time

1 10 0.06 2.56 10.17 0.11 4.76 17.89 0.30 3.87 1.02 2 1 0.13 0.13
1 100 0.07 2.47 9.90 0.13 5.06 20.54 0.34 4.44 1.02 2 1 0.00 0.00
1 1000 0.03 2.07 10.21 0.05 3.95 16.96 0.30 3.40 1.04 2 2 1.80 3.59

10 100 0.12 2.41 7.30 0.21 4.51 15.63 0.30 3.42 1.00 1 0 - -
10 1000 0.17 2.26 8.67 0.37 4.52 16.29 0.32 3.40 1.12 2 6 6.18 22.48

100 1000 0.05 2.53 11.43 0.11 4.48 19.78 0.33 4.22 1.04 2 2 16.37 32.75

Table 1.3 presents computational results for different ranges of the values
pij of the operations of different jobs. Along with the columns defined for
Table 1.1, we also present the percentage of considered digraphs while cal-
culating the exact value of the stability radius (column 10 in Table 1.2 and
column 16 in Table 1.3) and the number NMO of problems with two or more
optimal schedules (column 13 in Table 1.2 and column 19 in Table 1.3).

For the problems considered at the second level, the ‘superiority’ of the
stability radius for the makespan criterion is lost in most cases. At least
the minimal values of 	s(p) became larger than those of 	̂s(p). Of course,
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the large number of optimal makespan schedules has influenced this relation
essentially, but even on average, we cannot find a large superiority of the
stability radius of one criterion over the other (for the considered classes of
randomly generated job shop problems). Next, we discuss some questions on
the basis of our experimental calculation of the stability radii of the optimal
schedules for small randomly generated job shop problems.

How often is the stability radius equal to zero? In the experiments at the
first and the second levels, we obtained only once a stability radius equal to
zero for criterion Cmax and never for criterion

∑ Ci although it takes not much
effort to construct such an example by hand (see Theorem 1.1 for Cmax and
Theorem 1.6 for

∑ Ci). So, in principle, to find an optimal schedule for almost
all problems generated in our experiments has sense. On the other hand,
in many series there are instances with very small values of the stability
radius (even less than 0.001). So, if for such an instance the precision of
the processing times is not sufficiently high, we have no guarantee that the
(a priori) constructed optimal schedule will be indeed the best one in its
practical realization.

May the stability radius be infinitely large? From theoretical results it
follows that for any given n and m, there exist job shop problems with
an optimal makespan schedule s, which remains optimal for any feasible
variation of the processing times, i.e., 	̂s(p) = ∞ (see Theorem 1.2 and
Theorem 1.3). In particular, an easily verifiable characterization of such a
schedule has been derived for criterion Cmax (see Theorem 1.3). In contrast,
it was shown that for mean flow time, we have 	s(p) ≤ maxOij∈Q{pij} for
any job shop problem (see Theorem 1.7). Although in [192] a practical
example of an infinitely large stability radius was presented (for a traffic-
light on the intersection of two roads), nevertheless such a shop appears to
be rather artificial for large numbers of jobs and machines. Surprisingly, in
our randomly generated job shop problems with the makespan criterion an
infinitely large stability radius was obtained not seldom, at least essentially
more often than a zero stability radius (of course, we did not include infinite
stability radii while calculating the average and maximal values of 	̂s(p)).
So, our experiments indicate that the results derived in [192, 311] will have
not only theoretical significance.

How many ‘best’ schedules do we need to consider? As already mentioned,
we also determined the number γ of competitive digraphs and the number
λ′ of considered digraphs while calculating the exact value of the stability
radius. For the problems of the first level, the diagrams for the percentage
of the numbers γ and for the percentage of the numbers λ′ for the problems
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of type EE are presented in Figure 1.6 (Figure 1.7) for criterion Cmax (for
criterion

∑ Ci, respectively). In the front part of the diagrams in Figures
1.6 and 1.7, the minimal, average and maximal values of the percentages
100γ/λ are presented while in the background of these diagrams the minimal,
average and maximal values of the percentages 100λ′/λ are presented. As it
follows from Figures 1.6 and 1.7, the value 100γ/λ may be smaller than 1 %
and it is not greater than 73 % for Cmax and not greater than 56 % for

∑ Ci.

Table 1.3: Problem J 6/n=4/Φ, Φ∈{Cmax,
∑ Ci}, with variability of pij from job to job

Lower bound Li and upper �s

pMAX

�s

pAV E

100γ
λ

100λ′
λ NOS N DIFF

bound Bi for pij M
L1 U1 L2 U2 L3 U3 L4 U4 MI AV MA MI AV MA AV MA O AV MA
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Maximum flow time
10 20 30 40 70 80 90 100 0.01 0.87 3.81 0.01 1.59 6.92 3.83 9.15 30 54 50 0.5 3.2
10 20 40 50 60 70 90 100 0.00 0.98 4.37 0.01 1.79 8.06 1.10 5.86 8 16 50 0.6 3.5
10 30 30 50 60 80 80 100 0.01 1.41 6.62 0.02 2.5612.01 1.70 7.95 15 32 50 1.3 5.1
10 40 30 60 50 80 10 100 0.00 1.66 8.56 0.01 2.9915.59 1.21 6.97 8 22 50 1.4 6.9
10 60 30 60 50 80 50 100 0.06 1.84 8.03 0.09 3.3215.27 0.84 4.25 6 24 49 1.0 7.1
10 60 10 60 50 100 50 100 0.00 3.3012.05 0.01 6.0222.56 1.3012.52 12 24 50 3.8 10.6
10 40 40 70 10 100 10 100 0.01 4.2814.81 0.01 8.3131.23 0.6518.38 16 58 50 6.3 14.0
10 30 10 50 60 80 60 100 0.01 1.78 9.82 0.02 3.2018.20 1.24 6.81 11 32 50 1.6 9.3
10 20 30 50 60 80 80 100 0.00 1.03 4.69 0.00 1.87 8.85 2.36 9.54 19 54 50 1.1 4.1
10 25 25 75 25 75 50 100 0.09 2.7314.34 0.16 5.3025.56 0.81 7.93 4 12 42 2.0 14.1

Mean flow time
10 20 30 40 70 80 90 100 0.08 1.08 2.97 0.14 1.95 5.36 0.27 1.56 1 1 0 0 0
10 20 40 50 60 70 90 100 0.04 1.21 2.82 0.07 2.21 5.22 0.26 1.28 1 1 0 0 0
10 30 30 50 60 80 80 100 0.02 1.15 4.11 0.04 2.08 7.33 0.31 1.64 1 1 0 0 0
10 40 30 60 50 80 70 100 0.09 1.54 4.85 0.15 2.78 8.02 0.31 1.78 1 1 0 0 0
10 60 30 60 50 80 50 100 0.05 1.87 6.14 0.09 3.3510.85 0.35 2.39 1 1 0 0 0
10 60 10 60 50 100 50 100 0.01 1.45 4.41 0.01 2.62 7.53 0.32 2.02 1 3 1 0 0
10 40 40 70 70 100 10 100 0.07 2.32 7.83 0.12 4.2313.62 0.33 3.40 1 2 2 0 0
10 30 10 50 60 80 60 100 0.04 1.31 4.66 0.08 2.34 7.97 0.33 1.51 1 1 0 0 0
10 20 30 50 60 80 80 100 0.01 0.94 3.26 0.01 1.70 5.95 0.25 1.14 1 1 0 0 0
10 25 25 75 25 75 50 100 1.01 2.18 5.51 0.02 4.17 9.92 0.31 3.27 1 1 0 0 0

It should be noted that for the case of a large number of machines and
a small number of operations (at the first level when q = 12), there often
exist only a few feasible semiactive schedules which make the relative values
of γ and λ′ rather large. Moreover, for criterion Cmax, we have a relatively
large number of optimal schedules which also enlarges the relative values
of γ and λ′. Thus, calculating the exact value of the stability radius on
the basis of bounds (2.34) and (2.63) may require to consider the whole
set Λ(G) of digraphs for the problems considered at the first level of our
simulation study. From Tables 1.2 and 1.3, it follows that the competitive
digraphs are within 3.83 % of the whole set of feasible digraphs for criterion
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n=3 4,55 4,55 20,5 19,05 33,33 43,75 0,96 1,33 3,05 7,71 11,76 17,66 0,23 0,35 0,93 3,13 6,25 12,5

n=4 1,5 3,36 8,05 44 55 44,44 0,39 1,03 2,33 11,05 15,33 22,4 0,03 0,15 0,69 3,13 6,25 12,5

n=5 3 9,9 15,03 52,08 15,63 56,25 0,16 1,03 2,49 7,24 7,57 19,9 0,04 0,15 0,69 3,13 6,25 12,5

n=6 2,3 9,5 11,11 27,78 55,56 58,33 1,15 1,11 2,41 8,41 13,97 19,78 0,03 0,25 0,69 3,13 6,25 0

n=7 2,63 12,35 43,21 35,94 40,63 56,25 0,13 0,64 2,67 9,21 11,15 18,1 0,03 0,15 0,69 3,13 6,25 12,5

n=8 18,56 9,76 14,24 27,08 31,25 56,25 9,28 4,88 3,78 8,56 14,6 33,92 0,03 0,15 0,69 3,13 6,25 12,5

n=9 6,83 72,73 17,01 26,56 53,13 56,25 0,71 23,31 4,42 11,23 17,47 34,55 0,02 5,17 0,93 3,13 6,25 12,5

n=10 2,8 22,48 25,35 26,56 53,13 56,25 0,3 11,16 6,85 22,41 28,36 32,81 0,02 0,15 0,69 3,13 6,25 12,5

n=3 44,16 27,27 37,76 100 100 83,33 7,26 6,35 9,88 25,95 35,74 39,85 0,49 0,65 1,04 3,13 7,14 12,5

n=4 8,8 51,47 60,37 100 100 100 1,67 7,28 14,22 54,26 59,87 70,53 0,09 0,28 0,93 4,17 10 16,67

n=5 19 61,52 98,04 100 100 100 3,58 14,5 30,07 41,17 46,32 61,5 0,04 0,22 0,69 3,13 6,25 12,5

n=6 3,24 100 94,44 100 100 100 1,19 38 46,19 63,03 81,06 78,83 0,11 1,01 2,78 5,56 8,33 16,67

n=7 24,99 99,31 100 100 100 100 4,91 46,78 46,55 58,75 62,13 80,13 0,14 0,15 0,93 3,13 12,5 12,5

n=8 22,71 67,28 100 100 100 100 7,22 24,74 46,92 49,95 66,46 88,19 0,24 3,19 3,7 16,67 25 50

n=9 87,09 72,73 100 100 100 100 35,3 23,31 47,5 62,97 72,19 100 1,24 5,17 16,67 31,25 25 100

n=10 23,47 77,78 66,67 50 100 100 11,48 24,83 45,44 49,69 100 100 1,94 2,55 16,32 48,44 100 100

m=3 m=4 m=5 m=6 m=7 m=8 m=3 m=4 m=5 m=6 m=7 m=8 m=3 m=4 m=5 m=6 m=7 m=8

Figure 1.6: Percentage of the number γ (and λ′) of competitive (considered) digraphs for
the problems of type EE for �̂s(p)
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n=3 1,77 3,07 5,6 13,89 25 25 0,68 0,96 2,21 6,41 11,53 17,19 0,23 0,25 0,69 3,57 6,25 12,5

n=4 0,23 3,38 7,41 13,33 25 55,56 0,11 0,59 1,9 7,1 12,19 20,75 0,03 0,23 0,69 3,13 6,25 12,5

n=5 0,08 1,79 8,73 10,94 15,63 43,75 0,05 0,37 1,55 4,43 7,57 15,5 0,02 0,15 0,69 3,13 6,25 12,5

n=6 0,1 0,88 2,47 11,11 22,22 33,33 0,04 0,41 1,11 5,43 9,73 16,96 0,02 0,25 0,69 3,13 6,25 12,5

n=7 0,03 0,82 2,31 9,38 15,63 31,25 0,02 0,28 1,18 3,92 7,31 15 0,02 0,15 0,69 3,13 6,25 12,5

n=8 0,08 0,31 1,74 12,5 12,5 12,5 0,04 0,22 0,97 5,42 7,08 12,5 0,03 0,15 0,69 3,13 6,25 12,5

n=9 0,06 0,63 2,78 4,69 6,25 12,5 0,04 0,28 1,12 3,29 6,25 12,5 0,02 0,15 0,69 3,13 6,25 12,5

n=10 0,04 0,51 1,04 26,56 9,38 12,5 0,02 0,24 0,82 18,26 6,56 12,5 0,02 0,15 0,69 3,13 6,25 12,5

n=3 34,63 15,34 28 90 100 100 3,82 3,68 7,81 21,73 32,21 43,66 0,36 0,51 1,14 3,57 6,25 12,5

n=4 2,16 22,27 58,02 100 100 100 0,49 4,12 11,01 49,57 57,61 72 0,03 0,23 1,22 3,13 6,25 12,5

n=5 0,84 15,24 86,51 93,75 100 100 0,19 3,32 20,35 34,19 46,32 67,75 0,05 0,21 0,98 3,13 6,25 12,5

n=6 2,51 100 87,04 100 100 100 0,71 15,18 16,84 68,29 69,01 87,08 0,04 0,38 1,23 5,56 6,25 12,5

n=7 0,95 64,75 100 100 100 100 0,48 11,44 27,42 57 62 88,88 0,04 0,21 1,39 3,13 6,25 12,5

n=8 9,57 58,13 74,54 100 100 100 2,87 21,09 31,69 82,29 71,88 78,75 0,11 0,39 1,85 21,88 12,5 12,5

n=9 8,51 81,19 100 100 100 100 2,29 18,45 31,34 58,44 59,06 56,25 0,05 2,65 2,78 6,25 12,5 12,5

n=10 9,99 72,61 54,86 50 100 100 2,99 36,02 29,87 49,69 80,63 93,75 0,02 0,46 1,39 48,44 6,25 37,5

m=3 m=4 m=5 m=6 m=7 m=8 m=3 m=4 m=5 m=6 m=7 m=8 m=3 m=4 m=5 m=6 m=7 m=8

Figure 1.7: Percentage of the number γ (and λ′) of competitive (considered) digraphs for
the problems of type EE for �s(p)
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Cmax and within 0.35 % for criterion
∑ Ci, and the percentage of digraphs

which have been considered while calculating the stability radius is no more
than 18.38 % for criterion Cmax and no more than 4.44 % for criterion

∑ Ci.
So, it is not necessary to construct the whole set of feasible digraphs for
calculating the stability radius of an optimal digraph for these types of
problems. After studying the obtained results at the first and second levels
of our experiments, we enlarged the size of problems, which are still suitable
for calculating the exact value of the stability radius (or at least its upper
bound). For calculating the stability radius for instances of larger size, we
constructed for each of them only the k best schedules (with k = 100 in most
cases) by a direct enumeration of the whole set of feasible digraphs. Then,
considering only these k best digraphs, we intended to calculate the stability
radius of an optimal digraph (or optimal digraphs). If this process has
stopped before the whole k best digraphs were compared with the optimal
one, we have obtained the exact value of the stability radius due to the
bounds (2.34) or (2.63), otherwise we have obtained at least an upper bound
for the stability radius. Moreover, to shorten the running time, we used the
branch-and-bound method for calculating the k best digraphs.

How can one combine this approach with the branch-and-bound method?
The following approach to stability analysis for scheduling problems seems
to be practically efficient. Using a branch-and-bound method (e.g. [62]),
one can construct not only one optimal but the k best schedules (as it has
been shown for the traveling salesman problem [228, 230] and for the binary
linear programming problem [365], the running time of such a variant of a
branch-and-bound algorithm grows rather slowly with k). In particular, in
our computational study we used a branch-and-bound algorithm with the
conflict resolution strategy. Due to an implicit enumeration of the feasible
mixed graphs G(s)(p) = (Q, A(s), E(s)), we construct the k best ones and
calculate the exact value or an upper bound for the stability radius of an
optimal schedule in the same manner as described in the above paragraph
“How many ‘best’ schedules do we need to consider?”.

Note that, while an explicit enumeration of the digraphs G1(p),
G2(p), . . . , Gλ(p) gives the exact value of 	̂s(p) for |E| ≤ 30, the branch-
and-bound algorithm gives the possibility to calculate 	̂s(p) for |E| ≤ 100
(often within the same CPU time). In particular, at the third level of
the experiments, we considered the well-known classical job shop problem
from [119] with 6 jobs and 6 machines. The assignment of the operations
Q = {O1,1, O1,2, . . . , O6,6} to the set of machines M = {M1, M2, . . . , M6} is
as follows:
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Q1 = {O1,2, O2,5, O3,4, O4,2, O5,5, O6,4},
Q2 = {O1,3, O2,1, O3,5, O4,1, O5,2, O6,1},
Q3 = {O1,1, O2,2, O3,1, O4,3, O5,1, O6,6},
Q4 = {O1,4, O2,6, O3,2, O4,4, O5,6, O6,2},
Q5 = {O1,6, O2,3, O3,6, O4,5, O5,3, O6,5},
Q6 = {O1,5, O2,4, O3,3, O4,6, O5,4, O6,3}.

For this problem, each job has to be processed on each machine exactly
once and hence, we have q = 6 x 6 = 36 and |E| = 6 x

(6
2

)
= 90. By the

branch-and-bound algorithm we constructed k = 150 best schedules: 22 of
them are optimal with Cmax = 55 and 54 other schedules have a makespan
value equal to 56, and at least 74 schedules have a makespan value equal
to 57. We calculated an upper bound for 	̂s(p) for each optimal makespan
schedule. It turned out that 14 of them have a zero stability radius and the
other 8 optimal schedules have an upper bound for 	̂s(p) equal to 0.08333.
The existence of unstable optimal schedules for this test problem is implied
mainly by the fact that its processing times are integers from 1 to 10.

We also randomly generated 50 instances with 6 jobs, 6 machines and 36
operations. Again, each job has to be processed on each machine exactly
once (i.e., we considered classical job shop problems), but in contrast to
the problem from [119], the processing times were uniformly distributed real
numbers between 1 and 10. For each generated problem with 36 operations,
we constructed 50 best schedules (for the makespan criterion) on the basis
of the branch-and-bound algorithm and calculated upper bounds for 	̂s(p)
for each optimal makespan schedule which was constructed. Note that 45 of
these instances had more than one optimal makespan schedule and among
them, 7 instances had 50 or even more optimal makespan schedules. The
average value of the stability radius 	̂s(p) was equal to 0.12939, and for all
calculated optimal makespan schedules s the following bounds were satisfied:
0.001 ≤ 	̂s(p) ≤ 0.87455. We also calculated the differences between 	̂s(p)
for different optimal makespan schedules s ∈ S of the same instance (if this
instance had two or more optimal makespan schedules). The maximum of
this difference was equal to 0.84636, the average difference was 0.11709 and
some optimal makespan schedules had the same stability radius. Among the
50 instances, there was no optimal schedule with a zero stability radius.

To investigate the influence of the variability of the processing times pij

on the stability radius, we considered again the test problem with 6 jobs and
6 machines given in [119], but with different distributions of the processing
times to the operations. More precisely, the mixed graph G = (Q, A, E) was
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Table 1.4: Test problem J 6/n=6/Cmax with variability of pij

pij RADIUS/pMAX RADIUS/pAV E NOS NMO DIFF
LB UB MIN AVE MAX MIN AVE MAX AVE MAX AVE MAX
1 2 3 4 5 6 7 8 9 10 11 12 13

Common bounds for pij for different jobs
1 10 0.0067 0.1843 0.8744 0.0138 0.3374 1.5340 13.5 52 8 0.0106 0.0393
1 100 0.0077 0.3265 1.2092 0.0163 0.6158 2.0630 26.7∗ 100∗ 10 0.1705 1.1278
1 1000 0.0749 0.6679 2.4344 0.1639 1.4461 5.1843 31.5 90 10 6.3276 22.6764

10 100 0.0440 0.7733 3.9813 0.0820 1.4277 7.4289 17.5∗ 100∗ 9 0.5540 3.6507
10 1000 0.0070 0.4436 1.7260 0.0116 0.8298 3.2587 27.4∗ 100∗ 10 3.5290 10.9608

100 1000 0.0308 0.5694 1.9779 0.0564 1.0109 3.8182 17.0 54 10 7.2888 18.3886
Different bounds for pij for different jobs

LB1
i UB1

i 0.0000 0.6429 3.9997 0.0000 1.1009 7.2044 41.2∗ 100∗ 10 0.9175 3.1636
LB2

i UB2
i 0.0216 0.5046 1.3379 0.0383 0.8487 2.3764 5.2 12 9 0.0000 0.0000

LB3
i UB3

i 0.0000 1.0051 4.2719 0.0000 1.7247 7.4870 74.6∗ 100∗ 10 1.7654 4.1433
LB4

i UB4
i 0.0031 0.9716 9.2608 0.0053 1.7292 16.4208 82.2∗ 100∗ 10 2.1819 8.6476

defined in accordance with [119], but the processing times were randomly
generated real numbers with the same lower and upper bounds for all jobs
(see rows 1 - 6 in Table 1.4) and with different lower and upper bounds for
different jobs (rows 7 - 10 in Table 1.4). Each row in Table 1.4 presents the
results obtained for a series of 10 instances. For each instance, we calculated
the stability radius using 100 best schedules generated by the branch-and-
bound algorithm. For row 7 in Table 1.4, the lower bound LB1

i and the
upper bound UB1

i for job Ji are as follows:

LB1
1 = 10, UB1

1 = 40; LB1
2 = 20, UB1

2 = 50;
LB1

3 = 30, UB1
3 = 60; LB1

4 = 50, UB1
4 = 80;

LB1
5 = 60, UB1

5 = 90; LB1
6 = 70, UB1

6 = 100.

For row 8, these bounds are:

LB2
1 = 10, UB2

1 = 60; LB2
2 = 30, UB2

2 = 60;
LB2

3 = 40, UB2
3 = 60; LB2

4 = 50, UB2
4 = 70;

LB2
5 = 50, UB2

5 = 80; LB2
6 = 50, UB2

6 = 100.

For row 9, these bounds are:

LB3
1 = 10, UB3

1 = 40; LB3
2 = 20, UB3

2 = 50;
LB3

3 = 40, UB3
3 = 70; LB3

4 = 60, UB3
4 = 90;

LB3
5 = 70, UB3

5 = 100; LB3
6 = 10, UB3

6 = 100.

For row 10, these bounds are:

LB4
1 = 10, UB4

1 = 30; LB4
2 = 20, UB4

2 = 40;
LB4

3 = 30, UB4
3 = 50; LB4

4 = 60, UB4
4 = 80;

LB4
5 = 70, UB4

5 = 90; LB4
6 = 80, UB4

6 = 100.
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In Table 1.4, we marked the series of instances, for which the number of
optimal schedules is larger than 100 by an asterisk. Since we calculated only
100 best schedules for each instance, we had not the exact number of optimal
semiactive makespan schedules. The developed software did not allow us to
find 	s(p) for most of the above instances with 36 operations and 90 edges
since the calculation of the stability radius for the mean flow time criterion
is essentially more time-consuming than for the makespan.

How to use this approach for problems of practical size? For large in-
stances, for which a direct enumeration of all feasible digraphs was practi-
cally impossible, we constructed only a subset of feasible digraphs, selected
then the best digraph Gs among them and calculated an upper bound for
the ‘stability radius’ of Gs by a comparison with all other digraphs that have
been constructed. This variant of the implementation of the software may
be useful for some practical problems. Indeed, in reality OR workers have
at most one or only a few feasible schedules (usually without an exact infor-
mation about their quality). In the case when a set of feasible schedules is
known, we can investigate the stability radius of the best of them in compari-
son with the others at hand. Even if we do not have the possibility to find an
optimal schedule by a branch-and-bound method and only an approximate
schedule (with an information about its quality) or a heuristic schedule has
been constructed, we can investigate the ‘stability radius’ of this schedule
in comparison with the other k − 1 schedules that have been constructed.
The main issue from our experiments is that an optimal schedule is usually
stable: Its stability radius is not equal to zero, and so there exists a ball
with the center p of the processing times in the space Rq

+ of the input data
within which the schedule remains optimal. Thus, such a radius may be
useful as a measure of the stability of an optimal schedule. Moreover, on
the basis of the above computational experiments (though limited problem
sizes), one can give the conclusion that an optimal schedule for criterion
Cmax is often more stable than an optimal schedule for criterion

∑ Ci when
the size of the problem is small. Moreover, our approach gives not only the
exact value or a bound for the stability radius but also competitive sched-
ules (competitive digraphs) which along with an optimal schedule have to be
considered as candidates for the practical realization when the stability ra-
dius or its upper bound is less than the possible error of the processing times
known in advance. Note that the problem of calculating the stability radius
of the digraph Gs(p) is NP-hard even provided that an optimal schedule s
is known. It is even NP-hard to find the ‘tolerances’ of a single processing
time pij, which do not violate the optimality of an optimal digraph. The
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latter result follows from [276] since the problem considered in that paper
may be presented as a special case of the job shop problem. Another insight
is that an optimal mean flow time schedule is usually uniquely determined
while two or more optimal makespan schedules are very usual (at least in
our simulation study). So, in the latter case it makes sense to look for an
optimal makespan schedule with the largest value of the stability radius (the
difference of the stability radii for different optimal schedules of the same
problem may be very large for the makespan criterion). Such a schedule has
a better chance to be makespan optimal in its practical realization. How-
ever, this is not valid for the mean flow time criterion, for which one can be
satisfied by the first constructed optimal schedule because, even if there are
two or more optimal mean flow time schedules, they usually have the same
value (or close values) of the stability radii.

Moreover, there exist shops for which we can look for an optimal
makespan schedule with an infinitely large stability radius. In particular, if
one can influence the properties of the shop (i.e., technological routes of the
jobs, the number of used machines and the distribution of the operations to
the machines, etc.), one can design a shop that has an optimal makespan
schedule with an infinitely large stability radius (see Theorem 1.3). In this
case, the variations of the processing times have no influence on such a
schedule to be optimal. For some scheduling problems, such a property may
be practically important.

Since a zero stability radius of the optimal schedule s is rather seldom,
there exists an ε > 0 such that s will remain optimal for any variations
pij ± ε of the processing times. In particular, this is true for almost all
problems with the mean flow time criterion, which were considered in our
experiments since for these problems an optimal schedule is often uniquely
determined, and as a result, it has a strictly positive stability radius. On the
other hand, it has a practical sense to make the error in the determination
of the processing times as small as possible in order to guarantee the real
optimality of a schedule at hand: Almost in all series there were schedules
with very small (but strictly positive) values of the stability radii. After
the analysis of the influence of possible changes of the given processing
times of the operations, i.e., the largest quantity of independent variations
(stability radius) within which an optimal schedule of problems J //Cmax

and J //
∑ Ci remains optimal, we perform experimental investigations of

job shop problems with uncertain processing times J /ai≤pi≤ bi/Cmax and
J /ai≤pi≤bi/

∑ Ci, which satisfy Assumptions 1, 2 and 3 (see Introduction).
These computational results are described in Section 2.7.
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1.7. Comments and References

In this section, the main attention is paid to a stability analysis. We
present references, where the results of this chapter have been originally ob-
tained. Then we discuss different aspects of stability and sensitivity analysis
for scheduling problems and outline how the classical questions of sensitivity
analysis are considered in this book. A sketch of some other close results is
also presented in order to emphasize the generality and difference between
the approach presented in this book and others presented in the OR litera-
ture. Finally, we describe some trends in scheduling research which aim to
make it more relevant to production scheduling in real-world processes.

1. Surveys on stability analysis in sequencing and scheduling were given
in [93, 161, 162, 310, 316, 317, 322, 325, 336, 337, 338, 339]. An annotated
bibliography for stability analysis in integer programming and combinato-
rial optimization was given in [145, 146]. This chapter was based on the
definitions of the stability radius of an optimal schedule being introduced in
[17, 304, 306, 307, 311, 319].

Any shop-scheduling problem with a regular criterion and forbidden op-
eration preemptions can be represented as an extremal problem on a mixed
(disjunctive) graph [1, 51, 204, 271, 282, 314, 315, 348, 355]. Moreover, there
is a one-to-one correspondence between circuit-free digraphs generated by
a mixed graph and semiactive schedules. As it was proven in [132], the
set of semiactive schedules contains at least one optimal schedule provided
that the criterion is regular. It should also be noted that such a digraph
is more stable than the corresponding schedule with respect to variations
of the job processing times. The advantage of studying the stability of an
optimal digraph instead of the stability of an optimal schedule is justified in
Section 1.2. That is why the mixed graph model (described in Section 1.1)
is used for shop-scheduling problems in Chapters 1 and 2 of this book.

The papers [44, 192, 203, 311, 334] were devoted to the stability of an op-
timal digraph Gs(p) which represents an optimal solution to problem G//Φ.

Section 1.2 was based on the papers [306, 311]. In [311], the calculation of
the stability radius 	s(p) of an optimal schedule s was reduced to a non-
linear programming problem. Formulas for calculating the stability radius
of an optimal schedule with the Cmax criterion and the characterization of
the extreme values of 	̂s(p) were proven in [311] (see Section 1.3). The same
questions for the mean flow time criterion were considered in [44]. Neces-
sary and sufficient conditions for equality 	̂s(p) = 0 and the characterization
of an infinitely large stability radius were proven in [311]. In [191, 192], it
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was shown that for problem J //Cmax, there exist necessary and sufficient
conditions for 	̂s(p) = ∞ which can be verified in O(q2) time. In [192],
the analogies to Theorems 1.2 and 1.3 for the job shop problem J //Lmax

with minimizing maximum lateness (with respect to the due dates given for
the jobs Ji ∈ J) were proven. It was also shown that there does not exist
an optimal schedule s with 	s(p) = ∞ for all other regular criteria, which
are considered in scheduling theory (see [204] for the definitions of different
regular criteria). The extreme values of 	s(p) were studied in [44, 337]. Ne-
cessary and sufficient conditions for equality 	s(p) = 0 were derived in [44]
(see Section 1.4). The stability of an optimal schedule for a job-shop prob-
lem with two jobs was investigated in [332, 333], where polynomial geometric
algorithms developed in [5, 50, 157, 305, 308, 350] were used.

Within this book, we mainly consider two regular criteria: Cmax and
∑ Ci.

It is useful to give the following comments about them. Although makespan
minimization is widely considered in scheduling theory, its importance for
production scheduling seems to be less than mean flow time minimization.
Indeed, Cmax aims for minimizing the schedule duration (length), however,
in industry this duration is often defined on the periodicity of the process:
A working day, a working week or another planning interval. On the other
hand, the criterion

∑ Ci is more adequate to such a periodical scheduling
environment. Note also that it is often more complicated to analyze

∑ Ci

than Cmax, e.g., the two-machine problems F2//Cmax, J 2/ni ≤ 2/Cmax and
O2//Cmax are polynomially solvable (i.e., there exist polynomial-time algo-
rithms for them) but problems F2//

∑ Ci and O2//
∑ Ci are NP-hard (see,

e.g., [204, 355]), which means that up to now, there do not exist efficient
(polynomial-time) algorithms for their solution and moreover, the construc-
tion of a polynomial-time algorithm for at least one of them in the future
is unlikely. The differences in the complexity of the Cmax and

∑ Ci criteria,
probably, is one of the reasons why in academic research criterion Cmax is
mainly considered for multi-stage systems (job, flow and open shop) while
criterion

∑ Ci for single-stage systems, i.e., systems with only one machine
or with a set of parallel (usually identical) machines.

In this chapter, we studied the main stability analysis question: What are
the limits to processing time changes such that the schedule at hand remains
optimal? Of course, other numerical parameters of a practical scheduling
problem may also be changeable. It is easy to see that, due to the generality
of the mixed graph model with any regular objective function presented in
Section 1.1, one can analyze other changeable parameters (like release times,
due dates, deadlines, job weights, set-up and removal times, etc.) in terms
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of the mixed graph G. (E.g., introduction of a dummy operation in G which
proceeds the first operation of a job allows one to consider the processing
time of this dummy operation as a release time of this job.) Nevertheless, for
simplicity in what follows, we shall continue to consider operation durations
as the only changeable parameters. It is assumed that all the processing
times are simultaneously and independently changeable. In order to study
specific changes of different numerical parameters (e.g., the case when only
one parameter is changeable) in Chapter 2, we introduce and study the
more general notion of the so-called relative stability radius. Next, we briefly
discuss two other classical sensitivity analysis questions which may have both
theoretical and practical importance (see [155]). Given a specific change of
one numerical parameter of a scheduling problem, what is the new optimal
value of the objective function? Answering this question identifies the effect
of parameter changes on the objective function value. This answer is a
solution to the evaluation version of a scheduling problem, while an answer
to the following classical sensitivity analysis question is a solution to the
optimization version of a scheduling problem: Given a specific change of a
numerical parameter, what is the new optimal schedule? It is obvious that
a solution to the latter question (which is a subject of Chapters 2 and 3)
implies a solution to the former question, however, the converse is not true.
Regarding the latter question, how a schedule changes may be of interest.
Similarly, as for the stability radius, both these questions may be used when
several numerical parameters of a scheduling problem change simultaneously.
In Chapter 2, we consider problem G/ai ≤ pi ≤ bi/Φ the solution of which
gives an answer to all three classical sensitivity analysis questions.

2. Scheduling theory has received a lot of attention among OR practi-
tioners, management scientists, production and operations research work-
ers and mathematicians since the early 1950s. The term “scheduling
theory” has been introduced by Bellman in the article [30], where a
first list of definitions and conditions has been given for deterministic
scheduling as a branch of applied mathematics. The current state of
scheduling theory was presented in the following books and book chapters
[36, 37, 51, 81, 204, 269, 270, 299, 331, 337, 352, 353, 355]. As it was
noted in the books [37, 81, 189, 269, 270, 331] and in many surveys (e.g.,
[24, 26, 89, 152, 142, 148, 162, 169, 235, 241, 243, 264, 273, 283, 310]), the uti-
lization of deterministic scheduling theory in many production environments
is restricted. MacCarthy and Liu [235] aimed the gap between scheduling
theory and scheduling practice. They also discussed some research issues
which attempt to make scheduling theory more useful in practice.
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Next, we describe some trends in scheduling research which aim to make
it more relevant to production scheduling and more applicable to real-world
processes. For an uncertain scheduling environment stochastic models are
introduced, where the processing times (and some other parameters) are
assumed to be random variables with known probability distributions. For
example, such stochastic models for a single machine with the minimiza-
tion of mean flow time were considered by Chand et al. [64], by Li and
Cao [226], and with the minimization of earliness-tardiness penalties by Cai
and Tu [60] as well as by Robb and Rohleder [279]. Since it is possible
for a company to estimate the times at which jobs are expected to arrive,
Chand et al. [64] developed a decomposition approach such that a large
problem can be solved by combining optimal solutions of several smaller
problems. The model of Robb and Rohleder [279] consists of a probabilistic
dynamic scheduling problem with non-regular performance measures. Us-
ing simulation, they explored the robustness of the heuristics with respect
to uncertainty in the durations of the operations. Jain and Meeran [169]
presented a concise overview of job shop scheduling techniques and the best
computational results obtained. The deterministic job shop problem was
investigated from a variety of perspectives subclass of this problem in which
the objective is the minimization of makespan, by providing an overview of
the history, the techniques used and the researchers involved.

Scheduling problems with controllable processing times have received an
increasing attention during the last two decades (see book [129]). It is often
assumed that the actual possible processing time of a job can be continu-
ously controlled by a decision-maker, and it can be any number in the given
interval. Recent results for scheduling problems with controllable processing
times were presented, e.g., in [71, 72, 87, 173, 187, 296, 297].

Traditional scheduling procedures consider static and deterministic fu-
ture conditions even though this may not be the case in actual scheduling
problems. After a description, the preplanned schedule can become inappli-
cable to the new conditions. As Graves [144] stated, in practice, there is no
pure scheduling problem but rather a rescheduling problem. Responding to
such dynamic factors immediately as they occur is called real-time schedul-
ing. An on-line simulation methodology was proposed by Davis and Jones
[91] to analyze several scheduling rules in a stochastic job shop. The job
shop rescheduling problem is considered as a particularly hard combinato-
rial optimization problem [263]. The production rescheduling problem deals
with uncertainty caused by the exterior business environment and interior
production conditions. Since it has practical applications, the rescheduling
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problem was studied by many authors (see, e.g., [225, 263, 349]).

A reactive scheduling approach was developed by Smith et al. [300], which
uses different knowledge sources and aims to make decisions faster with less
emphasis on optimality. For knowledge-based systems, the most difficult op-
eration is to decide which knowledge source has to be activated. A discussion
of knowledge-based reactive scheduling systems can be found in Blazewicz
et al. [36] as well as Szelke and Kerr [349]. Bean et al. [29] proposed a
‘match-up’ heuristic method for scheduling problems with disruptions. They
showed that assuming enough idle time is present in the original schedule
and disruptions are sufficiently spaced over time, the optimal rescheduling
strategy is to match-up with the preschedule at some time in the future.
The objective in [6] was to create a new schedule that is consistent with the
order production planning decisions like material flow, tooling and purchas-
ing by utilizing the time critical decision-making concept. When a machine
breakdown forces a modified flow shop out of the prescribed state, the pro-
posed strategy reschedules a part of the initial schedule to match-up with
the preschedule at some point.

Fuzzy scheduling techniques proposed in the literature either fuzzify di-
rectly the existing scheduling rules, or solve mathematical programming
problems to determine optimal schedules [101, 133, 143, 167, 196, 262, 284].
The optimality of a fuzzy logic alternative to the usual treatment of uncer-
tainties in a scheduling system using probability theory was examined by
Ozelkan and Duckstein [262]. The purpose of that article was to investigate
necessary optimality conditions of fuzzy counterparts of classical dispatching
rules, such as the shortest processing time (SPT) and the earliest due date
(EDD). Dumitru and Lubau [101] proposed fuzzy mathematical models to
solve the job shop problem. Grabot and Geneste [143] used a fuzzy rule-
based approach to find a compromise between different job shop dispatching
rules. Kuroda and Wang [196] also analyzed fuzzy job shop problems using
a branch-and-bound algorithm to obtain results for lateness related criteria.
A mathematical programming approach to a single machine problem with
fuzzy precedence relation was given in [167]. Job shop scheduling with both
fuzzy processing times and fuzzy due dates was considered in [284]. Sakawa
and Kubota [284] formulated a multi-objective fuzzy job shop problem as
a three-objective one which not only maximizes the minimum agreement
index but also maximizes the average agreement index and minimizes the
maximum fuzzy completion time. Slowinski and Hapke [299] collected the
main works in this field.

Decision-makers often consider multiple objectives when making schedul-
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ing decisions. However, very little research has been done in multiple ma-
chine environments with multiple objectives [15, 70, 75, 74, 73, 149, 153,
198, 224, 358]. Allahverdi and Mittenthal [15] considered a two-machine
flow shop scheduling problem, where machines suffer random breakdowns
and processing times are constant, with respect to both the makespan and
the maximum lateness objective functions. Kyparisis and Koulamas [198]
and Gupta et al. [153] studied the two-machine open shop problem with
a hierarchical objective: Minimize the total completion time subject to
minimum makespan O2//

∑ Ci|Cmax. Moreover, Gupta et al. [151], Gupta
et al. [149] and T’kindt et al. [358] presented heuristic and exact algor-
tihms for the two-machine flow shop problem with a hierarchical objective:
F2//

∑ Ci|Cmax. Cheng and Shakhlevich [75] considered a special class of flow
shop problems, known as the proportionate flow shop. In such a shop, each
job flows through the machines in the same order and has equal processing
times on the machines. It was assumed that all operations of a job may be
compressed by the same amount which will incur an additional cost. The
objective was to minimize the makespan of the schedule together with a com-
pression cost function which is non-decreasing with respect to the amount of
compression. A bi-criterion approach to solve the single machine scheduling
problem in which the job release dates can be compressed while incurring
additional costs, was considered in [74]. Stein and Wein [344] gave a proof
that, for any instance of a rather general class of scheduling problems, there
exists a schedule with a makespan at most twice that of the optimal value
and of a total weighted completion time at most twice that of the optimal
value. In [245], the stability of an optimal schedule for the two-machine
flow shop problem with the makespan criterion F2//Cmax was considered.
Results on multi-criteria scheduling obtained before 2002 were presented in
the book [357].

The papers above addressed problems of practical importance in plan-
ning, scheduling, and control. It is important to produce schedules that are
both stable (robust) and adaptable to system disturbances. More impor-
tant, it offers unique properties that lead to more effective planning and
control methods for systems under uncertainty. An important step in the
process of designing a railway station track layout is the verification of the
robustness of the layout with respect to the timetables it is based on [259].
Odijk [259] developed an algorithm to randomly perturb a given timetable
such that the perturbation is feasible and has the same structure as the given
timetable. He studied the problem of generating solutions uniformly at ran-
dom for a given set of integer variables and a given set of binary relations
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stating minimal and maximal differences between the variables.

In general, studying a scheduling problem with uncertain processing times
and its sensitivity analysis is of importance. Reasons for that can be illus-
trated by giving references to practical applications. In many cases the data
used are imprecise due to an uncertainty with respect to the exact parame-
ter values or due to errors in the measurement. In industrial applications of
mathematical programming models, there are almost always uncertain ele-
ments that are assumed away or suppressed in the formal description of the
model. Wagner [363] gave reasons why imprecise parameter values are used
in practice. The suggested approaches are kindred to familiar multi-variable
statistical techniques, such as stepwise regression, that have required an
empirical testing to establish their practical value. Wagner [363] provided
practitioners with a quick start in performing a global sensitivity analysis.

Heuristic methods such as simulated annealing, genetic algorithms and
tabu search take up a growing space in the literature on the job shop schedul-
ing problem (see [35] for an overview). Blazewicz et al. [35] surveyed wide
solution techniques available for solving certain types of job shops. Pezzella
and Marelli [266] presented a computationally effective heuristic method
based on a tabu search technique and on the shifting bottleneck procedure
[2, 27] for solving the minimum makespan job shop problem J //Cmax.

Multi-objective discrete decision-making models have been widely applied
in design, management, economics, and other applied fields. One of the
directions in investigating these problems was the analysis of the stability of
solutions to perturbations of the initial parameters. Various aspects of the
stability of vector discrete optimization problems were studied in [58, 109,
110, 111, 112, 113, 114, 115, 116, 117, 118, 229] by Emelichev et al. In these
and many other close papers, the stability of a vector discrete optimization
problem can be considered as a discrete analog of the property of an optimal
mapping specifying the Pareto choice function being upper semi-continuous
in the Hausdorff sense (i.e., there exists a neighborhood in the space of the
initial parameters such that new Pareto optima are impossible to arise inside
it). The Pareto set within this neighborhood can only become narrower.
The concept of stability is treated as the existence of a neighborhood of the
initial parameters in the space of the numerical input data such that for each
perturbation, there exists at least one efficient solution to the initial problem
that retains Pareto optimality. This type of stability was first investigated in
[215] for a single-criterion traveling salesman problem, in [135] for a shortest
path problem, in [136] for a bottleneck problem and in [134, 137, 138, 139]
for Boolean trajectory problems.
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Table 1.5: Notations for the general shop scheduling problem

Symbols Description

Q Set of operations: Q = {1, 2, . . . , q}
Qk Set of operations which has to be processed by machine

Mk ∈ M : Q =
⋃m

k=1 Qk and Qk
⋂

Ql = ∅, if k �= l

QJi Set of operations for processing job Ji ∈ J :
Q =

⋃n
i=1 QJi, QJi �= ∅ and QJi

⋂
QJj = ∅, if i �= j

w(i) + 1 First operation of job Ji, 1 ≤ i ≤ n, where
w(i) =

∑i−1
k=0 nk and n0 = 0

w(i) + ni Last operation of job Ji, 1 ≤ i ≤ n
si Starting time of operation i ∈ Q

ci Completion time of operation i ∈ Q
pi Processing time of operation i ∈ Q

ai Lower bound for the processing time of operation i
bi Upper bound for the processing time of operation i

ci(s) Earliest completion time of operation i ∈ Q

in the semiactive schedule s
s ∈ S Semiactive schedule s = (c1(s), c2(s), . . . , cq(s))

H̃ Set of paths in digraph (Q, A, ∅)
H̃s Set of paths in digraph Gs ∈ Λ(G)
H Set of dominant paths in digraph (Q, A, ∅)
Hs Set of dominant paths in digraph Gs ∈ Λ(G)
Hk(p) Set of critical dominant paths in digraph Gk ∈ Λ(G)

with respect to vector p : Hk(p) ⊆ Hk

lpk Critical weight of digraph Gk ∈ Λ(G) with the vector
p of processing times: lpk = maxμ∈Hs

lp(μ)

H̃ i
k Set of paths in digraph Gk ending in vertex r ∈ QJi,

r denotes the last operation of job Ji: r = w(i) + ni

H i
k Subset of all dominant paths in set H̃ i

k

Hsk Subset of paths of set Hs, which are not dominated
by paths from set Hk

Hsk(T ) Hsk(T ) = {μ ∈ Hs : There is no path ν ∈ Hk which
dominates path μ in polytope T}



Chapter 2

General Shop with Interval
Processing Times

It usually takes me more than three
weeks to prepare a good impromptu speech

Mark Twain

In [269], it was noted that one “source of uncertainty is processing times,
which, typically, are not known in advance. Thus, a good model of a schedul-
ing problem would need to address these forms of uncertainty.” In the
stochastic settings of scheduling problems considered in the second part of
[269], the random processing time of an operation is assumed to take a
known probability distribution when dealing with uncertain scheduling en-
vironments mainly for single-stage systems. This chapter deals with general
shop and job shop scheduling problems with the objective to minimize the
makespan or mean flow time provided that the numerical input data are
uncertain. The scheduling environments that we consider are so uncertain
that all information available about the processing time of an operation
is its upper and lower bounds. To be more specific, we consider problem
G/ai≤pi≤ bi/Φ and problem J /ai≤pi≤ bi/Φ. Such problems may arise in
many practical situations since, even if no specific bounds for an uncertain
processing time pi are known in advance, one can set ai = 0 and bi equal to
the planning horizon. In spite of practical interest, such a type of scheduling
problems was considered in a limited OR literature so far.

Most algorithms developed in this chapter are time-consuming. So, we
assume that an optimization may be performed under less time pressure
and with less time cost. As such a practical example, one can consider a
production shop, where the schedule for the next day can be run overnight.

81
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Usually, time constraints during the night are less severe than those arising
during the following day’s production process. On the following day, one
may need a quick evaluation of the effect of processing time changes on the
optimal schedule. Consequently, one may be willing to use a less efficient al-
gorithm overnight, if it allows one to answer stability questions more quickly
during the following day. As in Chapter 1, we use a mixed graph model for
representing the input data, the scheduling process and the final solution.

Our ‘strategy’ is to separate the ‘structural’ input data from the ‘numeri-
cal’ input data as much as possible. The precedence and capacity constraints
(i.e., the structural input data) are given by the mixed graph G, which com-
pletely defines the set of semiactive schedules. The set of optimal semiactive
schedules is defined by the weighted mixed graph G(p) which presents both
the structural and numerical input data. In Section 2.1, we demonstrate
some preliminary ideas of our approach using the results from Chapter 1
for solving an example of a job shop problem J 3/n = 2, ai ≤ pi ≤ bi/Cmax.
In Section 2.1, we define a G-solution of problem G/ai ≤ pi ≤ bi/Φ as a
set Λ∗(G) of dominant digraphs with the following property: For any fixed
vector p of the processing times with the components pi in the intervals
[ai, bi], i ∈ Q, there exists at least one optimal digraph in set Λ∗(G). Sec-
tion 2.2 deals with the mathematical background for later presentations.
In Section 2.3, we present the main formulas and an algorithm for solv-
ing problem G/ai ≤ pi ≤ bi/Cmax and show how to restrict the number
of digraphs which have to be considered for calculating the stability ra-
dius. In Sections 2.1 – 2.3, we present an approach to deal with problem
G/ai ≤ pi ≤ bi/Cmax based on an improved stability analysis of an optimal
schedule and demonstrate this approach on an example of the job shop prob-
lem J /ai ≤ pi ≤ bi/Cmax. In the course of this chapter, an optimal schedule
(digraph), a better and a best schedule (digraph) are considered with re-
spect to criterion Cmax (Sections 2.1 – 2.6) or criterion

∑ Ci (Sections 2.4
– 2.6). All necessary notions from Chapter 1 are generalized for problem
G/ai≤pi≤bi/Φ for a more effective use.

2.1. Minimal Dominant Set

We consider a general shop scheduling problem as described in Section 1.1.
In a deterministic setting of the scheduling problem, the processing times
pi are assumed to be known exactly for all operations i ∈ Q, and as it was
mentioned in Chapter 1, a schedule is defined by the starting times si or
completion times ci of all operations i ∈ Q. Unfortunately, in many practical
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cases, the operation processing times are unknown before scheduling or only
known with some error. In such an uncertain environment, it is not possible
to determine a priori the starting times or completion times of all operations.

Let the input data of a general shop scheduling problem be presented by a
mixed graph G = (Q, A, E) introduced in Section 1.1. If the processing times
of all operations Q are known exactly before scheduling, we associate a non-
negative real weight pi (operation duration) with each vertex i ∈ Q in the
mixed graph G = (Q, A, E) to obtain the weighted mixed graph denoted by
G(p) = (Q(p), A, E). As in Chapter 1, set Λ(G) = {G1, G2, . . . , Gλ} denotes
the set of all feasible (i.e., circuit-free) digraphs Gs = (Q, A∪Es, ∅) ∈ Λ(G)
generated from the mixed graph G = (Q, A, E) via substituting its edges
E by the arcs Es. Given a vector p = (p1, p2, . . . , pq) of the processing
times, the weighted digraph Gs(p) = (Q(p), A ∪ Es, ∅) corresponding to
a feasible digraph Gs = (Q, A ∪ Es, ∅) ∈ Λ(G) uniquely defines the earliest
completion time ci(s) of each operation i ∈ Q along with the makespan value
max{ci(s) : i ∈ Q} of schedule s. The running time of calculating c1(s),
c2(s), . . . , cq(s) for the given weighted digraph Gs(p) may be restricted by
O(q2), where q is the number of operations: q = |Q|. The maximal weight
of a path in the weighted digraph Gs(p) (called a critical weight) defines
the makespan, max{ci(s) : i ∈ Q}, of schedule s. A path in Gs(p) with
a critical weight is called a critical path. As already mentioned in Section
1.1, given a fixed vector p = (p1, p2, . . . , pq) of the processing times, in order
to construct an optimal schedule for the general shop problem G//Cmax,
one may first enumerate (explicitly or implicitly) all feasible digraphs G1(p),
G2(p), . . . , Gλ(p) and then select an optimal digraph, i.e., one with a minimal
value of the critical weight among all λ feasible digraphs.

It is worthwhile to note that the feasibility of a schedule s (and the fea-
sibility of a weighted digraph Gs(p)) is independent of the vector p = (p1,
p2, . . . , pq) of the processing times, while the optimality of a weighted di-
graph Gs(p) depends on the vector p. In other words, the set Λ(G) =
{G1, G2, . . . , Gλ} of feasible digraphs is completely defined by the mixed
graph G = (Q, A, E) (without weights p) while the information on the vec-
tor p of the processing times is needed to determine whether a schedule k ∈ S

is optimal or not, i.e., the optimality of a schedule is defined by the weighted
mixed graph G(p) = (Q(p), A, E). As in Chapter 1, S = {1, 2, . . . , λ} de-
notes the set of all semiactive schedules (see Definition 1.1 on page 22).

If the vector p of processing times is not known accurately before applying
a scheduling procedure (e.g., the processing times may vary in a realization
of a schedule), different realizations may result in different critical paths in
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the weighted digraph Gs(p). For practical problems, the cardinality λ of the
set Λ(G) may be huge (the obvious upper bound λ ≤ 2|E| could be reached).
However, as we shall show, we often only need to consider some subset B
of the set Λ(G) : B ⊆ Λ(G). Since pi ≥ 0 for all i ∈ Q, we obtain the
equality maxi∈Q ci(s) = maxμ∈Hs

lp(μ), and from equality (1.16) (see page
32) it follows that digraph Gs(p) has the minimal critical weight within the
set B ⊆ Λ(G) if and only if

max
μ∈Hs

lp(μ) = min
Gk∈B

max
ν∈Hk

lp(ν). (2.1)

For the case B = Λ(G), equality (2.1) provides an optimality criterion of a
schedule s ∈ S (if the vector p of processing times is fixed).

In this chapter, we allow the duration pi of an operation i ∈ Q to as-
sume any value in the fixed closed interval [ai, bi], 0 ≤ ai ≤ bi, defined by
inequalities (4) (see Condition 5 on page 15). Such a general shop problem
with uncertain processing times is denoted by G/ai ≤ pi ≤ bi/Cmax. As it
was already mentioned, problem G//Cmax (with fixed processing times) is a
special case of the general shop problem G/ai≤pi≤ bi/Cmax with uncertain
processing times (namely, when ai = bi for each operation i ∈ Q). In what
follows, we call problem G/ai≤pi≤bi/Cmax uncertain in contrast to problem
G//Cmax called deterministic.

One can interpret pi in the problem G/ai ≤ pi ≤ bi/Cmax as a random
variable xi with the following cumulative probability distribution:

Fi(t) = P (xi < t) =

{
0, if t < ai,

1, if t = bi.

The density function fi(t) of such a cumulative probability distribution
is uncertain in the closed interval [ai, bi] for operation i ∈ Q:

fi(t) =
dFi(t)

dt
=

⎧⎪⎪⎨⎪⎪⎩
0, if t < ai,

? if ai ≤ t ≤ bi,
0, if t > bi.

In the framework of stochastic scheduling ([269], pp. 167 – 252), each
random variable xi associated with the processing time of operation i ∈ Q
(and perhaps similar random variables associated with release times, due
dates, setup times, etc.) is assumed to have a known probability distribu-
tion. For example, the stochastic version of problem G//Cmax with expo-
nential continuous time distributions with rates αi, i ∈ Q, is denoted by
G/pi ∼ exp(αi)/ECmax, where the density function of an exponentially dis-
tributed random variable xi is fi(t) = αie

−αt, the corresponding probability
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distribution is Fi(t) = P (xi < t) = 1 − e−αt, and

Ei(xi) =
∫ ∞
0

tfi(t)dt =
∫ ∞
0

tdFi(t) =
1

αi

is the expected (mean) value of the random processing time xi. The ob-
jective of problem G/pi∼ exp(αi)/ECmax is to minimize the expected value
of the makespan ECmax for a schedule which may be constructed using an
appropriate scheduling policy.

The approach we present in this chapter for solving the uncertain prob-
lem G/ai ≤ pi ≤ bi/Cmax is based on an improved stability analysis of an
optimal digraph (see Sections 1.2 – 1.5). As follows from Chapter 1, an
optimal digraph Gs ∈ Λ(G) provides a solution of the deterministic problem
G//Cmax. In other words, an optimal digraph defines a set of m sequences
of the operations Qk processed by machine Mk, k = 1, 2, . . . , m, with a min-
imal value of the makespan among all feasible schedules when the vector
p = (p1, p2, . . . , pq) of the processing times is fixed.

Since the vector p ∈ T of processing times is unknown in the general
case of the uncertain problem G/ai≤pi≤ bi/Φ when there exist jobs Ji ∈ J

with ai < bi, the completion time of such jobs Ji ∈ J cannot be calculated
before scheduling. Therefore, mathematically, the uncertain problem G/ai≤
pi ≤ bi/Φ is not correct. In the OR literature, different approaches for
correcting the optimization problem like G/ai ≤ pi ≤ bi/Φ have been used.
In this chapter, we propose to use a G-solution to the uncertain problem
G/ai≤pi≤bi/Φ defined as a dominant set of digraphs (schedules).

Recall that T is the polytope in the space Rq
+ (with the maximum metric)

defined by inequalities (4) on page 15: T = {x = (x1, x2, . . . , xq) : ai ≤ xi ≤
bi, i ∈ Q}. The set Λ∗(G) ⊆ Λ(G) of feasible digraphs will be called a G-
solution to problem G/ai≤pi≤bi/Φ if this set contains at least one optimal
digraph for each fixed vector x ∈ T of the processing times. Note again that
instead of considering a set of digraphs Λ∗(G), we can consider directly a set
of schedules S∗ ⊆ S = {1, 2, . . . , λ} which can be induced by the set Λ∗(G) :
S∗ = {k : Gk ∈ Λ∗(G)}.

Obviously, the whole set Λ(G) may be considered as a G-solution to
problem G/ai ≤ pi ≤ bi/Φ for any given polytope T ⊆ Rq

+, i.e., for each
pair of vectors a = (a1, a2, . . . , aq) ∈ Rq

+ and b = (b1, b2, . . . , bq) ∈ Rq
+ with

ai ≤ bi, i = 1, 2, . . . , q. However, such a G-solution Λ(G) is usually redun-
dant: Polytope T may contain no point p, where some digraph from set Λ(G)
is optimal. Moreover, the construction of the whole set Λ(G) is only possible
for a small size of the scheduling problem since the cardinality λ of the set
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Λ(G) could be equal to 2|E|. Note also that during the realization of a sched-
ule, a decision-maker may have difficulties while dealing with such a vast set
of possible candidates for a single realization of a schedule. Therefore, it
is practically important to look for a ‘minimal G-solution’ Λ∗(G) ⊆ Λ(G)
for the uncertain problem G/ai≤pi≤ bi/Φ. A set Λ∗(G) is a minimal (with
respect to inclusion) G-solution if any proper subset of set Λ∗(G) is not a
G-solution. Note that a minimal G-solution Λ∗(G) may be not unique, e.g.,
since there may exist two or more optimal digraphs for some vector p ∈ T
of the processing times. We combine these arguments as follows.

Definition 2.1 A set of digraphs Λ∗(G) ⊆ Λ(G) is called a G-solution of
problem G/ai≤pi≤bi/Φ if for each fixed vector p ∈ T of the processing times
the set Λ∗(G) contains at least one optimal digraph. If any proper subset of
the set Λ∗(G) is no longer a G-solution of problem G/ai ≤ pi ≤ bi/Φ, it is
called a minimal G-solution denoted as ΛT (G).

Table 2.1 summarizes different settings of a general shop scheduling prob-
lem with the criterion Cmax in accordance with the information which is
available for a vector p of the processing times. These problems are classi-
fied on the basis of the mixed graph approach. Row 1 in Table 2.1 refers
to the mass general shop scheduling problem, where the only information
requirement on the processing times p is that vector p belongs to the space
Rq

+. Thus, the individual uncertain problem G/ai ≤ pi ≤ bi/Cmax turns out
into a mass general shop problem if bi is assumed to be ∞ and ai = 0 for
each operation i ∈ Q.

Table 2.1: Scheduling with different requirements on the numerical data

Scheduling problem Input data Semiactive Solution
schedules (G-solution)

1 Mass general shop G(p) = (Q(p), A,E); Λ(G) Λ(G)
problem 0 ≤ pi < ∞, i ∈ Q

2 Individual problem G(p) = (Q(p), A,E); Λ(G) Λ∗(G) ⊆ Λ(G)
G/ai≤pi≤bi/Cmax ai ≤ pi ≤ bi, i ∈ Q

3 Individual problem G(x) = (Q(x), A,E); Λ(G) {Gs} ⊆ Λ∗(G) ⊆ Λ(G)
G/pi∼Fi(t)/ECmax Fi(t) = P (xi < t)

4 Individual problem G(p) = (Q(p), A,E); Λ(G) Gs ∈ Λ(G)
G//Cmax ai = pi = bi, i ∈ Q

For any digraph Gs ∈ Λ(G), it is possible to construct a problem G/ai≤
pi ≤ bi/Cmax with appropriate values ai and bi such that digraph Gs will be
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optimal in some realization of vector p, ai ≤ pi ≤ bi, i ∈ Q, of the processing
times. The above statement is true. Indeed, for each critical path μ ∈ Hs

we can set pi equal to a sufficiently small real ε ≥ 0 for each operation
i ∈ Q0 = [μ]\⋃

k �=s
⋃

ν∈Hk(p)[ν], where μ ∈ Hs is a critical path in digraph Gs.
For such a setting of the processing times, equality (2.1) is satisfied with
B = Λ(G). If Q0 = Q, we get a trivial individual problem G//Cmax with
pi = ε = 0, i ∈ Q, where any digraph Gs from set Λ(G) is optimal.

In this chapter, we consider the uncertain problem G/ai ≤ pi ≤ bi/Cmax

which is rather general (see row 2 in Table 2.1). In one extreme case when
ai = 0 and bi = ∞ for each operation i ∈ Q, the uncertain problem G/ai≤
pi ≤ bi/Cmax coincides with the whole mass problem presented in row 1. In
the other extreme case when ai = bi for each i ∈ Q, the uncertain problem
G/ai≤pi≤ bi/Cmax is reduced to the deterministic problem G//Cmax (row 4
in Table 2.1), which is one of the basic problems studied in deterministic
scheduling theory. The more information about vector p is available before
applying a scheduling procedure, the ‘better’ G-solution may be obtained:
The cardinality of a minimal G-solution ΛT (G) is smaller if the polytope T is
defined by smaller closed intervals [ai, bi]. For example, a minimal G-solution
(see Definition 2.1) is reduced to a single optimal digraph Gs ∈ Λ(G) in the
case of the deterministic problem G//Cmax (row 4 in Table 2.1).

Row 3 refers to the individual stochastic problem G/pi ∼ Fi(t)/ECmax,
one of the basic problems studied in stochastic scheduling theory, where
each operation i ∈ Q is assumed to be a random variable with a probabil-
ity distribution Fi(t) known before applying a scheduling procedure. For
problem G/pi ∼Fi(t)/ECmax, the optimal solution may be a single digraph
Gs when one adopts a static scheduling policy ([269], page 178) or a subset
of feasible digraphs Λ∗(G) when one adopts a dynamic scheduling policy
([269], page 179). When a static scheduling policy is adopted, a decision-
maker can use an optimal schedule s ∈ S which minimizes the expected
makespan ECmax and thus, schedule s remains unchanged during the entire
process. In the case of a dynamic scheduling policy, an initial schedule s

may be constantly revised during the solution process based on the updated
information available [269]. We note that a minimal G-solution ΛT (G) for an
uncertain problem G/ai≤pi≤bi/Cmax, may be calculated exactly before the
realization of the process, while for a stochastic problem G/pi∼Fi(t)/ECmax

the solution may vary and may even coincide with the whole set Λ(G) for
some of the probability distributions Fi(t). It is worth to note that for all
four formulations presented in Table 2.1, the set of feasible solutions (set of
semiactive schedules) remains the same and therefore, the properties of the
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feasible digraphs Λ(G) are of particular importance for all problem settings
presented in Table 2.1. Our approach for solving problem G/ai≤pi≤bi/Cmax

is based on the stability property of an optimal digraph which guarantees
that a feasible digraph remains optimal after feasible variations of the pro-
cessing times. To facilitate the presentation of the ideas of our approach for
solving an uncertain problem G/ai≤pi≤bi/Cmax, we demonstrate it using a
small example of a job shop problem with uncertain numerical data.

Example 2.1 We consider the job shop problem J 3/n=2, ai≤pi≤bi/Cmax

with two jobs J = {J1, J2} and three machines M = {M1, M2, M3}. Job
J1 (job J2, respectively) consists of the following set of ordered operations
{O1,1, O1,2, O1,3} = QJ1 (operations {O2,1, O2,2, O2,3} = QJ2). The assign-
ment of the operations {O1,1, O1,2, O1,3, O2,1, O2,2, O2,3} to the set of machines
M is as follows: QJ

1 = {O1,1, O2,2}, QJ
2 = {O1,2, O2,1, O2,3}, QJ

3 = {O1,3}.
For criterion Cmax, it is useful to consider also a dummy operation Oij

provided that its processing time is equal to zero: pij = 0. To accommodate
dummy operations in the framework of the mixed graph G = (QJ , AJ , EJ),
we assume that each dummy operation ‘has to be processed’ by a special
dummy machine with a zero processing time, and we assume that the num-
ber of dummy machines is equal to the number of dummy operations. As
a result, each dummy operation turns out to be an isolated vertex in the
subgraph (QJ , ∅, EJ) of the mixed graph G. In Example 2.1, we consider
the operations O0,1 and O0,2 as dummy operations, and the machines M4

and M5 as dummy machines. Let operation O0,1 (operation O0,2) denote
the beginning (the end) of a schedule, and so operation O0,1 precedes all
other operations (all other operations precede operation O0,2). We assume
that QJ

4 = {O0,1} and QJ
5 = {O0,2}. The input data of Example 2.1

is represented by the weighted mixed graph G(p) = (QJ(p), AJ , EJ) given
in Figure 2.1, where each processing time pij is presented near the ver-
tex Oij ∈ QJ , and the vector p of processing times is defined as follows:
p = (p1,1, p1,2, p1,3, p2,1, p2,2, p2,3) = (75, 50, 40, 60, 55, 30). (Vector p ∈ R6

+
does not include the processing times of the dummy operations O0,1 and
O0,2.) For this small example, we can explicitly enumerate all feasible di-
graphs Λ(G) = {G1, G2, . . . , G5} with their signatures.

EJ
1 = {(O1,1, O2,2), (O2,1, O1,2), (O1,2, O2,3)},

EJ
2 = {(O1,1, O2,2), (O2,1, O1,2), (O2,3, O1,2)},

EJ
3 = {(O1,1, O2,2), (O1,2, O2,1), (O1,2, O2,3)},

EJ
4 = {(O2,2, O1,1), (O2,1, O1,2), (O1,2, O2,3)},

EJ
5 = {(O2,2, O1,1), (O2,1, O1,2), (O2,3, O1,2)}.
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Figure 2.1: Weighted mixed graph G(p) = (QJ(p), AJ , EJ)

We calculate the makespans for all feasible digraphs from set Λ(G):

lp1 = max{cini
(1) : Ji ∈ J} = 165,

lp2 = max{cini
(2) : Ji ∈ J} = 250,

lp3 = max{cini
(3) : Ji ∈ J} = 270,

lp4 = max{cini
(4) : Ji ∈ J} = 280,

lp5 = max{cini
(5) : Ji ∈ J} = 280,

and select an optimal weighted digraph G1(p) = (QJ(p), AJ ∪EJ
1 , ∅) with the

signature EJ
1 = {(O1,1, O2,2), (O2,1, O1,2), (O1,2, O2,3)}. The digraph G1(p)

has a minimal critical weight equal to 165 (see Figure 2.2). Using formu-
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Figure 2.2: Optimal digraph G1 = (QJ , AJ∪EJ
1 , ∅) with the completion times cij presented

near the vertices Oij ∈ QJ

las (1.31) and (1.32) given on page 43, we can calculate the stability radius
of the optimal digraph G1(p). To this end, we compare digraph G1(p) with
each digraph Gk ∈ Λ(G) \ {G1}.

In Table 2.2, we present the calculations with respect to formulas (1.31)
and (1.32) in detail. Each path μ ∈ H1k ⊆ H1 in G1(p) presented in column 3
is compared with each path ν ∈ Hk presented in column 4 provided that
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lp(ν) ≥ lp1 = 165. The cardinalities of the sets H1k, k = 2, 3, . . . , λ, are
given in column 2. (Since H1,2 = ∅ and H1,4 = ∅, digraphs G2 and G4

are not involved in the computations.) The non-decreasing sequence (1.30)
of the processing times (pνμ

(0), p
νμ
(1), . . . , p

νμ
(ωνμ)) defined on page 42, is given in

column 5. In column 6, we present the calculations according to the fraction
in the formula (1.31) consecutively for each β = 0, 1, . . . , ωνμ. In columns 7,
8 and 9, respectively, we extract the maximum for β = 0, 1, . . . , wνμ, the
maximum for ν ∈ Hk, l

p(ν) ≥ lp1, and the minimum for μ ∈ H1k from the
values obtained in column 6. As a result, column 9 presents the values of
rk1 for the digraphs Gk. The last step is to adapt the formula (1.32) from
Theorem 1.4 (see page 43). The minimum value r̂ks is given in column 9.

Due to formula (1.31), we calculate the stability radius 	̂1(p) =
min{30, 30} = 30. Thus, digraph G1 remains optimal for any vector
x = (x1,1, x1,2, x1,3, x2,1, x2,2, x2,3) of the processing times if its distance
from the given vector p = (75, 50, 40, 60, 55, 30) is no more than 30 :
pij − 30 ≤ xij ≤ pij + 30. Therefore, while solving this instance of an uncer-
tain problem J 3/n = 2, ai ≤ pi ≤ bi/Cmax, digraph G1 = (QJ , AJ ∪ EJ

1 , ∅)
remains optimal if all possible variations of the processing times x =
(x1,1, x1,2, x1,3, x2,1, x2,2, x2,3) belong to the stability ball O�̂1(p)(p) = O30(p),
i.e., if the following inequality holds:

max
Oij∈QJ

{xij − aij, bij − xij} ≤ 30. (2.2)

In such a case, polytope T defined by inequalities (4) in the vector space
R6

+ has to be completely contained in the stability ball O30(p) of the optimal
digraph G1 : T ⊆ O30(p). In other words, digraph G1 provides a G-solution to
the uncertain problem J 3/n=2, ai≤pi≤bi/Cmax as long as inequality (2.2)
is satisfied: Λ∗(G) = {G1}. It is clear that this G-solution Λ∗(G) is also a
minimal G-solution to the uncertain problem J 3/n=2, ai≤pi≤bi/Cmax due
to Definition 2.1. Thus, in the case when inequality (2.2) holds, a decision-
maker needs to use only digraph G1 from the set Λ(G) = {G1, G2, G3, G4, G5}
as an optimal one for any feasible realization of the processing times. In such
a case, a G-solution of problem J 3/n = 2, ai ≤ pi ≤ bi/Cmax turns out to be
a solution (in the ordinary sense) for any deterministic problem J 3/n =
2/Cmax with the fixed vector p of the processing times from the polytope T.

The minimal G-solution to the uncertain problem J 3/n=2, ai≤pi≤bi/Cmax

consists of a single digraph: {G1} = Λ∗(G) ⊆ ΛT (G).

Let polytope T for the instance J 3/n=2, ai≤pi≤bi/Cmax under consider-
ation be given such that inequality (2.2) does not hold. Then the optimality
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Table 2.2: Calculation of the stability radius �̂1(p) for problem J 3/n=2/Cmax

Gk |H1k| μ∈H1k ν∈Hk pνμ
(β)

lp(ν)−lp(μ)−∑β
α=0 pνμ

(α)

|[μ]∪[ν]|−|[μ]∩[ν]| −β
max

β
max

ν
min

μ

lp(μ) lp(ν)≥ lp1 0≤β≤wνμ

1 2 3 4 5 6 7 8 9

G2 0

G3 1 (O2,1, O1,2, (O1,1, O1,2, O1,3) pνμ
(0) =0 165−150−0

2−0 =7.5 7.5 30 30
O1,3) lp(ν)=165= lp1 pνμ

(1) =75 165−150−75
2−1 <0

lp(μ)=150 (O1,1, O1,2, O2,1, pνμ
(0) =0 270−150−0

4−0 =30 30
O2,2, O2,3) pνμ

(1) =30 270−150−30
4−1 =30

lp(ν)=270 pνμ
(2) =55 270−150−(30+55)

4−2 =17.5

>165 pνμ
(3) =75 270−150−(30+55+75)

4−3 < 0

G4 0

G5 2 (O1,1, O1,2, (O2,1, O2,2, O1,1, pνμ
(0) =0 280−155−0

4−0 =31.25 31.25 31.25 30
O2,3) O1,2, O1,3) pνμ

(1) =40 280−155−40
4−1 =28 1

3

lp(μ)=155 lp(ν)=280 pνμ
(2) =50 280−155−(40+55)

4−2 =15

>165 pνμ
(3) =60 280−155−(40+55+60)

4−3 < 0

(O2,1, O2,2, O2,3, pνμ
(0) =0 235−155−0

4−0 =20 20
O1,2, O1,3) pνμ

(1) =40 235−155−40
4−1 =13 1

3

lp(ν)=235 pνμ
(2) =55 235−155−(40+55)

4−2 < 0

>165 pνμ
(3) =60 235−155−(40+55+60)

4−3 < 0

(O1,1, O2,2, (O2,1, O2,2, O1,1, pνμ
(0) =0 280−160−0

4−0 =30 30 30
O2,3) O1,2, O1,3) pνμ

(1) =40 280−160−40
4−1 =26 2

3

lp(μ)=160 lp(ν)=280 pνμ
(2) =50 280−160−(40+50)

4−2 =15

>165 pνμ
(3) =60 280−160−(40+50+60)

4−3 <0

(O2,1, O2,2, O2,3, pνμ
(0) =0 235−160−0

4−0 =18.75 18.75
O1,2, O1,3) pνμ

(1) =40 235−160−40
4−1 =11 2

3

lp(ν)=235 pνμ
(2) =50 235−160−(40+50)

4−2 =7.5

>165 pνμ
(3) =60 235−160−(40+50+60)

4−3 < 0

of digraph G1 is not guaranteed within the given polytope T : There exists
another feasible digraph Gk ∈ Λ(G), k �= 1, (we call it a competitive digraph
for G1) with a critical weight being smaller than the critical weight of digraph
G1 in some realization of the processing times x ∈ R6

+. If such a ‘superiority’
of the competitive digraph Gk occurs when the processing times are defined
by the vector p∗ = (p∗1,1, p

∗
1,2, . . . , p

∗
2,3) ∈ T (i.e., digraph Gk instead of G1 is

optimal for the new vector p∗ of the processing times), we can calculate the
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stability radius 	̂k(p
∗) of digraph Gk for this new vector p∗.

In the case when the stability radius 	̂k(p
∗) is strictly positive, we can

consider the union O30(p) ∪ O�̂k(p∗)(p
∗) of the two balls (instead of one ball

O30(p) as before). If inclusion T ⊆ O30(p) ∪ O�̂k(p∗)(p
∗) holds, then a G-

solution for the uncertain problem J 2/n = 3, ai ≤ pi ≤ bi/Cmax is already
obtained: Λ∗(G) = {G1, Gk}. In such a case, a decision-maker needs to use
either digraph G1 or digraph Gk for the realization of an optimal schedule.

Otherwise (if inclusion T ⊆ O30(p)∪O�̂k(p∗)(p
∗) does not hold), we have to

calculate the stability radius 	̂r(p
∗∗) of a competitive digraph Gr of digraph

Gk for such a vector p∗∗ of the processing times, for which digraph Gr is
optimal.

Continuing in this manner, we may cover the given polytope T by the
union of the stability balls of some feasible digraphs from set Λ(G). As
a result, for any vector of the processing times from the polytope T (i.e.,
whenever inequalities (4) hold), we may obtain at least one optimal schedule.

For Example 2.1 with the vector p = (75, 50, 40, 60, 55, 30), the com-
petitive digraphs for the optimal digraph G1 are the digraphs G3 = (QJ ,

AJ ∪EJ
3 , ∅) and G5 = (QJ , AJ ∪EJ

5 , ∅), where EJ
3 = {(O1,1, O2,2), (O1,2, O2,1),

(O1,2, O2,3)} and EJ
5 = {(O2,2, O1,1), (O2,1, O1,2), (O2,3, O1,2)}. The digraph

G3 along with the completion times of the operations are presented in Fig-
ure 2.3.
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Figure 2.3: Competitive digraph G3 = (QJ , AJ ∪ EJ
3 , ∅) for G1 = (QJ , AJ ∪ EJ

1 , ∅) which
is optimal for vector p = (75, 50, 40, 60, 55, 30) of the processing times

As the calculation of the stability radius shows, at the boundary of
the ball O30(p) (namely, at the point p∗ = (p∗1,1, p

∗
1,2, p

∗
1,3, p

∗
2,1, p

∗
2,2, p

∗
2,3) =

(45, 80, 70, 90, 25, 0) ∈ R6
+) both digraphs G1 and G3 are optimal. Note

that vector p∗ has already been determined during our calculation of the
stability radius on the basis of formulas (1.31) and (1.32). Specifically, vec-
tor p∗ has been obtained from vector p by decreasing the processing times
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of the operations O1,1, O2,2, O2,3 by the value 	̂1(p): p∗1,1 = 75 − 30 =
45, p∗2,2 = 55 − 30 = 25, p∗2,3 = 30 − 30 = 0, and by increasing the
processing times of the operations O1,2, O1,3, O2,1 by the same value 	̂1(p):
p∗1,2 = 50 + 30 = 80, p∗1,3 = 40 + 30 = 70, p∗2,1 = 60 + 30 = 90. In other
words, to obtain vector p∗, we can use the following formula:

p∗i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pi + r, if i ∈ [μ],
max{0, pi − r}, if i ∈ [ν] \ [μ],
pi, if i �∈ [μ] ∪ [ν], μ ∈ Hsk, ν ∈ Hk,

(2.3)

where [μ] = {O1,2, O1,3, O2,1}, μ ∈ H1,3, [ν] = {O1,1, O1,2, O2,1, O2,2,
O2,3}, ν ∈ H3, and r = 	̂1(p) = 30. Due to such changes in the pro-
cessing times, the critical weight of digraph G1 is increased from 165 to 240,
while the critical weight of digraph G3 is decreased from 270 to 240.

The existence of two or more optimal digraphs is a necessary condition
(but not a sufficient one) for the stability radius to be equal to zero (see
Theorem 1.1 on page 33). Nevertheless, the ‘nonstability’ of an optimal
digraph may happen at the boundary of a stability region (the stability region
of the digraph Gs is the whole set of vectors p ∈ Rq

+ with the schedule s

being optimal), where at least two optimal digraphs exist. Such a situation
occurs for Example 2.1 under consideration, namely: 	̂1(p

∗) = 	̂3(p
∗) = 0.

Indeed, according to Theorem 1.1, there exists a path μ∗ ∈ H1(p), [μ∗] =
{O1,2, O1,3, O2,1}, such that there does not exist any path ν ∈ H3(p) with
[μ∗] ⊆ [ν]. On the other hand, there exists a path ν∗ ∈ H3(p), [ν∗] =
{O1,1, O1,2, O2,1, O2,2, O2,3}, such that there does not exist any path μ ∈ H1(p)
with [ν∗] ⊆ [μ]. Note that for point p∗, the only competitive digraph for
digraph G3 is digraph G1 (and vice versa), where the stability radius of G1

for the original point p ∈ Rq
+ has been already calculated.

Considering the competitive digraph G5 instead of the competitive digraph
G3 gives also zero stability radii for both digraphs G1 and G5 with the cor-
responding vector p′ = (105, 20, 10, 30, 85, 60) of the processing times, con-
structed due to (1.27) with r = 	̂1(p) = 30 for the paths [μ′] = {O1,1, O2,2,

O2,3}, μ′ ∈ H1,5, and [ν ′] = {O1,1, O1,2, O1,3, O2,1, O2,2}, ν ′ ∈ H5.

Thus, we can conclude that using the notion of a stability radius given in
Definition 1.2 is not sufficient for solving Example 2.1 when inequality (2.2)
does not hold for the given set T of feasible vectors of the processing times.

From the above discussion it follows that another type of stability radius
is required for solving a problem G/ai≤pi≤bi/Cmax. While 	̂s(p) denotes the
largest radius of a ball O�̂(p) within which digraph Gs is ‘the best’ for the
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whole set Λ(G) (see Definition 1.2 on page 28), we need to determine the
largest ball within which digraph Gs is ‘the best’ for a subset B of the set
Λ(G) of feasible digraphs. In particular, for Example 2.1 we need to calculate
the largest radius of the ball within which digraph G3 has the minimal critical
weight among the digraphs Λ(G) except digraph G1. Indeed, digraph G1

is optimal within the ball O�̂1(p)(p) and so digraph G1 has already to be
contained in the set of candidates for an optimal realization: G1 ∈ Λ∗(G).
Thus, in Example 2.1, we need to consider the set B = Λ(G)\{G1} instead of
the whole set Λ(G) of feasible digraphs while calculating the stability radius
of digraph G3. It is clear that considering set B instead of set Λ(G) may
increase such a stability radius in an appropriate way. In Section 2.2, we
propose another definition (more general than Definition 1.2) of the stability
radius which is just suitable for solving problem G/ai ≤ pi ≤ bi/Cmax. Note
that the given bounds ai and bi for the possible variations of the processing
time xi, i ∈ Q, may also enlarge the stability ball of the optimal digraph
Gs. E.g., this is true for Example 2.1 since inequality (2.2) becomes only
a sufficient condition for the optimality of digraph G1 (but not a necessary
one). We provide both necessary and sufficient conditions for a zero (and for
an infinitely large) stability radius. In Section 2.3, the formulas (1.31) and
(1.32) proven for the case of calculating the stability radius with 0 ≤ pi <
∞, i ∈ Q, are generalized to the case when the variations of the processing
times are given by inequalities (4) and some feasible digraphs have to be
excluded from the comparisons with ‘the best’ one.

2.2. Relative Stability Radius

In Chapter 1, the stability radius 	̂s(p) of an optimal digraph Gs has been
investigated which denotes the largest quantity of independent variations of
the processing times pi of operations i ∈ Q within the interval [0,∞) such
that digraph Gs remains ‘the best’ (i.e., the weighted digraph Gs(p) has the
minimal critical weight) among all feasible digraphs Λ(G) (see Definition 1.2
on page 28). From Example 2.1 it follows that for solving problem G/ai ≤
pi ≤ bi/Cmax, we need a more general notion of the stability radius since
the processing time of operation i ∈ Q falls within the given closed interval
[ai, bi], 0 ≤ ai ≤ bi, and competitive digraphs have to belong to a subset B
of set Λ(G). The following generalization of the stability radius 	̂s(p) (we
call it relative stability radius) is defined by considering the closed interval
[ai, bi] instead of [0,∞) and considering set B ⊆ Λ(G) instead of the whole
set Λ(G). In Definition 2.2, lps denotes the critical weight of the weighted
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digraph Gs(p), p ∈ T , see equality (1.18) on page 33.

Definition 2.2 Let digraph Gs ∈ B ⊆ Λ(G) have the minimal critical
weight lp

′
s for each vector p′ ∈ O�(p) ∩ T among all digraphs from the given

set B: lp
′

s = min{lp′k : Gk ∈ B}. The maximal value of the radius 	 of such a
ball O�(p) is denoted by 	̂B

s (p ∈ T ) and is called the relative stability radius
of digraph Gs with respect to polytope T .

Note that relativity of 	̂B
s (p ∈ T ) is defined not only by the polytope

T of feasible vectors, but also by the set B of feasible digraphs. From
Definition 1.2 and Definition 2.2, it follows: 	̂s(p) = 	̂Λ(G)

s (p ∈ Rq
+). Thus, the

relative stability radius is equal to the maximal error of the given processing
times pi (ai ≤ pi ≤ bi, i ∈ Q) within which the ‘superiority’ of digraph Gs

is still preserved over the given subset B of feasible digraphs.
The following two extreme cases of the relative stability radius are of

particular importance for solving problem G/ai ≤ pi ≤ bi/Cmax. On the one
hand, if for any positive real number ε > 0 which may be as small as desired,
there exist a vector p′ ∈ Oε(p)∩ T and a digraph Gk ∈ B such that lp

′
s > lp

′
k ,

we obtain a zero relative stability radius: 	̂B
s (p ∈ T ) = 0. On the other hand,

if lp
′

s ≤ lp
′

k for any vector p′ ∈ T and for any digraph Gk ∈ B, we obtain an
infinitely large relative stability radius: 	̂B

s (p ∈ T ) = ∞. Note that even in
the case of finite upper bonds (bi < ∞, i ∈ Q), i.e., when the maximal error
of the processing time pi for each operation i ∈ Q is restricted by

εmax = max{{pi − ai, bi − pi} : i ∈ Q}, (2.4)

the value of 	̂B
s (p ∈ T ) may be infinitely large as it follows from Defini-

tion 2.2. The deterministic problem G//Cmax with the vector p of processing
times and the optimal digraph Gs provides such a trivial example with an
infinitely large relative stability radius 	̂B

s (p ∈ T ). Indeed, if ai = pi = bi

for each operation i ∈ Q, then polytope T degenerates into a single point:
T = {p} and therefore, from inclusion p′ ∈ O�(p)∩T , it follows that vector p′

mentioned in Definition 2.2 is definitely equal to vector p, for which digraph
Gs is optimal.

To characterize the extreme values of 	̂B
s (p ∈ T ), we define the following

binary relation which generalizes the dominance relation used in Chapter 1.

Definition 2.3 Path ν dominates path μ in set T if and only if for any
vector x = (x1, x2, . . . , xq) ∈ T the following inequality holds:

lx(μ) ≤ lx(ν). (2.5)
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Note that the binary relation introduced in Definition 2.3 is an extension
of the dominance relation introduced in Definition 1.3 (see page 30) in the
sense that path ν dominates path μ in any set T ⊆ Rq

+ (i.e., due to Def-
inition 2.3) if path ν dominates path μ (due to Definition 1.3). Indeed, if
[μ] ⊂ [ν], then inequality lx(μ) ≤ lx(ν) holds for any vector x ∈ Rq

+. Note
also that both dominance relations coincide at least when ai = 0 and bi = ∞
for each operation i ∈ Q (it is easy to see that inclusion [μ] ⊂ [ν] holds if
and only if inequality (2.5) holds for ai = 0 and bi = ∞, i ∈ Q). Moreover,
in this case equality lx(μ) = lx(ν) is achieved only if equalities xi = ai = 0
hold for any operation i ∈ [ν] \ [μ].

Thus, we conclude that the dominance relation introduced in Defini-
tion 1.3 is a special case of the dominance relation defined by inequality
(2.5) when T coincides with the whole vector space Rq

+ (i.e., ai = 0 and
bi = ∞ for each operation i ∈ Q). Hence, the phrase “path ν dominates
path μ” is identical to the phrase “path ν dominates path μ in Rq

+”.
The following lemma gives a simple criterion for the dominance relation

defined by inequality (2.5) in Definition 2.3.

Lemma 2.1 Path ν dominates path μ in set T if and only if the following
inequality holds: ∑

i∈[μ]\[ν]
bi ≤

∑
j∈[ν]\[μ]

aj. (2.6)

Proof. By subtracting all common variables from the left-hand side and
the right-hand side of inequality (2.5) and taking into account that ai ≤ bi

for each operation i ∈ Q, we obtain that inequality (2.5) is equivalent to the
following ones:∑

i∈[μ]\[ν]
xi ≤

∑
j∈[ν]\[μ]

xj for any xi with ai ≤ xi ≤ bi, i ∈ [ν] ∪ [μ]. (2.7)

Vector x ∈ T satisfies inequalities (2.7) if and only if inequality (2.6)
holds since we have:∑

i∈[μ]\[ν]
ai ≤

∑
i∈[μ]\[ν]

bi ≤
∑

j∈[ν]\[μ]
aj ≤

∑
j∈[ν]\[μ]

bj.

�

On the basis of the above path domination, we can introduce the following
dominance relation of path sets.

Definition 2.4 The set of paths Hk dominates the set of paths Hs in T if
and only if for any path μ ∈ Hs, there exists a path ν ∈ Hk, which dominates
path μ in set T.
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The following statement gives a simple sufficient condition when a dom-
ination of sets of paths does not hold.

Lemma 2.2 The set of paths Hk does not dominate the set of paths Hs in
T if there exists a path μ ∈ Hs such that system{ ∑

i∈[ν]\[μ] ai <
∑

j∈[μ]\[ν] bj,

ai ≤ xi ≤ bi, i ∈ Q,
(2.8)

has a solution for any path ν ∈ Hk.

Proof. From Definition 2.4, it follows that the set of paths Hk does not
dominate the set of paths Hs in T if there exists a path μ∗ ∈ Hs such that
there is no path ν ∈ Hk which dominates path μ∗ in set T . This means that
inequality (2.5) is violated for path μ∗ ∈ Hs for some vector x0 ∈ T , i.e.,
system {

lx(ν) < lx(μ),
ai ≤ xi ≤ bi, i ∈ Q,

(2.9)

has a solution for any path ν ∈ Hk. Furthermore, system (2.9) is consistent
if and only if it has the following solution:

xi = x0
i =

{
ai, if i ∈ [μ∗] \ [ν],
bi, if i ∈ [ν] \ [μ∗].

(2.10)

It is easy to see that vector x according to (2.10) is a solution of system
(2.9) if and only if condition (2.6) does not hold for any vertex i ∈ [ν]∪ [μ∗].
In other words, vector x0 = (x0

1, x
0
2, . . . , x

0
q) ∈ T and path μ∗ ∈ T provide a

solution of the equivalent system (2.8).
�

Obviously, if Hk = Hk(p), we have Hk(p
′) ⊆ Hk = Hk(p) for any vector

p′ ∈ Rq
+ of the processing times. The following lemma shows that the set of

critical paths is not expanded for small variations of the processing times.

Lemma 2.3 If Hk �= Hk(p), inclusion Hk(p
′) ⊆ Hk(p) holds for any vector

p′ ∈ Oε(p) ∩ Rq
+ with the real number εk > ε > 0 defined as follows:

εk =
1

q
[lpk − max{lp(ν) : ν ∈ Hk \ Hk(p)}]. (2.11)

Proof. Since Hk \ Hk(p) �= ∅, we can consider any path ν� ∈ Hk with
lp(ν�) = max{lp(ν) : ν ∈ Hk \ Hk(p)}. From (2.11) it follows that lpk −
lp(ν�) = q · εk, and therefore, to make the difference lpk − lp(ν�) equal to
zero, we need a vector p′ with a distance from vector p greater than or
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equal to εk : d(p, p′) ≥ εk. However, due to the condition of Lemma 2.3,
we have d(p, p′) ≤ ε < εk. Consequently, ν� /∈ Hk(p

′). Since for any path
ν ∈ Hk \ Hk(p) with lp(ν) < lp(ν�) the difference lpk − lp(ν) is still greater
than the product q · εk, such a path ν cannot belong to set Hk(p

′).
�

Next, we present a generalization of Theorem 1.1 (see page 33) proven
for a zero stability radius to the case of a zero relative stability radius.

Theorem 2.1 Let digraph Gs have the minimal critical weight lps, p ∈ T,
within the given subset B ⊆ Λ(G) of feasible digraphs. Then equality 	̂B

s (p ∈
T ) = 0 holds if and only if there exists a digraph Gk ∈ B such that lps =
lpk, k �= s, and the set of paths Hk(p) does not dominate the set of paths
Hs(p) in T .

Proof. Sufficiency (if). Let the conditions of Theorem 2.1 hold: There
exists a digraph Gk ∈ B such that lps = lpk, k �= s, and Hk(p) does not
dominate set Hs(p) in T. We show that 	̂B

s (p ∈ T ) < ε for any given real
number ε > 0 which may be as small as desired.

Since set Hk(p) does not dominate set Hs(p) in T, there exists a path
μ∗ ∈ Hs(p) such that no path ν ∈ Hk(p) dominates path μ∗ in set T , i.e.,
system (2.9) has a solution for any path ν ∈ Hk(p). First, we make the
following remark.

Remark 2.1 From the consistency of system (2.9), it follows that for the
considered problem G/ai ≤ pi ≤ bi/Cmax, the trivial case with ai = bi for
each i ∈ Q does not hold. Indeed, in this case the first inequality in (2.9) is
transformed into inequality lp(ν) < lp(μ∗) which is certainly wrong: lp(ν) =
lpk = lps = lp(μ∗).

We construct a vector p′ = (p′1, p
′
2, . . . , p

′
q) with the following components:

p′i =

⎧⎪⎪⎨⎪⎪⎩
pi + ε′, if i ∈ [μ∗], pi �= bi,

pi − ε′, if i ∈ {∪ν∈Hk(p)[ν]}\[μ∗], pi �= ai,
pi, otherwise,

(2.12)

where ε′ is chosen as a strictly positive real number less than both value ε
and value εmin = max{0, min{min{pi − ai : pi > ai, i ∈ Q}, min{bi − pi :
bi > pi, i ∈ Q}}}. We can also choose ε′ less than εk > 0 defined in (2.11).
More precisely, if Hk �= Hk(p), then εk > 0, and we can choose ε′ such that
0 < ε′ < min{ε, εk, εmin}. Otherwise, if Hk = Hk(p), we choose ε′ such
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that 0 < ε′ < min{ε, εmin}. Such choices are possible since in both cases,
inequality εmin > 0 holds due to Remark 2.1.

The following arguments are the same for both cases of the choice of ε′

except the ‘last step’ since Hk \ Hk(p) = ∅ in the latter case.

Since system (2.9) has a solution for each path ν ∈ Hk, the first inequality
in (2.9), lx(ν) < lx(μ∗), has a solution for x ∈ T which implies that inclu-
sion [μ∗] ⊂ [ν] does not hold for any path ν ∈ Hk(p). Therefore, from the
equalities lp(ν) = lpk = lps = lp(μ∗) and (2.12), we can conclude that vector p′

is a solution to system (2.9) for each path ν ∈ Hk(p). In other words, vector
p′ is a solution to the following system of inequalities:{

lx(ν) < lx(μ∗), ν ∈ Hk(p),
ai ≤ xi ≤ bi, i ∈ Q.

Thus, we obtain inequality lp
′
(ν) < lp

′
(μ∗) for each path ν ∈ Hk(p), and

max{lp′(ν) : ν ∈ Hk(p)} < lp
′
(μ∗). (2.13)

Since p′ ∈ Oε′(p) ∩ Rq
+ with 0 < ε′ < εk, due to Lemma 2.3, we obtain

Hk(p
′) ⊆ Hk(p) and, as a result, for each path τ ∈ Hk \ Hk(p) inequality

lp
′
(τ) < lp

′
k = max{lp′(ν) : ν ∈ Hk(p)} (2.14)

holds. From inequalities (2.13) and (2.14), it follows that lp
′

k < lp
′

s . Taking
into account that d(p′, p) = ε′ < ε, we conclude that 	̂B

s (p ∈ T ) < ε.

Necessity (only if). We prove necessity by contradiction. Suppose that
	̂B

s (p ∈ T ) = 0 but the condition of Theorem 2.1 does not hold. The
following two cases (i) and (ii) of violating the condition of Theorem 2.1
may hold.

(i) There does not exist a digraph Gk ∈ B such that lps = lpk, k �= s.

In the trivial case when B = {Gs}, we have 	̂B
s (p ∈ T ) = ∞ due to

Definition 2.2. Let B \ {Gs} �= ∅. Then we calculate the following real
number:

ε∗ =
1

q
min{lpt − lps : Gt ∈ B, t �= s} (2.15)

which is strictly positive since inequality lps < lpt holds for each digraph
Gt ∈ B, t �= s. Arguing in a similar way as in the proof of Lemma 2.3, we
can show that the difference lpt − lps cannot become negative when vector p

is replaced by an arbitrary vector p0 ∈ Oε∗(p)∩Rq
+. Next, we show that the

difference lpt − lps cannot become negative when vector p is replaced by an
arbitrary vector p0 ∈ Oε∗(p) ∩ T ⊆ Rq

+ with 0 < ε∗ < εk.
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Since Hk\Hk(p) �= ∅, we can consider any path ν� ∈ Hk with lp(ν�) =

max{lp(ν) : ν ∈ Hk\Hk(p)}. From (2.15) it follows that lp
0

k − lp
0

s ≥ q · ε∗, and

therefore, to make the difference lp
0

k − lp
0

s equal to zero, we need a vector p′

with a distance from vector p greater than or equal to εk : d(p0, p′) ≥ εk.

However, due to the conditions of Lemma 2.3, we have d(p, p′) ≤ ε∗ < εk.
Consequently, ν� /∈ Hk(p

′). Since for any digraph Gt ∈ B, with lp
0

(ν) <

lp
0

(ν�) the difference lp
0

k − lp
0

s is still greater than the product q · ε∗, such a
path ν cannot belong to the set Hk(p

′). So we conclude that digraph Gs

remains ‘the best’ (perhaps one of the ‘best’) within the set B for any vector
p0 of the processing times. Due to Definition 2.2, we have 	̂B

s (p ∈ T ) ≥ ε∗ > 0
which contradicts the above assumption of 	̂B

s (p ∈ T ) = 0.

(ii) There exists a digraph Gk ∈ B such that lps = lpk, k �= s, and for any
such digraph Gk, the set of paths Hk(p) dominates the set of paths Hs(p) in
T . In this case, we can take any ε that satisfies the following inequalities:

0 < ε < min

{
min{εk : lpk = lps, Gk ∈ B}, 1

q
min{lpt − lps : lpt > lps, Gt ∈ B}

}
.

Due to inequality ε > εs, we get from Lemma 2.3 that equalities

lp
0

s = max
μ∈Hs(p0)

lp
0

(μ) = max
μ∈Hs(p)

lp
0

(μ) (2.16)

hold for any vector p0 ∈ Oε(p) ∩ Rq
+. The statement that for any digraph

Gk ∈ B, k �= s, with lps = lpk the set of paths Hk(p) dominates the set of
paths Hs(p) in T means that for any path μ ∈ Hs(p), there exists a path
ν∗ ∈ Hk(p) such that system{

lx(ν∗) < lx(μ),
ai ≤ xi ≤ bi, i ∈ Q,

has no solution. Therefore, inequality

lx(μ) ≤ lx(ν∗) (2.17)

holds for any vector x ∈ T. Due to inequality (2.17) and taking into account
that ε < εk and ε < εs, we obtain the following inequality using Lemma 2.3:

max
μ∈Hs(p)

lp
0

(μ) ≤ max
ν∈Hk(p)

lp
0

(ν). (2.18)

Thus, due to (2.16) and (2.18), we obtain inequality

lp
0

s ≤ max
ν∈Hk(p)

lp
0

(ν) (2.19)
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for any digraph Gk ∈ B, lps = lpk, k �= s. Since ε < 1
q min{lpt − lps : lpt >

lps, Gt ∈ B}, inequality lpt > lps implies inequality lp
0

t > lp
0

s . Taking into

account (2.19), we conclude that lp
0

s ≤ lp
0

k for any digraph Gk ∈ B and for
any vector p0 ∈ T with d(p, p0) ≤ ε. Consequently, 	̂B

s (p ∈ T ) ≥ ε > 0,
which contradicts the assumption of 	̂B

s (p ∈ T ) = 0.
�

Theorem 2.1 directly implies the following statement.

Corollary 2.1 If Gs ∈ B is the unique optimal digraph for the vector p ∈ T
of processing times, then 	̂B

s (p ∈ T ) > 0.

From Theorem 2.1, we obtain the following lower bound for 	̂B
s (p ∈ T ).

Corollary 2.2 If Gs ∈ B and lps = min{lpk : Gk ∈ B}, then 	̂B
s (p ∈ T ) ≥ ε∗

with ε∗ calculated according to (2.15).

Proof. If there exists a digraph Gk ∈ B such that lps = lpk, k �= s, we
obtain 	̂B

s (p ∈ T ) ≥ ε∗ = 0 due to Definition 2.2. Otherwise, inequality
	̂B

s (p ∈ T ) ≥ ε∗ follows from the proof of necessity in Theorem 2.1 (case (i)).
�

Theorem 2.1 identifies a digraph Gs ∈ Λ(G) whose ‘superiority’ within
the set B is unstable: Even a very small change in the processing times can
make another digraph from the set B to be ‘better’ than Gs.

The following theorem identifies a digraph Gs whose ‘superiority’ within
the set B in the polytope T is ‘absolute’: Any changes of the processing
times within the polytope T cannot make another digraph from the set B

to be ‘better’ than digraph Gs.

Theorem 2.2 For digraph Gs ∈ B, 	̂B
s (p ∈ T ) = ∞ if and only if for any

digraph Gt ∈ B, t �= s, the set of paths Ht dominates the set of paths Hs \H

in T.

Proof. Sufficiency. Let 	 be a positive number (as large as desired). We
take any vector p ∈ O�(p) ∩ T ⊆ Rq

+ and consider a path μ ∈ Hs such that
lps = lp(μ).

(j) If μ ∈ H, then lps = lp(μ) ≤ lpt for any digraph Gt ∈ Λ(G).
(jj) If μ ∈ Hs \ H, then due to the condition of Theorem 2.2, it follows

that for any digraph Gt ∈ B, t �= s, there exists a path ν∗ ∈ Ht such that
inequality lx(μ) ≤ lx(ν∗) holds for any vector x ∈ T (and for vector p as
well). Therefore, we obtain lps = lp(μ) < lp(ν∗) ≤ lpt .
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Thus, in both cases (j) and (jj), we obtain lps = min{lpt : Gt ∈ B}.
Necessity. We prove necessity by contradiction. Let us suppose that

	̂B
s (p ∈ T ) = ∞, but there exists a digraph Gt ∈ B, t �= s, such that the set

of paths Ht does not dominate the set of paths Hs \ H in T . Thus, there
exists a path μ0 ∈ Hs \ H such that for any path ν ∈ Ht, the system of
inequalities {

lx(ν) < lx(μ0),
ai ≤ xi ≤ bi, i ∈ Q,

(2.20)

has a solution. Therefore, due to Lemma 2.2, inequality∑
i∈[ν]\[μ0]

ai <
∑

j∈[μ0]\[ν]
bj (2.21)

holds. We consider the vector p∗ = (p∗1, p
∗
2, . . . , p

∗
q) ∈ T with

p∗i =

⎧⎪⎪⎨⎪⎪⎩
ai, if i ∈ {⋃

[ν]∈Ht
[ν]} \ [μ0],

bi, if i ∈ [μ0],
pi otherwise.

Adding to the left-hand side and to the right-hand side of (2.21) the value∑
j∈[ν]∩[μ0] bj, we obtain that inequality∑

i∈[ν]\[μ0]
ai +

∑
j∈[ν]∩[μ0]

bj <
∑

j∈[μ0]
bj

holds. Thus, we can conclude that vector p∗ is a solution to the system of
linear inequalities obtained by joining systems (2.20) for all paths ν ∈ Ht:{

lp
∗
(ν) < lp

∗
(μ0), ν ∈ Ht,

ai ≤ xi ≤ bi, i ∈ Q.

Therefore, lp
∗

t < lp
∗
(μ0) ≤ lp

∗
s , and hence, we get a contradiction to the above

assumption: 	̂B
s (p ∈ T ) < d(p∗, p) ≤ εmax < ∞.

�

The following upper bound for 	̂B
s (p ∈ T ) immediately follows from the

proof of necessity in Theorem 2.2.

Corollary 2.3 If 	̂B
s (p ∈ T ) < ∞, then 	̂B

s (p ∈ T ) ≤ εmax, where value εmax

is calculated according to (2.4).

In the following section, we use Theorem 2.2 as a stopping rule in the
algorithm developed for solving problem G/ai ≤ pi ≤ bi/Cmax since the op-
timality of digraph Gs ∈ B with 	̂B

s (p ∈ T ) = ∞ does not depend on the
vector p ∈ T of processing times.
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2.3. Algorithms for Problem G/ai≤pi≤bi/Cmax

From Sections 2.1 and 2.2, it follows that a G-solution for the uncertain
problem G/ai ≤ pi ≤ bi/Cmax may be obtained on the basis of a repeated
calculation of the relative stability radii 	̂B

s (p ∈ T ). Thus, we need formulas
for calculating 	̂B

s (p ∈ T ). In Section 1.3, formulas (1.31) and (1.32) were
proven for calculating the stability radius 	̂s(p) = 	̂Λ(G)

s (p ∈ Rq
+) (see Theo-

rem 1.4 on page 43). Theorem 2.3, which follows, generalizes these formulas
for any given subset B ⊆ Λ(G) of feasible digraphs and for any given poly-
tope T ⊆ Rq

+ of feasible vectors of the processing times. To present the
new formulas, we need the following notations. Let μ and ν be paths in
the digraphs from set Λ(G). Then [μ]+ [ν] denotes the symmetric difference
[μ]∪ [ν] \ [μ]∩ [ν] of the sets [μ] and [ν]. We calculate the following values:

Δi(μ, ν) =

{
bi − pi, if i ∈ [μ] \ [ν],
pi − ai, if i ∈ [ν] \ [μ].

(2.22)

Moreover, let Δi
0(μ, ν) be equal to zero. We order the set of values Δi(μ, ν)

for all operations i from the symmetric difference [μ] + [ν] in the following
way:

Δi1
1 (μ, ν) ≤ Δi2

2 (μ, ν) ≤ . . . ≤ Δ
i|[μ]+[ν]|
|[μ]+[ν]|(μ, ν), (2.23)

where the subscript j ∈ {1, 2, . . . , [μ]+ [ν]} indicates the location of Δi(μ, ν)
in the above sequence (2.23), and the superscript ij denotes operation ij ∈
[μ]+[ν] for which the value Δ

ij
j (μ, ν) was calculated. For simplicity, we shall

substitute the superscript ij by one index i (which means operation i = ij).
We hope that it will not cause a misunderstanding.

For any two feasible digraphs Gs and Gk, we introduce the fol-
lowing set of paths: Hsk(T ) = {μ ∈ Hs : There is no path ν ∈
Hk which dominates path μ in T}.
Theorem 2.3 If digraph Gs has the minimal critical weight lps, p ∈ T, in
the given set B ⊆ Λ(G) of feasible digraphs, then

	̂B
s (p ∈ T ) = min

Gk∈B
r̂B
ks, (2.24)

r̂B
ks = min

μ∈Hsk(T )
max

ν∈Hk, lp(ν)≥lps
max

β=0,1,...,|[μ]+[ν]|−1

lp(ν) − lp(μ) − ∑β
α=0 Δi

α(μ, ν)

|[μ] + [ν]| − β
.

(2.25)

Proof. From Definition 2.2 it follows:

	̂B
s (p ∈ T ) = inf{d(p, x) : x ∈ T, lxs > min{lxk : Gk ∈ B}}.
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Therefore, to find the relative stability radius 	̂B
s (p ∈ T ), it is sufficient

to construct a vector x ∈ T which satisfies the following three conditions.
(1) There exists a digraph Gk(p) ∈ B, k �= s, such that lxs = lxk , i.e.,

max
μ∈Hs

lx(μ) = max
ν∈Hk

lx(ν). (2.26)

(2) For any given real number ε > 0, which may be as small as desired,
there exists a vector pε ∈ T such that d(x, pε) = ε and lp

ε

s > lp
ε

k , i.e., inequality

max
μ∈Hs

lp
ε

(μ) > max
ν∈Hk

lp
ε

(ν) (2.27)

is satisfied for at least one digraph Gk(p) ∈ B.
(3) The distance d(p, x) achieves the minimal value among the distances

between the vector p and the other vectors in the given polytope T which
satisfy both above conditions (1) and (2).

After having constructed such a vector x ∈ T , one can define the relative
stability radius of digraph Gs as follows: 	̂B

s (p ∈ T ) = d(p, x). Indeed, the
critical path of digraph Gs becomes larger than that of digraph Gk for any
vector pε ∈ T with positive real ε, which may be as small as desired (see
condition (2)). Therefore, digraph Gs has no longer the minimal critical
weight among all other feasible digraphs while in the ball Od(p,x)(p ∈ T ),
digraph Gs has the minimal critical weight (see condition (3)). Digraph Gk

satisfying conditions (1) and (2) is called a competitive digraph for digraph
Gs. To satisfy conditions (1), (2) and (3) (except the inclusion x ∈ T ), we
first search for a vector x = p(r) = (p1(r), p2(r), . . . , pq(r)) ∈ Rq with the
components pi(r) ∈ {pi, pi + r, pi − r} on the basis of a direct comparison of
the paths from set Hs and the paths from the sets Hk, where Gk ∈ B.

Let the value lp(ν) be greater than the weight of a critical path in the
optimal digraph Gs. To satisfy equality (2.26), the weight of a path ν ∈ Hk

must be smaller than or equal to the weight of at least one path μ ∈ Hs,
and there must exist a path ν ∈ Hk with a weight equal to the weight of a
critical path of Gs. Thus, if we have calculated

rν = min
μ∈Hs

lp(ν) − lp(μ)

|[μ] + [ν]| , (2.28)

we obtain equality
max
μ∈Hs

lp(r)(μ) = lp(r)(ν) (2.29)

for vector p(r) = p(rν) with the components

pi(r) = pi(rν) =

⎧⎪⎪⎨⎪⎪⎩
pi + rν, if i ∈ [μ],
pi − rν, if i ∈ [ν]\[μ],
pi, if i �∈ [μ] + [ν].

(2.30)
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We can give the following remark.

Remark 2.2 Due to (2.28), the vector p(r) calculated in (2.30) is the closest
one to the given vector p among all vectors x for which equality (2.29) holds
with p(r) = x. Indeed, to make the difference lx(ν) − maxμ∈Hs

lx(μ) equal
to zero, one needs a q-dimensional vector x with a distance from vector p
greater than or equal to rν : d(p, x) ≥ rν.

To reach equality (2.26) for digraph Gk, we have to repeat calculation
(2.28) for each path ν ∈ Hk with lp(ν) ≥ lps. Instead of vector p(rν), we
consider vector p(r) = p(rGk

) calculated according to formula (2.30), where

rGk
= min

μ∈Hs

max
ν∈Hk; lp(ν)≥lps

lp(ν) − lp(μ)

|[μ] + [ν]| . (2.31)

Next, we consider inequality (2.27). Since the vectors of the processing
times have to belong to polytope T ⊆ Rq

+, this inequality may not be valid
for a vector pε ∈ T if path ν dominates path μ in set T . Thus, we can
restrict our consideration to the subset Hsk(T ) of the set Hs of all paths,
which are not dominated in T by paths from set Hk and for which there
does not exist a path ν ∈ Hk such that [ν] = [μ]. Hence, we can replace
Hs in equality (2.31) by Hsk(T ). To obtain the desired vector x ∈ Rq, we
have to use equality (2.31) for each digraph Gk ∈ Λ(G), k �= s. Let r denote
the minimum of such a value rGk

: r = rGk∗ = min{rGk
: Gk, k �= s} and let

ν∗ ∈ Hk∗ and μ∗ ∈ Hsk∗ be paths at which value rGk∗ has been reached:

rGk∗ = rν∗ =
lp(ν∗) − lp(μ∗)

|[μ] + [ν]| .

Taking into account (2.31), we note that, if rν∗ ≤ Δ = min{bi − pi : i ∈
[ν∗] \ [μ∗]} and rν∗ ≤ Δ′ = min{pi − ai : i ∈ [ν∗] \ [μ∗]}, then vector p(r)
belongs to polytope T . Due to Remark 2.2 given after formula (2.30), we
have obtained the following lower bound for the stability radius:

	̂B
s (p ∈ T ) ≥ r = min

Gk∈B
min

μ∈Hsk(T )
max

ν∈Hk; lp(ν)≥lps

lp(ν) − lp(μ)

|[μ] + [ν]| . (2.32)

The bound (2.32) is tight: If 	̂B
s (p ∈ T ) ≤ min{Δi(μ∗, ν∗) : i ∈ [μ∗]∪ [ν∗]},

then 	̂B
s (p ∈ T ) = r. We have 	̂B

s (p ∈ T ) = r in (2.32) if 	̂B
s (p ∈ T ) ≤ εmin.

To obtain the exact value of the relative stability radius 	̂B
s (p ∈ T ) in the

general case, we can use vector x = p∗(r) = (p∗1(r), p
∗
2(r), ..., p

∗
q(r)) with the

components

p∗i (r) =

⎧⎪⎪⎨⎪⎪⎩
pi + min{r, bi − pi}, if i ∈ [μ],
pi − min{r, pi − ai}, if i ∈ [ν] \ [μ],
pi, if i �∈ [μ] + [ν],

(2.33)
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instead of the vector p(r) defined in (2.30). As it follows from Remark 2.2,
such a vector p∗(r) ∈ T is the closest one to the vector p among all vectors
x ∈ T which satisfy both conditions (1) and (2).

For calculating the maximal value r for the vector p∗(r), we can consider
each operation i from the set [μ] ∪ [ν] one by one in a non-decreasing order
(2.23) of the values Δi(μ, ν) defined in (2.22). As a result, formula (2.32)
will be transformed into the formulas given in Theorem 2.3.

�

We can give the following remark.

Remark 2.3 The formulas (2.24) and (2.25) defined in Theorem 2.3 turn
into 	̂B

s (p ∈ T ) = ∞ if Hsk(T ) = ∅ for each digraph Gk ∈ B.

Example 2.1 (continued). Returning to Example 2.1 given in Section 2.1,
let us consider problem J 3/n = 2, ai ≤ pi ≤ bi/Cmax whose input data are
given by the weighted mixed graph G(p) in Figure 2.1 together with vec-
tor a = (a1,1, a1,2, . . . , a2,3) and vector b = (b1,1, b1,2, . . . , b2,3) of lower and
upper bounds for the possible variations of the processing times p, where
a = (35, 40, 20, 50, 45, 20) and b = (100, 90, 110, 80, 80, 40). The numerical
input data for this instance of problem J 3/n = 2, ai ≤ pi ≤ bi/Cmax are
given in Table 2.3. Since the mixed graph G is the same for the above de-

Table 2.3: Numerical data for problem J 3/n=2, ai≤pi≤bi/Cmax

i 1 1 1 2 2 2
j 1 2 3 1 2 3

aij 35 40 20 50 45 20
bij 100 90 110 80 80 40

terministic problem J 3/n = 2/Cmax considered in Section 2.1 and for the
new uncertain problem J 3/n = 2, ai ≤ pi ≤ bi/Cmax, we have the same set
Λ(G) of feasible digraphs (see Table 2.1 on page 86). Moreover, if we start
the calculation with the same initial vector p = (75, 50, 40, 60, 55, 30) of the
processing times, we obtain the same optimal digraph G1, presented in Fig-
ure 2.2 with the dummy operations O0,1 and O0,2. Using Theorem 2.3, we

can calculate the relative stability radius of this digraph: 	̂
Λ(G)
1 (p ∈ T ) = 60,

where polytope T ∈ R6
+ is defined by the above vectors a and b (see Ta-

ble 2.3). Note that, due to these bounds aij and bij for the possible vari-
ations of the processing times pij, Oij ∈ QJ = {O1,1, O1,2, . . . , O2,3}, the
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stability radius of the digraph G1 increased from 30 to 60 (remind that

in Section 2.1, we calculated 	̂
Λ(G)
1 (p ∈ R6

+) = 	1(p) = 30). One can

observe the calculation of 	̂
Λ(G)
1 (p ∈ T ) in Table 2.4. The set H1k(T ) is

empty for each digraph Gk, k ∈ {2, 4, 5}. Note that Hsk(T ) ⊆ Hsk, there-
fore we have H1,2(T ) = ∅ and H1,4(T ) = ∅. Moreover, for both paths
μ1 = (O1,1, O1,2, O2,3) ∈ H1,5 and μ2 = (O1,1, O2,2, O2,3) ∈ H1,5, there exists
a path ν2 = (O2,1, O2,2, O1,1, O1,2, O1,3) ∈ H5 which dominates both paths μ1

and μ2 in T , i.e., inequality (2.6) holds. Table 2.4 has an analogous design
as Table 2.2 from Section 2.1 with the exception of column 5, which contains
the values Δij

β (μ, ν), β ∈ {0, 1, . . . , |[μ]+[ν]|−1}, defined by formula (2.22) on
page 103 in non-decreasing order defined by sequence (2.23). Let us consider
path μ = (O2,1, O1,2, O1,3) ∈ H1,3(T ) and path ν1 = (O1,1, O1,2, O1,3) ∈ H3.
For each vertex from set [μ]+[ν1] (set [μ]+[ν1] denotes the symmetric differ-
ence of sets [μ] and [ν1]), |[μ]+[ν1]| = 2, we calculate the values Δ1,1(μ, ν1) =
p1,1 − a1,1 = 75 − 35 = 40, Δ2,1(μ, ν1) = b2,1 − p2,1 = 80 − 60 = 20. By a
comparison of path μ with path ν2 = (O1,1, O1,2, O2,1, O2,2, O2,3) ∈ H3, we find
the values Δ1,1(μ, ν2) = p1,1 −a1,1 = 75− 35 = 40, Δ1,3(μ, ν2) = b1,3 − p1,3 =
110 − 40 = 70, Δ2,2(μ, ν2) = p2,2 − a2,2 = 55 − 45 = 10, Δ2,3(μ, ν2) =
p2,3 − a2,3 = 30 − 20 = 10. The sequential calculations of the fraction from
the formula (2.25) are represented in column 6 in Table 2.4. Column 9 (see
Table 2.2) is redundant for this small example. So, one of the two competi-
tive digraphs, namely digraph G3 (see Figure 2.3 on page 92), remains also a
competitive digraph of G1 for problem J 3/n=2, ai≤pi≤ bi/Cmax. However,
the new vector of the processing times p∗ = p(2) has to be calculated due to
formula (2.33) with r = 	̂

Λ(G)
1 (p ∈ T ) = 60, μ = (O2,1, O1,2, O1,3) ∈ H1

and ν = (O1,1, O1,2, O2,1, O2,2, O2,3) ∈ H1,3(T ) ⊆ H3. Thus, vector p∗ is as
follows: p∗ = p(2) = (35, 90, 100, 80, 45, 20). Next, we follow the scheme pro-
posed on pages 90–94 for obtaining a G-solution of problem J 3/n= 2, ai ≤
pi ≤ bi/Cmax. We calculate 	̂

Λ(G)\{G1}
3 (p(2) ∈ T ) = 32.5 on the basis of Theo-

rem 2.3 and obtain the competitive digraph G2 of digraph G3. For digraph
G2, the minimum in (2.24) is reached on the set B = Λ(G) \ {G1}, and
thus digraph G2 becomes optimal at least for one point p(3) of the stability
sphere (the boundary of the stability ball O32.5(p

(2))). Then we calculate the

stability radius 	̂
Λ(G)\{G1,G3}
2 (p(3) ∈ T ) = 27.5 for the new optimal digraph G2

and for the new set B := B \ {G3} = Λ(G) \ {G1, G3}. Then on the basis of

Theorem 2.2 (or Theorem 2.3), we obtain 	̂
Λ(G)\{G1,G2,G3}
4 (p(4) ∈ T ) = ∞.

Thus, solving problem J 3/n = 2, ai ≤ pi ≤ bi/Cmax takes four iterations
presented in Table 2.5. We obtain that the set of digraphs {G1, G2, G3, G4}
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Table 2.4: Calculation of the relative stability radius �̂
Λ(G)
1 (p ∈ T ) for problem J 3/n =

2, ai≤pi≤bi/Cmax

Gk |H1k(T )| μ∈H1k(T ) ν∈Hk Δij
β (μ, ν)

lp(ν)−lp(μ)−∑β
α=0Δ

ij
α(μ,ν)

|[μ] + [ν]| − β
max

β
max

ν

lp(μ) lp(ν)≥ lp1 0≤β≤|[μ]+[ν]|−1
1 2 3 4 5 6 7 8

G2 0

G3 1 (O2,1, O1,2, (O1,1, O1,2, O1,3) Δij
0 (μ, ν1)=0 165−150−0

2−0 =7.5 7.5 60
O1,3) lp(ν1)=165= lp1 Δ2,1

1 (μ, ν1)=20 165−150−20
2−1 <0

lp(μ)=150 (O1,1, O1,2, O2,1, Δij
0 (μ, ν2)=0 270−150−0

4−0 =30 60
O2,2, O2,3) Δ2,2

1 (μ, ν2)=10 270−150−10
4−1 =362

3

lp(ν2)=270 Δ2,3
2 (μ, ν2)=10 270−150−(10+10)

4−2 =50
>165 Δ1,1

3 (μ, ν2)=40 270−150−(10+10+40)
4−3 =60

G4 0

G5 0

is a G-solution to problem J 3/n = 2, ai ≤ pi ≤ bi/Cmax under consideration:
Λ∗(G) = {G1, G2, G3, G4}. In other words, the given polytope T is covered
by the union of the stability balls of four digraphs from set Λ∗(G).

Table 2.5: Constructing a G-solution of problem J 3/n = 2, ai ≤ pi ≤ bi/Cmax by Algo-
rithm SOL Cmax(1)

i Center p(i) ∈ T of Set B of Optimal 	̂B
s (p(i)∈T) Competitive

the stability ball feasible digraphs digraph Gs digraph of Gs

1 (75, 50, 40, 60, 55, 30) Λ(G) G1 60 G3

2 (35, 90, 100, 80, 45, 20) Λ(G) \ {G1} G3 32.5 G2

3 (67.5, 90, 67.5, 80, Λ(G) \ {G1, G3} G2 27.5 G4

77.5, 40)
4 (40, 90, 95, 80, 80, 40) Λ(G) \ {G1, G2, G3} G4 ∞ −

The projections of these stability balls on the plane for the component
p1,3 of vector p given at the axis of the x-coordinates and for the compo-
nent p2,2 of vector p given at the axis of the y-coordinates are drawn in
Figure 2.4. The last stability ball has an infinite radius 	̂4(p

(4) ∈ T ) = ∞,
i.e., it coincides with the whole vector space R6: O∞(p(4)) = R6. Thus,
the stability ball O∞(p(4)) covers the given polytope T and all other stability
balls. (The stability ball O∞(p(4)) is not shown in Figure 2.4.) The compet-
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Figure 2.4: Projections of the stability balls on the plane for problem J 3/n=2, ai≤pi≤
bi/Cmax constructed by Algorithm SOL Cmax(1)

itive digraph, for which the minimum in (1.31) is reached, becomes optimal
at least for one point of the stability sphere (the boundary of the stability
ball O�̂s(p)(p)) and it becomes ‘better’ than digraph Gs(p). For some suitable
changes of the processing times pi ± (	̂s(p) + ε) (where ε is a positive real
number, and it may be as small as desired), at least one of the four digraphs
{G1, G2, G3, G4} becomes optimal. Therefore, a decision-maker can use one
of the schedules from set Λ∗(G) = {G1, G2, G3, G4} for the possible realiza-
tion of the processing times. As it will be shown at the end of this section,
set {G1, G2, G3, G4} is not a minimal G-solution of the considered instance
of problem J 3/n=2, ai≤pi≤bi/Cmax since at least digraph G2 is redundant
in this set.

Problem G/ai ≤ pi ≤ bi/Cmax may be solved as follows. Let B denote a



110 CHAPTER 2. GENERAL SHOP WITH INTERVAL PROCESSING TIMES

subset of feasible digraphs which contains a G-solution Λ∗(G) for problem
G/ai≤pi≤bi/Cmax. On the basis of the algorithm, which follows, we can ex-
pand the set Λ′ ⊆ Λ∗(G) starting with Λ′ = ∅ and finishing with Λ′ = Λ∗(G).

Algorithm SOL Cmax(1)

Input: Set Λ(G) of feasible digraphs,
polytope T of feasible processing times.

Output: G-solution Λ∗(G) of problem G/ai≤pi≤bi/Cmax.

Step 1: Find a set B ⊆ Λ(G) such that Λ∗(G) ⊆ B.
Step 2: Set Λ′ = ∅.
Step 3: Fix the vector p of processing times, p ∈ T .
Step 4: Find an optimal digraph Gs(p) ∈ B for problem

G//Cmax with the vector p of processing times.
Step 5: Calculate the relative stability radius 	̂B

s (p ∈ T ).
Step 6: IF 	̂B

s (p ∈ T ) < ∞ and B \ {Gs} �= ∅ THEN
BEGIN

Step 7: Select a digraph Gk(p) ∈ B which is
a competitive digraph for Gs(p).

Step 8: Find a vector p∗ ∈ T of processing times

closest to p such that lp
∗

s = lp
∗

k and for any
small ε > 0, there exists a vector pε with
lp

ε

s > lεk and d(p∗, pε) ≤ ε.
Step 9: Set Λ′ := Λ′ ∪ {Gs}.
Step 10: Set B := B \ {Gs}.
Step 11: Set s = k; p = p∗ GOTO Step 5

END
Step 12: ELSE Λ∗(G) = Λ′ ∪ {Gs} STOP

Next, we concretize some steps of Algorithm SOL Cmax(1). In Step 1,
the determination of the set B = Λ(G) of all feasible digraphs by an explicit
enumeration is possible only for a small number of edges in the mixed graph
G. In the computational experiments discussed in Section 1.5, such a direct
enumeration of feasible digraphs Λ(G) has been used for a small number |E|
of edges of the mixed graph G = (Q, A, E), namely for |E| ≤ 30. These
experiments have shown that a competitive digraph has a critical weight,
which is close to that of an optimal digraph. Moreover, using the simple
bound proven at the end of this section, one can considerably restrict the
number of feasible digraphs, with which a comparison of an optimal digraph
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Gs has to be done while calculating the relative stability radius 	̂B
s (p ∈

T ). For a large cardinality of the set E, one can use a branch-and-bound
algorithm for the construction of the k best digraphs (see Section 1.5). As
it was shown for the traveling salesman problem [228, 230] and for linear
Boolean programming [365], the running time of such a branch-and-bound
algorithm grows rather slowly with k.

In Step 3, we have to fix the processing times as any vector from set T.
For example, we can use a ‘historical’ vector p of the processing times which
helps to simplify Steps 3, 4 or 5 (as it was done in Example 2.1). If the
input data of the problem are new, we can assume pi = 1

2(bi − ai), i ∈ Q.

Step 4 may be realized by an explicit enumeration or by an implicit
enumeration (e.g., by a branch-and-bound method) of the feasible digraphs
B. In Step 4, we can apply Theorem 2.1 to guarantee that the selected
optimal digraph Gs is stable. If 	̂B

s (p ∈ T ) = 0, we can take another optimal
digraph (the latter exists due to Theorem 2.1) which is stable, or we can
change the initial vector p of the processing times.

Steps 5, 7, and 8 may be done on the basis of Theorem 2.2 or Theo-
rem 2.3. If 	̂B

s (p ∈ T ) = ∞, Theorem 2.2 can be used as a ‘stopping rule’ of
the algorithm. Otherwise, we are forced to use Theorem 2.3 which is more
time-consuming. A competitive digraph and a new vector p∗ of the pro-
cessing times are calculated in Algorithm SOL Cmax(1) in parallel with the
calculation of the relative stability radius 	̂B

s (p ∈ T ). Note that a compet-
itive digraph is not necessarily uniquely determined, and one can take any
of them. Steps 5 and 7 are rather complicated. In Algorithm SOL Cmax(1)
we must anew construct a set Hsk(T ) in each iteration based on a direct
comparison of the paths in a new optimal digraph Gs and in each other
digraph Gk from set B, so it may be very time-consuming.

Next, we propose Algorithm SOL Cmax(2), which is often more efficient.
This algorithm focuses on one of the optimal digraphs G1 and on one vector
p of the processing times in set T . Let {Γi : i = 1, 2, . . . , I} be the set
of competitive digraphs of digraph G1 with respect to set B, where i is a
counter of the current iteration and I is the number of iterations.

Algorithm SOL Cmax(2)

Input: Set Λ(G) of feasible digraphs,
polytope T of feasible processing times.

Output: G-solution Λ∗(G) of problem G/ai≤pi≤bi/Cmax.

Step 1: Find a set B ⊆ Λ(G) such that Λ∗(G) ⊆ B.
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Step 2: Set Λ′ = ∅; i = 1 and Γi = ∅.
Step 3: Fix the vector p of processing times, p ∈ T .
Step 4: Find an optimal digraph G1(p) := Gs(p) ∈ B for problem

G//Cmax with the vector p of processing times.
Step 5: Calculate 	̂B

1 (p ∈ T ).
Step 6: IF 	̂B

1 (p ∈ T ) < ∞ THEN
BEGIN

Step 7: Select the set of competitive digraphs Γi of digraph
G1(p) with respect to set B.

Step 8: Set Λ′ := Λ′ ∪ Γi.
Step 9: Set B := B \ Γi and i := i + 1. GOTO Step 5

END
Step 10: ELSE Λ∗(G) := Λ′ ∪ {G1} STOP

Using Algorithm SOL Cmax(2), we construct an increasing sequence of
the relative stability radii 	̂1 < 	̂2 < . . . < 	̂I of the stability balls
O�̂i

(p), i ∈ {1, 2, . . . , I}, with the same center p ∈ T and different sets of
feasible digraphs B = Λ(G) \ ⋃i

j=1 Γj. Moreover, we construct a sequence of
‘nested sets’ of the competitive digraphs Γ1, Γ1

⋃
Γ2, . . . ,

⋃I
i=1 Γi of digraph

G1, where the set {G1}⋃{⋃I
i=1 Γi} is a G-solution Λ∗(G) to the scheduling

problem on the mixed graph (Q, A ∪ E1, ∅), and G1 is one of the optimal
digraphs in the set Λ(G) for the vector p ∈ T of processing times.

The most difficult part of Algorithm SOL Cmax(2) is to find the stability
radius 	̂B

1 (p ∈ T ) (Step 5 and Step 6) and to find the sets of competitive
digraphs (Step 7). However, one can use the following remark.

Remark 2.4 It is not necessary to perform Steps 1 - 11 since one can con-
struct a G-solution Λ∗(G) in one scan. Namely, from Remark 2.3, it follows
that all digraphs Gk, k �= 1, for which a set H1k(T ) �= ∅ was constructed in
Step 5 are united with the optimal digraph G1 and compose a G-solution:
Λ∗(G) = {G1}⋃ {⋃I

i=1 Γi} = {G1}⋃ {Gk : H1k(T ) �= ∅}.
Thus, one can use the software developed for the problems discussed in

Chapter 1 with the following modification: We add the loop of Steps 6 – 9.
An increasing sequence of the relative stability radii of the stability balls
with the same center p ∈ T corresponds to an increasing sequence of the
values r̂B

k1 calculated by (2.25) for the optimal digraph G1(p) in Step 5. A
competitive digraph (or set of competitive digraphs Γi) of digraph G1(p) is
constructed in one scan as well.

Example 2.1 (continued). Solving the above problem takes only two itera-
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tions by Algorithm SOL Cmax(2) (see Table 2.6). Thus, the set of digraphs
Λ∗(G) = {G1, G3} is also a G-solution to problem J 3/n=2, ai≤pi≤bi/Cmax

under consideration. Using Algorithm SOL Cmax(2), one can construct two
stability balls O60(p) and O∞(p), which cover the polytope T (see Figure 2.5).
(Again, the stability ball with an infinite radius cannot be shown.) So,
we convince that Algorithm SOL Cmax(1) did not construct a minimal G-
solution. Indeed, in the G-solution {G1, G2, G3, G4} constructed by Algo-
rithm SOL Cmax(1), both digraphs G2 and G4 are redundant. In the general
case, we do not know whether Algorithm SOL Cmax(2) constructs a mini-
mal G-solution as well. However, for Example 2.1, it is easy to see that
there is no one-element G-solution for this instance. Hence, the G-solution
Λ∗(G) = {G1, G3} presented in Table 2.6 is minimal for Example 2.1 (with
respect to the cardinality of set Λ∗(G)).

Remark 2.5 For both algorithms, fixing the initial vector p in Step 3 and
the choice of an optimal digraph Gs(p) in Step 4 (and also in Step 7 for
Algorithm SOL Cmax(1)) have a large influence on the further calculations
and the resulting G-solution.

Next, we show how to restrict the number of digraphs Gk (the cardinality
of set B) with which an optimal digraph Gs has to be compared in the process
of the calculation of the relative stability radius 	̂B

s (p ∈ T ).

Redundant Digraphs for Calculating 	̂B
s (p ∈ T )

Due to formulas (2.24) on page 103, the calculation of the relative stability
radius is reduced to a complicated calculation on the set of digraphs B ⊆
Λ(G). The main objects for the calculation of 	̂B

s (p ∈ T ) are the sets of paths
in the digraphs Gk ∈ B. In the worst case, the calculation of 	̂B

s (p ∈ T )
implies to have an optimal digraph Gs and to construct all digraphs from
the subset B of the set {G1, G2, . . . , Gλ}. In order to restrict the number of
digraphs Gk with which a comparison of the optimal digraph Gs has to be

Table 2.6: Constructing a G-solution to problem J 3/n = 2, ai ≤ pi ≤ bi/Cmax by Algo-
rithm SOL Cmax(2)

i Set B 	̂B
1 (p ∈ T ) Set Γi of competitive digraphs

of the optimal digraph G1

1 Λ(G) 60 {G3}
2 Λ(G) \ {G3} ∞ ∅
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Figure 2.5: Projections of the stability balls on the plane for problem J 3/n=2, ai≤pi≤
bi/Cmax constructed by Algorithm SOL Cmax(2)

done during the calculation of 	̂B
s (p ∈ T ), one can use the upper bound for

the relative stability radius 	̂B
s (p ∈ T ) ≤ r̂B

ks, where r̂B
ks is defined according

to formula (2.25) on page 103.

Lemma 2.4 If 	̂B
s (p ∈ T ) < ∞ and there exists a digraph Gk ∈ B such that

r̂B
ks ≤

lpt − lps
q

(2.34)

for a digraph Gt ∈ B, then it is not necessary to consider digraph Gt during
the calculation of the relative stability radius 	̂B

s (p ∈ T ).

Proof. To calculate the relative stability radius 	̂B
s (p ∈ T ), one can

compare the optimal digraph Gs consecutively with each feasible digraph
Gi, i �= s, from set B. The value r̂B

ks calculated according to (2.25) (see
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page 103) shows that there exists a feasible digraph Gk, which becomes
better than digraph Gs for some vector p′ ∈ T of the processing times if
d(p, p′) = r̂B

ks + ε, where ε is a positive real number which may be as small
as desired (see condition (2) introduced on page 104).

We show that, if the condition of Lemma 2.4 is satisfied, i.e., inequal-
ity (2.34) holds, then the value r̂B

ts calculated for the digraph Gt does not
improve the minimum in formula (2.24) (since inequalities 	̂B

s (p ∈ T ) ≤
r̂B
ks ≤ r̂B

ts hold). Compare digraph Gs, which is optimal for vector p of the
processing times, with digraph Gt, t �= k. From condition (1) on page 104
(condition (2), respectively), it follows that digraph Gt is a competitive di-
graph for Gs if the weight of each path ν ∈ Ht of digraph Gt becomes equal
to the weight (smaller than the weight) of at least one path μ∗ ∈ Hs of di-
graph Gs for some new vector x̂ ∈ T (new vector p̂ε = x̂ ± ε ∈ T , where the
real number ε = d(x̂, p̂ε) > 0 may be as small as desired). Hence, inequality

max
μ∗∈Hs

lx̂(μ∗) > max
ν∈Ht

lx̂(ν)
(

max
μ∗∈Hs

lp̂
ε

(μ∗) > max
ν∈Ht

lp̂
ε

(ν), respectively
)

holds. This means that the critical weight of digraph Gt becomes smaller
than that of digraph Gs for some feasible vector of the processing times. Such
a ‘superiority’ of the competitive digraph Gt occurs for suitable changes of
the processing times p̂ε

i = pi ± (r̂B
ts + ε) = x̂i ± ε, when the value r̂B

ts = d(p, x̂)
calculated in (2.25) reaches the minimum value in (2.24) (see condition 3).
To this end, one must increase the weights of the vertices, which form a
path μ∗ ∈ Hs, by the minimal value r̂B

ts and decrease the weights of the
vertices from set [ν∗] \ [μ∗], ν∗ ∈ Ht, by the same value r̂B

ts (according to
formula (2.33)). Note that we must take such a path ν∗ ∈ Ht for which
the maximum in (2.25) is reached. So, for the competitive digraph Gt, the
distance d(p, x̂) = r̂B

ts must achieve its minimal value in formula (2.24) among
the distances between vector p and the other vectors in polytope T (i.e., the
non-strict inequality r̂B

ts ≤ r̂B
ks is also satisfied). Next, we show that, due

to (2.34), value r̂B
ts cannot be smaller than r̂B

ks during the calculation of the
relative stability radius 	̂B

s (p ∈ T ). Indeed:

r̂B
ks ≤ lpt − lps

q
≤ lpt − lp(μ∗)

q
≤ lpt − lp(μ∗)

|[ν∗]\[μ∗] + [μ∗] \ [ν∗]|
≤ max

ν∈Ht

lp(ν) − lp(μ∗)
|[μ∗] ∪ [ν]| − |[μ∗] ∩ [ν]| ≤ min

μ∈Hs

max
ν∈Ht

lp(ν) − lp(μ)

|[μ] + [ν]| ≤ r̂B
ts.

Since 	̂B
s (p ∈ T ) ≤ r̂B

ks ≤ r̂B
ts, the value r̂B

ts cannot decrease the value r̂B
ks

in (2.24) and therefore, digraph Gt need not to be considered during the
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calculation of the relative stability radius using formulas (2.24) and (2.25).
�

Corollary 2.4 Let set B = {Gs = Gi1, Gi2, . . . , Gi|B|} be sorted in non-
decreasing order of the objective function values: lpi1 ≤ lpi2 ≤ . . . ≤ lpi|B|.

If for the currently compared digraph Gik from set B ⊆ Λ(G) inequality

r̂B
iks ≤

lpit − lpi1
q

(2.35)

holds for digraph Git ∈ B with lpik ≤ lpit, then it is possible to exclude the di-
graphs Git, Git+1

, . . . , Gi|B| from further considerations during the calculation
of the relative stability radius 	̂B

s (p ∈ T ).

Proof. Since the digraphs in the set B ⊆ Λ(G) are sorted in non-decreasing
order of the objective function values and inequality (2.35) holds for digraph

Git, inequality r̂B
iks ≤

lpij
−lpi1
q holds for each digraph Gij , j = t+1, t+2, . . . , |B|.

Therefore, due to Lemma 2.4, these digraphs need not to be considered
during the calculation of the relative stability radius 	̂B

s (p ∈ T ) (since we

have the upper bound: 	̂B
s (p ∈ T ) ≤ r̂B

iks ≤
lpij

−lpi1
q ).

�

Using Corollary 2.4, one can compare the optimal digraph Gs = Gi1 con-
secutively with the digraphs Gi2, Gi3, . . . , Gi|B| from set B in non-decreasing
order of the objective function values: lpi1 ≤ lpi2 ≤ . . . ≤ lpi|B|. If for the cur-
rently compared digraph Gk = Gir inequality (2.34) holds, one can exclude
the digraphs Gir , Gir+1

, . . . , Gi|B| from further considerations. Bound (2.34)

is tight. Since 	̂s(p) = 	̂Λ(G)
s (p ∈ Rq

+), Corollary 2.4 implies Corollary 2.5
which allows us to restrict the number of feasible digraphs while calculating
the stability radius 	̂s(p) (see Definition 1.2 on page 28).

Corollary 2.5 Let set Λ(G) = {Gs = Gi1, Gi2, . . . , Giλ} be sorted in non-
decreasing order of the objective function values: lpi1 ≤ lpi2 ≤ . . . ≤
lpiλ. If for the currently compared digraph Gik from set Λ(G) = {Gs =
Gi1, Gi2, . . . , Gik, . . . , Git, . . . , Giλ} inequality

r̂
Λ(G)
iks ≤ lpit − lpi1

q
(2.36)

holds for digraph Git ∈ Λ(G) with lpik ≤ lpit, then it is possible to exclude
digraphs Git, Git+1

, . . . , Giλ from further considerations during the calculation
of the stability radius 	̂s(p).
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2.4. Dominance Relations

In this section, the job shop problem with the objective of minimizing the
sum of job completion times under uncertain numerical input data is mod-
eled in terms of a mixed graph. As far as practical scheduling is concerned,
mean flow time is more important than the makespan criterion (see Sec-
tion 1.7). Let us consider problem J /ai ≤ pi ≤ bi/

∑ Ci: It is assumed that
only the structural input data (i.e., precedence and capacity constraints)
are fixed while for the operation processing times only their lower and up-
per bounds are known before scheduling and the probability distributions of
the random processing times are unknown. The structural input data are
defined by the technological routes of the jobs, e.g., for a flow or open shop
fixing the structural input data simply means to fix the number of jobs and
the number of machines. In this and the next sections, two variants of a
branch-and-bound method are developed. The first one constructs a set of
k schedules which are the best with respect to the mean flow time criterion
(for a fixed vector of the processing times). The second variant constructs
a set of potentially optimal schedules for all perturbations of the process-
ing times within the given lower and upper bounds. To exclude redundant
schedules, we use a stability analysis based on the pairwise comparison of
schedules. Along with implicit enumerations based on a branch-and-bound
method, we realize an explicit enumeration of all feasible schedules.

Let n jobs J = {J1, J2, . . . , Jn} have to be processed on m machines
M = {M1, M2, . . . , Mm}, the technological routes of the jobs being given
(operation Oij ∈ QJ

k has to be processed by machine Mk ∈ M). A machine
can process at most one operation at a time (Condition 1 on page 11) and
preemptions of an operation are forbidden (Condition 4 on page 12). Let us
consider the job shop problem J /ai ≤ pi ≤ bi/

∑ Ci with fixed technological
routes and uncertain (interval) processing times pij, aij ≤ pij ≤ bij, Ji ∈
J ; j = 1, 2, . . . , ni (Condition 5 on page 15). The sum of the job completion
times (mean flow time) is the objective function Φ = Φ(C1, C2, . . . , Cn) =∑n

i=1 Ci =
∑ Ci, where Ci = cini

is the completion time of job Ji ∈ J .

To present the structural input data for problem J /ai ≤ pi ≤ bi/
∑ Ci,

we use the mixed graph (QJ , AJ , EJ) introduced on page 25. Such a mixed
graph G = (QJ , AJ , EJ) defines the structural input data (precedence and
capacity constraints) which are known before scheduling. A schedule is
defined as a circuit-free digraph Gs = (QJ , AJ ∪ EJ

s , ∅) generated from the
mixed graph (QJ , AJ , EJ) by replacing each edge [Oij, Ouv] ∈ EJ by one
of the arcs (Oij, Ouv) or (Ouv, Oij). In the rest of this chapter, we use the
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terms of an optimal schedule (digraph), a better and a best schedule (digraph)
with respect to the mean flow time criterion

∑ Ci. However, the makespan
criterion Cmax and a regular criterion Φ are considered as well.

Due to Definition 2.1 given on page 86, a G-solution Λ∗(G) of problem
J /ai ≤ pi ≤ bi/

∑ Ci is a set of digraphs containing at least one optimal
digraph for each feasible vector p = (p1,1, p1,2, . . . , pnnn

) ∈ T of the processing
times, where T = {x = (x1,1, x1,2, . . . , xnnn

) : aij ≤ xij ≤ bij; i = 1, . . . , n; j =
1, . . . , ni} is the polytope of feasible vectors in the vector space Rq

+ with
q = |QJ | =

∑n
i=1 ni =

∑m
k=1 |QJ

k |. We shall look for a minimal G-solution
ΛT (G) to problem J /ai ≤ pi ≤ bi/

∑ Ci, i.e., for a minimal subset of the set
Λ(G) containing at least one optimal digraph for each fixed vector p ∈ T of
the processing times (see Definition 2.1 on page 86).

If the processing times pij of all operations Oij ∈ QJ are fixed, one can
calculate the value of the objective function for a digraph Gs ∈ Λ(G) using
the critical path method. As it follows from Section 1.2, to solve problem
J //Φ we must find a digraph Gs such that Φp

s = min{Φp
k : k = 1, 2, . . . , λ}

(see formula (1.8) on page 30), where

Φp
k = Φ(max

ν∈H1
k

lp(ν), max
ν∈H2

k

lp(ν), . . . , max
ν∈Hn

k

lp(ν))

is the value of the objective function of the job completion times for the
digraph Gk ∈ Λ(G) with fixed processing times p ∈ Rq

+, and lp(μ) is the
weight of path μ: lp(μ) =

∑
Oij∈[μ] pij. Remind that Φp

s = lps for criterion
Cmax while Φp

s = Lp
s for criterion

∑ Ci.

As it has been proven in Chapter 1 (see Theorem 1.3 on page 36), there
exists a problem Jm/n = n0/Cmax with any given number of machines m

and number of jobs n = n0, for which the optimality of digraph Gs ∈ Λ(G)
does not depend on the numerical input data. In other words, relation
	̂s(p) = ∞ holds, which means that schedule s minimizes the makespan
for all non-negative processing times. However, such an optimal schedule
cannot exist for criterion

∑ Ci: Each optimal digraph (for the mean flow
time criterion) loses its optimality for some vectors p ∈ Rq

+ of the processing
times, i.e., 	s(p) < ∞ (see Theorem 1.7 on page 49 and Remark 1.2). As it
will be shown in the proof of Theorem 2.7 in the case of the relative stability
radius 	B

s (p ∈ T ) (see Definition 2.6 below) when T ⊂ Rq
+ and B ⊂ Λ(G),

an unrestricted value of 	B
s (p ∈ T ) is still possible. For problem J /ai≤pi≤

bi/Φ, we introduce the following two transitive dominance relations which
define partial orderings on the set of feasible digraphs Λ(G).
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Definition 2.5 A feasible digraph Gs (strongly) dominates a feasible di-
graph Gk in the set D ⊆ Rq

+ if inequality Φp
s ≤ Φp

k (inequality Φp
s < Φp

k,
respectively) holds for any vector p ∈ D of the processing times. We denote
the dominance relation by Gs �D Gk, and the strong dominance relation by
Gs ≺D Gk.

Let equality aij = bij hold for each operation Oij ∈ QJ . In other words,
set T turns into one point: T = {a}, where a = (a1,1, a1,2, . . . , annn

). Such
a problem J /ai ≤ pi ≤ bi/Φ becomes a deterministic problem J //Φ, and
the dominance relation �T defines a total ordering on the set of digraphs
Λ(G). Consequently, a minimal G-solution ΛT (G) consists of a single di-
graph: ΛT (G) = {Gs}, where Gs is any optimal digraph for problem J //Φ
with the processing times pij being equal to aij = bij for each operation
Oij ∈ QJ . In other words, digraph Gs dominates all digraphs Gk ∈ Λ(G) at
point a ∈ Rq

+: Gs �a Gk. Moreover, if the strong dominance relation holds
for each digraph Gk ∈ Λ(G) at point a, i.e., if Gs ≺a Gk, then digraph Gs

is the unique optimal digraph for the processing times pij equal to aij = bij.
As it was shown in the computational results (see Section 1.6 below), an
optimal digraph for problem J //

∑ Ci was mainly uniquely determined. In
such cases, if the dominance relation Gs �a Gk is valid for each digraph
Gk ∈ Λ(G), then generally the strong dominance relation Gs ≺a Gk is valid
for each digraph Gk ∈ Λ(G) with k �= s. (Note that this is not the case for the
makespan criterion: For most job shop instances which have been randomly
generated, makespan optimal digraphs were not uniquely determined.) In
the general case of problem J /ai ≤ pi ≤ bi/

∑ Ci, the operation processing
times may vary between given lower and upper bounds and therefore, it is
a priori unknown which path from set H i

k will have the largest weight in a
practical realization of schedule k corresponding to digraph Gk. Thus, we
have to consider the whole set Ωu

k of representatives of the family of sets
(H i

k)Ji∈J in a similar way to the approach considered for problem J //
∑ Ci

(see Section 1.4).

Each of these sets Ωu
k includes exactly one path from each set H i

k, Ji ∈ J .
Since H i

k ∩ Hj
k = ∅ for any pair of different jobs Ji and Jj, we have equality

|Ωu
k| = n, and so there exist ωk =

∏n
i=1 |H i

k| different sets of representatives
for digraph Gk, namely: Ω1

k, Ω
2
k, . . . , Ω

ωk
k . Next, we show how to restrict the

number of sets of representatives which have to be considered while solving
problem J /ai≤pi≤bi/

∑ Ci. Similarly to the notion of a critical path which
is particularly important for criterion Cmax, we use the notion of a critical
set Ωu∗

k for criterion
∑

Ci. The set Ωu∗
k , u∗ ∈ {1, 2, . . . , ωk}, is a critical set in
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Gk ∈ Λ(G) if the objective function value Lp
k is reached on this set of paths,

i.e., if equality
∑

ν∈Ωu∗
k

lp(ν) = Lp
k holds.

For different vectors p ∈ Rq
+ of the processing times, different sets Ωu

k, u ∈
{1, 2, . . . , ωk}, may be critical, however a path ν ∈ H i

k, Ji ∈ J, may belong to
a critical set only if lp(ν) = maxμ∈Hi

k
lp(μ). Therefore, while solving problem

J /ai ≤ pi ≤ bi/
∑ Ci, it is sufficient to consider only paths from the set H i

k

which may have the largest weight for at least one vector p ∈ T of the
processing times. Moreover, if there are two or more paths in H i

k which
have the largest weight at the same vector p ∈ T , it is sufficient to consider
only one of them. Thus, it is sufficient to consider only dominant paths
which were defined in Section 2.2 (see Definition 2.5 on page 95).

Using Corollary 2.2, one can simplify digraph Gs while solving problem
J /ai ≤ pi ≤ bi/

∑ Ci or problem J /ai ≤ pi ≤ bi/Cmax. First, we delete all
transitive arcs, then we delete some arcs on the base of a domination of
path sets (see Definition 2.4).

Let H i
s(T ) denote the set of all dominant paths in H i

s with respect to the
polytope T . Since Hs ⊆ ∪n

i=1H
i
s for problem J /ai ≤ pi ≤ bi/Cmax, one can

construct a set H i
s(T ) as a subset of the set of all dominant paths Hs by

selecting all paths ending in vertex Oini
(if they exist). Let GT

s = (QT
s , ET

s , ∅)
be a minimal subgraph of digraph Gs such that, if μ ∈ ⋃n

i=1 H i
s(T ), then

digraph GT
s contains path μ. To construct the digraph GT

s , one can use the
following straightforward modification of the critical path method [94].

Let path μ have the maximal weight among all paths in digraph Gs ending
in vertex Oij when the processing times are defined by the vector p ∈ Rq

+.

As usual, the weight of path μ minus pij is called the earliest starting time
of operation Oij, and we denote it by lps(Oij) :

lps(Oij) =
∑

Ouv∈[μ]\{Oij}
puv.

The following recursive relations are obvious:

las(Oij) = max{las(Ouv) + auv : (Ouv, Oij) ∈ AJ ∪ EJ
s },

lbs(Oij) = max{lbs(Ouv) + buv : (Ouv, Oij) ∈ AJ ∪ EJ
s }.

Starting with a vertex in digraph Gs which has a zero in-degree and
following the critical path method, we define values las(Oij) and lbs(Oij) for
each vertex Oij ∈ QJ . Then, using backtracking, we define the vertices QT

s

and the arcs ET
s of digraph GT

s as follows. Initially, we set QT
s = {Oini

: Ji ∈
J} for problem J /ai≤pi≤bi/

∑ Ci (if H i
s(T ) �= ∅, H i

s(T ) ⊆ Hs, for problem
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J /ai≤pi≤bi/Cmax) and we set ET
s = ∅. Then we add the vertex Ouv to set

QT
s , and we add the arc (Ouv, Oini

) to set ET
s :

QT
s := QT

s ∪ {Ouv}, ET
s := ET

s ∪ {(Ouv, Oini
)}

if and only if the following two conditions hold.

1) There is no arc (Ou1v1
, Oini

) such that lbs(Ou1v1
) < las(Ouv).

2) Inequality lbs(Ouv) + bini
≥ las(Oini

) holds.

Continuing in a similar way for each vertex which is already included into
set QT

s , we construct the digraph GT
s (see Lemma 2.1).

Thus, instead of digraphs Gk, k = 1, 2, . . . , λ, one can consider digraphs
GT

k which contain all dominant paths
⋃n

i=1 H i
k(T ) and which are often essen-

tially simpler than the corresponding digraphs Gk. The transformation of
digraph Gk into digraph GT

k by testing inequality (2.6)

∑
Oij∈[μ]\[ν]

bij ≤
∑

Ouv∈[ν]\[μ]
auv

(see page 96) takes O(q2) elementary steps (q is the number of operations).

Let for criterion
∑ Ci the superscripts of the sets Ω1

k, Ω
2
k, . . . , Ω

ωT
k

k , . . . , Ωωk
k

be such that for a path μ, inclusion μ ∈ ⋃n
i=1 H i

k(T ) holds if and only if

μ ∈
ωT

k⋃
i=1

Ωi
k, ωT

k =
n∏

i=1
|H i

k(T )|.

Example 2.2 To illustrate the above notions and definitions, we introduce
a job shop problem J 3/n = 3, ai ≤ pi ≤ bi/

∑ Ci with QJ
1 = {O1,1, O1,3,

O3,2}, QJ
2 = {O1,2, O2,1, O3,3}, and QJ

3 = {O2,2, O3,1}. The mixed graph
G = (QJ , AJ , EJ) represented in Figure 2.6 defines the structural input data.
The numerical input data are defined by polytope T ∈ R8

+ via Table 2.7. For
this small example, one can explicitly enumerate all feasible digraphs of set
Λ(G) (the cardinality of set Λ(G) is equal to 22). Since not all digraphs
may be optimal for the given segments [aij, bij] of the feasible variations of
the processing times pij, we construct a subset B of the set Λ(G) of possi-
ble candidates of competitive (optimal) digraphs using the algorithms from
Section 2.6 below. The cardinality of set B is equal to 12, while λ = 22.

Before finding a minimal G-solution ΛT (G) for this problem J 3/n =
3, ai ≤ pi ≤ bi/

∑ Ci, we consider its deterministic version J 3/n =
3/

∑ Ci by setting the vector of the processing times to be equal to p0 =
(p0

1,1, p
0
1,2, . . . , p

0
3,3) ∈ T with p0

1,1 = 70, p0
1,2 = 30, p0

1,3 = 60, p0
2,1 = 20, p0

2,2 =
60, p0

3,1 = 70, p0
3,2 = 40, and p0

3,3 = 30 (this vector can be arbitrarily chosen
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Table 2.7: Numerical data for problem J 3/n=3, ai≤pi≤bi/
∑ Ci

i 1 1 1 2 2 3 3 3
j 1 2 3 1 2 1 2 3

aij 60 20 45 10 50 60 30 30
bij 80 40 60 30 70 80 50 40

from polytope T .) We number the digraphs G1, G2, . . . , G12 in accordance
with non-decreasing values of function

∑ Ci calculated for the vector p0 of
processing times:

Lp0

1 = 440, Lp0

2 = 470, Lp0

3 = 500, Lp0

4 = 500, Lp0

5 = 520, Lp0

6 = 530,

Lp0

7 = 540, Lp0

8 = 550, Lp0

9 = 570, Lp0

10 = 610, Lp0

11 = 610, Lp0

12 = 620.

For vector p0 ∈ T , the digraph G1 = (QJ , AJ ∪ EJ
1 , ∅) with the sig-

nature EJ
1 = {(O1,1, O3,2), (O3,2, O1,3), (O2,1, O1,2), (O1,2, O3,3), (O2,1, O3,3),

(O3,1, O2,2)} is the only optimal digraph. Therefore, for the initial prob-
lem J 3/n = 3, ai ≤ pi ≤ bi/

∑ Ci, we have to include digraph G1 in the
desired minimal G-solution ΛT (G). Using the critical path method, we
simplify the digraphs G1, G2, . . . , G12. Then we compare the sets of rep-

resentatives Ω1
1, Ω

2
1, . . . , Ω

ωT
1

1 for digraph G1 with the sets of representatives

Ω1
k, Ω

2
k, . . . , Ω

ωT
k

k for the other digraphs Gk, k ∈ {2, 3, . . . , 12}. Due to a pair-
wise comparison of these sets, we find that only two digraphs may be better
than digraph G1 (provided that vector p belongs to set T defined in Table 2.7).
These two digraphs are as follows: Digraph G2 = (QJ , AJ ∪ EJ

2 , ∅) with the
signature

EJ
2 ={(O1,1,O3,2), (O1,3,O3,2), (O2,1,O1,2), (O1,2,O3,3), (O2,1,O3,3), (O2,2,O3,1)}
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Figure 2.6: Mixed graph G = (QJ , AJ , EJ) for problem J 3/n=3, ai≤pi≤bi/
∑ Ci
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Figure 2.7: Digraphs GT
1 , GT

2 and GT
5 which define a minimal G-solution ΛT (G) for Ex-

ample 2.2

and digraph G5 = (QJ , AJ ∪ EJ
5 , ∅) with the signature

EJ
5 ={(O1,1,O3,2), (O1,3,O3,2), (O2,1,O1,2), (O1,2,O3,3), (O2,1, O3,3),(O3,1,O2,2)}.

Moreover, digraph G2 is the only optimal one for vector p′ =
(60, 20, 60, 10, 60, 80, 40, 30) ∈ T , and digraph G5 is the only optimal one
for vector p′′ = (60, 20, 45, 30, 70, 80, 50, 30) ∈ T . Consequently, a minimal
G-solution to problem J 3/n=3, ai≤pi≤ bi/

∑ Ci consists of three digraphs,
namely: ΛT (G) = {G1, G2, G5}. The corresponding digraphs GT

1 , GT
2 and
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GT
5 are represented in Figure 2.7 a), b) and c), respectively. Note that while

digraph G1 has ω1 = 4 · 2 · 5 = 40 sets of representatives, digraph GT
1 has

only ωT
1 = 3 · 1 · 3 = 9 sets of representatives. For the digraphs G2 and GT

2 ,

these numbers are ω2 = 16 and ωT
2 = 2, and for the digraphs G5 and GT

5 ,
these numbers are ω5 = 28 and ωT

5 = 1.

The above explicit enumeration of the digraphs Λ(G) is only possible for
a small number of edges in the mixed graph G and for a practical use, one
has to reduce the number of digraphs which have to be constructed. In par-
ticular, for the example under consideration, it is sufficient to construct only
k = 5 digraphs, which are the best for the initial vector p0 of the processing
times. Further, in Section 2.6, such a calculation will be developed on the
basis of a branch-and-bound method for constructing the k best digraphs.
Moreover, the digraphs G3 and G4 in the set of the k = 5 best digraphs are
also redundant. In Section 2.6, we present a branch-and-bound method for
constructing all digraphs which are the only ones that may be optimal for
feasible vectors of the processing times. We also show how to calculate the
stability radius of an optimal digraph on the basis of an explicit enumeration
of the digraphs Λ(G). The calculation of the stability radius will be used in
Sections 2.6 and 2.7 as the main procedure for finding a minimal G-solution
of problem J /ai≤pi≤bi/

∑ Ci.

2.5. Characterization of a G-solution

A characterization of a G-solution Λ of problem J /ai ≤ pi ≤ bi/Φ which
is a proper subset of the set Λ(G), Λ ⊂ Λ(G), may be obtained on the basis
of the dominance relation �D introduced in Section 2.4. Next, we prove
necessary and sufficient conditions for a set of feasible digraphs to be a
G-solution to problem J /ai≤pi≤bi/

∑ Ci.

Theorem 2.4 The set Λ ⊂ Λ(G) is a G-solution to problem J /ai ≤ pi ≤
bi/Φ if and only if there exists a finite covering of polytope T by convex closed
sets Dj ⊂ Rq

+ : T ⊆ ⋃d
j=1 Dj, d ≤ |Λ|, such that for any digraph Gk ∈ Λ(G)

and for any set Dj, j = 1, 2, . . . , d, there exists a digraph Gs ∈ Λ for which
dominance relation Gs �Dj

Gk holds.

Proof. Sufficiency. For any fixed vector p ∈ T, one can find a set Dj,

1 ≤ j ≤ d, such that p ∈ Dj. From Theorem 2.4, it follows that for any
digraph Gk ∈ Λ(G), there exists a digraph Gs such that dominance relation
Gs �Dj

Gk holds. Hence, we have Φp
s ≤ Φp

k and so inequality min{Φp
s :
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Gs ∈ Λ ⊆ Λ(G)} ≤ Φp
k holds for each k = 1, 2, . . . , λ. Consequently, for any

vector p ∈ T of the processing times, set Λ contains an optimal digraph.
Necessity. Let set Λ ⊆ Λ(G) be a G-solution to problem J /ai≤pi≤bi/Φ.

We define a subset Λ′ of set Λ such that each digraph Gs ∈ Λ′ is optimal for
at least one vector p ∈ T of the processing times.

For each digraph Gs ∈ Λ, there exists a stability region, i.e., the set of
all vectors p ∈ T ⊆ Rq

+ for which digraph Gs is optimal. Let Ds be the
intersection of the stability region of digraph Gs with the polytope T :

Ds = {p ∈ Rq
+ : Φp

s ≤ Φp
k, k = 1, 2, . . . , λ} ∩ T. (2.37)

Since Λ′ is a G-solution, we have T ⊆ ⋃|Λ′|
j=1 Dj ⊂ Rq

+ and for each digraph
Gk ∈ Λ(G) and each set Ds, the dominance relation Gs �Ds

Gk holds.
The inclusion Gs ∈ Λ′ implies Ds �= ∅. From inequality (2.37), it follows
that Ds is a closed set. Note that, if digraph Gs is optimal for vector p,
it remains optimal for a feasible vector αp with any positive real number
α > 0. Consequently, the stability region is a convex set and so set Ds is
convex as the intersection of convex sets.

�

Theorem 2.4 implies the following claim characterizing a single-element
G-solution to problem J /ai ≤ pi ≤ bi/Φ, which is necessarily a minimal
G-solution.

Corollary 2.6 The equality ΛT (G) = {Gs} holds if and only if the domi-
nance relation Gs �T Gk holds for any digraph Gk ∈ Λ(G).

A minimal G-solution including more than one digraph is characterized
on the basis of the strong dominance relation ≺D as follows.

Theorem 2.5 Let set Λ∗(G) be a G-solution to problem J /ai ≤ pi ≤ bi/Φ
with |Λ∗(G)| ≥ 2. This G-solution is minimal if and only if for each digraph
Gs ∈ Λ∗(G), there exists a vector p(s) ∈ T such that the strong dominance
relation Gs ≺p(s) Gk holds for each digraph Gk ∈ Λ∗(G) \ {Gs}.
Proof. Sufficiency. If the condition of Theorem 2.5 holds, then for any
digraph Gs ∈ Λ∗(G), the set Λ∗(G) \ {Gs} is no longer a G-solution to
problem J /ai≤pi≤ bi/Φ. Indeed, for the above vector p(s) ∈ T , inequality

Φp(s)

s < Φp(s)

k holds for each digraph Gk ∈ Λ∗(G) \ {Gs}. It follows that
Gs is the unique optimal digraph to problem J //Φ with the vector p(s) of
processing times. Therefore, the G-solution Λ∗(G) is minimal.
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Necessity. Let Λ∗(G) be a minimal G-solution but the condition of The-
orem 2.5 does not hold, i.e., there exists a digraph Gs ∈ Λ∗(G) such that for
each vector p(s) ∈ T , there exists a digraph Gk ∈ Λ∗(G)\{Gs} for which the
strong dominance relation Gs ≺p(s) Gk does not hold, i.e., Φp

s ≥ Φp
k. It follows

that the set Λ∗(G) \ {Gs} is also a G-solution to problem J /ai ≤ pi ≤ bi/Φ
(since the set Λ∗(G) is supposed to be a G-solution). Thus, we get a con-
tradiction to the assumption that the G-solution Λ∗(G) is minimal.

�

Section 2.6 deals with different algorithms for finding a G-solution and
a minimal G-solution on the basis of an explicit or an implicit enumeration
of feasible digraphs. All algorithms developed are based on the fact that a
digraph Gs ∈ Λ(G) being optimal for the fixed vector p ∈ Rq

+ of the process-
ing times, generally remains optimal within some neighborhood of the point
p in the space Rq

+: Digraph Gs dominates all digraphs in a neighborhood of
p. We consider the closed ball Or(p) ⊂ Rq with the center p ∈ T and the
radius r > 0 as the neighborhood of the point p ∈ T ⊂ Rq

+ in the space Rq.
Next, we rewrite some basic notions using the dominance relation �D.

The closed ball Or(p) is called a stability ball of digraph Gs if this digraph
dominates all digraphs Gk ∈ Λ(G) in T ∗ = Or(p) ∩ T, i.e., if Gs �T ∗ Gk for
each digraph Gk ∈ Λ(G) (in this case, from Corollary 2.6, it follows that
ΛT ∗

(G) = {Gs}). The radius r of a stability ball may be interpreted as
the error of the given processing times p = (p1,1, p1,2, . . . , pnnn

) ∈ Rq
+ such

that for all processing times x = (x1,1, x1,2, . . . , xnnn
) ∈ Rq

+ with pij − r ≤
xij ≤ pij + r, digraph Gs remains the best. Similarly to Definition 2.2 of the
relative stability radius for the makespan criterion, we give the definition of
the relative stability radius for the mean flow time criterion.

Definition 2.6 Assume that for each vector p′ ∈ O�(p) ∩ T , digraph Gs ∈
B ⊆ Λ(G) with the vector p′ of weights has the minimal critical sum of
weights Lp′

s among all digraphs of the set B. The maximal value of the
radius 	 of such a ball O�(p) is denoted by 	B

s (p ∈ T ), and it is called the
relative stability radius of digraph Gs with respect to polytope T .

Remark 2.6 From Definition 2.5 and Definition 2.6, it follows that the
relative stability radius 	B

s (p ∈ T ) of digraph Gs ∈ B is equal to the maximal
value of the radius 	 of a ball O�(p) such that for each digraph Gk ∈ B ⊆
Λ(G), dominance relation Gs �T ∗ Gk holds where T ∗ = O�(p) ∩ T.

Similarly to Section 1.4, which deals with the stability radius 	s(p) (see
conditions (1.33) and (1.34) on page 43), to find the relative stability radius
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	B
s (p ∈ T ) for problem J /ai ≤ pi ≤ bi/

∑ Ci, it is sufficient to construct a
vector x = (x1,1, x1,2, . . . , xnnn

) ∈ T ⊆ Rq
+ which satisfies the following three

conditions.
(a∗) There exists a digraph Gk(p) ∈ B, k �= s, such that Lx

s = Lx
k, i.e.,

n∑
i=1

max
μ∈Hi

s

lx(μ) =
n∑

i=1
max
ν∈Hi

k

lx(ν). (2.38)

(b∗) For any given real ε > 0, which may be as small as desired, there exists
a vector pε ∈ T such that d(x, pε) = ε and Lpε

s > Lpε

k , i.e., inequality
n∑

i=1
max
μ∈Hi

s

lp
ε

(μ) >
n∑

i=1
max
ν∈Hi

k

lp
ε

(ν) (2.39)

is satisfied for at least one digraph Gk(p) ∈ B.
(c∗) The distance d(p, x) achieves its minimal value among the distances
between the vector p and the other vectors in the polytope T which satisfy
both conditions (a∗) and (b∗).

Next, we describe the calculation of the relative stability radius 	B
s (p ∈ T )

using the above notation of the dominance relation. To this end, we prove
Lemma 2.5 below about the dominance relation �T , and then we derive a
formula for the calculation of the relative stability radius 	B

s (p ∈ T ) which
is presented in Theorem 2.6.

If ΛT (G) = {Gs}, then digraph Gs dominates all digraphs in the polytope
T (see Corollary 2.6). In such a case, we assume that 	Λ(G)

s (p ∈ T ) = ∞,

since digraph Gs remains the best for all variable feasible vectors x ∈ T of
the processing times. Otherwise, there exists a digraph Gk ∈ Λ(G) such
that dominance relation Gs �T Gk does not hold, and from Corollary 2.6
and Remark 2.6, it follows that the stability radius 	Λ(G)

s (p ∈ T ) has to be
finite, i.e., there exists a vector pε ∈ T such that inequality

Lpε

s > Lpε

k (2.40)

holds. To calculate the stability radius 	B
s (p ∈ T ), B ⊆ Λ(G), we will

consider digraphs Gk ∈ B such that dominance relation Gs �T Gk does not
hold, and for each of these digraphs Gk, we will look for the vector pε ∈ T

which is the closest to p among all vectors for which inequality (2.40) holds
(see condition (c∗)). The following lemma allows us to restrict the set of
digraphs Gk ∈ B which have to be treated for any given regular criterion.

Lemma 2.5 Digraph Gs ∈ B dominates digraph Gk ∈ B in the polytope T
if (only if) inequality (2.41) holds (inequalities (2.42) hold, respectively):

Lb
s ≤ La

k (2.41)
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(La
s ≤ La

k, Lb
s ≤ Lb

k). (2.42)

Proof. Sufficiency. Since the objective function is non-decreasing, it fol-
lows from inequality (2.41) that

Lx
s ≤

n∑
i=1

lbs(Oini
) = Lb

s ≤ La
k =

n∑
i=1

lak(Oini
) ≤ Lx

k

for any vector x ∈ T . Therefore, dominance relation Gs �T Gk holds.
Necessity. Dominance relation Gs �T Gk means that inequality Lx

s ≤ Lx
k

holds for any vector x ∈ T . In particular, inequality Lx
s ≤ Lx

k holds for both
vectors a ∈ T and b ∈ T , i.e., inequalities (2.42) hold.

�

To verify inequalities (2.41) and (2.42) takes O(q2) elementary steps,
however, there is a ‘gap’ between the necessary and sufficient conditions
of Lemma 2.5, if La

s �= Lb
s. To overcome this gap for problem J /ai ≤ pi ≤

bi/
∑ Ci, we are forced to compare the sets Ωv

s, v = 1, 2, . . . , ωT
s , with the

sets Ωu
k, u = 1, 2, . . . , ωT

k , since we do not know a priori which set of paths
will be critical for the factual processing times.

First, we will find a vector x = (x1,1, x1,2, . . . , xnnn
) ∈ T , which is the

closest to vector p ∈ T such that Lx
s = Lx

k (see condition (a∗)). For the
desired vector x, the value

∑
ν∈Ωu

k
lx(ν) for each set Ωu

k, u = 1, 2, . . . , ωT
k , has

to be not greater than the value
∑

μ∈Ωv
s
lx(μ) for at least one set Ωv

s, v =
1, 2, . . . , ωT

s . If the opposite inequality holds for the given vector p ∈ T, i.e.,
if

∑
μ∈Ωv

s
lp(μ) <

∑
ν∈Ωu

k
lp(ν), we can calculate the value

r =

∑
ν∈Ωu

k
lp(ν) − ∑

μ∈Ωv
s
lp(μ)∑

Oij∈Q |nij(Ωu
k) − nij(Ωv

s)|
(2.43)

(where nij(Ω
u
k) is the number of copies of operation Oij in the multiset

{[ν] : ν ∈ Ωu
k}) in order to obtain vector x with the equality∑

μ∈Ωv
s

lx(μ) =
∑

ν∈Ωu
k

lx(ν). (2.44)

It is easy to convince that equality (2.44) holds for the vector x obtained
from vector p by adding the value r calculated in (2.43) to all components
pij with nij(Ω

u
k) < nij(Ω

v
s), and by subtracting the same value r from all

components pij with nij(Ω
u
k) > nij(Ω

v
s). For the above vector x, inclusion

x ∈ T may not hold. To guarantee the latter inclusion, we have to look for
a vector x in the form x = p(r) = (p1,1(r), p1,2(r), . . . , pnnn

(r)), where

xij = pij(r) =

⎧⎪⎪⎨⎪⎪⎩
pij + min{r, bij − pij}, if nij(Ω

u
k) < nij(Ω

v
s),

pij − min{r, pij − aij}, if nij(Ω
u
k) > nij(Ω

v
s),

pij, if nij(Ω
u
k) = nij(Ω

v
s).

(2.45)
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Let rΩu
k ,Ωv

s
denote the minimal distance between the given vector p ∈ T

and the desired vector x = p(r) ∈ T for which equality (2.44) holds: rΩu
k ,Ωv

s
=

d(p, p(r)). Next, we show how to calculate rΩu
k ,Ωv

s
. We define the value

Δij(Ωv
s, Ω

u
k) =

{
bij − pij, if nij(Ω

u
k) < nij(Ω

v
s),

pij − aij, if nij(Ω
u
k) > nij(Ω

v
s),

(2.46)

for each operation Oij ∈ N(Ωu
k, Ω

v
s) = {⋃

μ∈Ωu
k∪Ωv

s
[μ] : nij(Ω

u
k) �= nij(Ω

v
s)},

which we put in non-decreasing order:

Δij
1 (Ωv

s, Ω
u
k) ≤ Δij

2 (Ωv
s, Ω

u
k) ≤ . . . ≤ Δij

|N(Ωv
s ,Ωu

k)|(Ω
v
s, Ω

u
k). (2.47)

Note that each value Δij
α (Ωv

s, Ω
u
k) is calculated according to (2.46) for all

different operations Oij, and the subscript α = 1, 2, . . . , |N(Ωv
s, Ω

u
k)| indicates

the location of value (2.46) in the sequence (2.47). We define value Nα(Δ) =
|nij(Ω

u
k)− nij(Ω

v
s)| for each Δij

α (Ωv
s, Ω

u
k), α ∈ {1, 2, . . . , |N(Ωv

s, Ω
u
k)|}, and as-

sume Δij
0 (Ωv

s, Ω
u
k) = 0 and N0(Δ) = 0. From (2.45) and (2.47), it follows:

rΩv
s ,Ωu

k
= max

β=0,1,...,|N(Ωv
s ,Ωu

k)|−1

∑
ν∈Ωu

k
lp(ν)−∑

μ∈Ωv
s
lp(μ)−∑β

α=0 Δij
α (Ωv

s, Ω
u
k) Nα(Δ)∑

Oij∈QJ |nij(Ωu
k) − nij(Ωv

s)| − ∑β
α=0 Nα(Δ)

.

(2.48)
To ensure equality Lx

s = Lx
k for digraph Gk and vector x = p(r) ∈ T ,

we have to repeat the calculations (2.45) – (2.48) for each set Ωu
k, u ∈

{1, 2, . . . , ωT
k }, with

∑
ν∈Ωu

k
lp(ν) ≥ Lp

s. Then we have to take the maximum
of rΩv

s ,Ωu
k
, for each set Ωu

k, u ∈ {1, 2, . . . , ωT
k }, and to take the minimum of

the maxima obtained:

rB
ks = min

v∈{1,2,...,ωT
s }

max{rΩv
s ,Ωu

k
: u ∈ {1, 2, . . . , ωT

k },
∑

ν∈Ωu
k

lp(ν) ≥ Lp
s}. (2.49)

Even if there exists a vector x ∈ T such that equality Lx
s = Lx

k holds (see
condition (a∗)), nevertheless, it may be that there exists no vector pε ∈ T

defined in condition (b∗) such that Lpε

s > Lpε

k . As follows from Definition
2.5, only inequality (2.39) guarantees that digraph Gs does not dominate
digraph Gk in polytope T . Therefore, we have to look for a vector pε ∈ T
such that inequality (2.39) holds which may be rewritten in the equivalent
form:

max
v∈{1,2,...,ωT

s }
∑

μ∈Ωv
s

lp
ε

(μ) > max
u∈{1,2,...,ωT

k }
∑

ν∈Ωu
k

lp
ε

(ν). (2.50)

Remark 2.7 It is easy to see that there exists a vector pε ∈ T such that∑
μ∈Ωv

s

lp
ε

(μ) >
∑

ν∈Ωu
k

lp
ε

(ν) (2.51)
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if and only if inequality (2.51) holds for vector pε = p∗ = (p∗1,1, p
∗
1,2, . . . ,

p∗nnn
) ∈ T , where

p∗ij =

⎧⎪⎪⎨⎪⎪⎩
bij, if nij(Ω

u
k) < nij(Ω

v
s),

aij, if nij(Ω
u
k) > nij(Ω

v
s),

pij, if nij(Ω
u
k) = nij(Ω

v
s).

(2.52)

Indeed, the components of vector p∗ ∈ T with nij(Ω
u
k) < nij(Ω

v
s) are as

large as possible and the components with nij(Ω
u
k) > nij(Ω

v
s) are as small as

possible in the polytope T , while changing the components with nij(Ω
u
k) =

nij(Ω
v
s) does not influence the difference

∑
ν∈Ωu

k
lx(ν) − ∑

μ∈Ωv
s
lx(μ). Thus,

we can restrict the consideration of the sets Ωv
s in inequality (2.50) to the

following subset Ω∗
sk of set {Ωv

s : v = 1, 2, . . . , ωT
s }, where Ω∗

sk is the set of
all sets of representatives Ωv

s, v ∈ {1, 2, . . . , ωT
s }, for which inequality∑

μ∈Ωv
s

lp
∗
(μ) >

∑
ν∈Ωu

k

lp
∗
(ν) (2.53)

holds for each set of representatives Ωu
k, u ∈ {1, 2, . . . , ωT

k }. Sufficiency in
Lemma 2.5 may be generalized as follows.

Lemma 2.6 Digraph Gs ∈ B dominates digraph Gk ∈ B in the polytope T
if Ω∗

sk = ∅.
Proof. Equality Ω∗

sk = ∅ implies that for each set of representatives Ωv
s, v ∈

{1, 2, . . . , ωT
s }, inequality ∑

μ∈Ωv
s

lp
∗
(μ) ≤ ∑

ν∈Ωu
k

lp
∗
(ν)

holds for each set of representatives Ωu
k, u ∈ {1, 2, . . . , ωT

k }. Due to Remark
2.7, inequality ∑

μ∈Ωv
s

lp
ε

(μ) ≤ ∑
ν∈Ωu

k

lp
ε

(ν)

holds for each vector pε ∈ T . Hence, Lpε

s ≤ Lpε

k and so dominance relation
Gs �T Gk holds.

�

Due to Lemma 2.6, we can rewrite equality (2.49) as follows:

rB
ks = min

Ωv
s∈Ω∗

sk

max{rΩv
s ,Ωu

k
: u ∈ {1, 2, . . . , ωT

k },
∑

ν∈Ωu
k

lp(ν) ≥ Lp
s}. (2.54)

To obtain the desired vector pε ∈ T , we have to calculate rB
ks according

to (2.54) for each digraph Gk ∈ B which is not dominated by digraph Gs

(if Gs ��T Gk) and to take the minimum over all such digraphs Gk. We
summarize the above arguments in the following claim.
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Theorem 2.6 If for digraph Gs ∈ B ⊆ Λ(G), dominance relation Gs �p Gk

holds for each digraph Gk ∈ B and fixed vector p ∈ T , then equalities

	B
s (p ∈ T ) = min

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
min

Ωv
s∈Ω∗

sk

max
u∈{1,2,...,ωT

k
},∑

ν∈Ωu
k

lp(ν)≥L
p
s

rΩv
s ,Ωu

k
: Gs ��T Gk

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.55)

= min{rB
ks : Gs ��T Gk}

hold, where value rΩv
s ,Ωu

k
is calculated according to (2.48).

The following corollary is used in the proof of Theorem 2.8 below.

Corollary 2.7 The value rΩv0
s ,Ωu

k
calculated according to (2.48) for the set

Ωv0

s ∈ Ω∗
sk \ Ωs(p) is strongly positive.

Proof. Due to formula (2.55), we have to repeat the calculation (2.48)
for each set Ωv

s ∈ Ω∗
sk and each set Ωu0

k , u0 ∈ {1, 2, . . . , ωT
k }, such that∑

ν∈Ωu0
k

lp(ν) ≥ Lp
s. Since there exists a set Ωv0

s ∈ Ω∗
sk \ Ωs(p), i.e.,∑

μ∈Ωv0
s

lp(μ) < Lp
s, the following inequalities hold:

∑
ν∈Ωu0

k

lp(ν)− ∑
μ∈Ωv0

s

lp(μ) min
u0∈{1,2,...,ωT

k
},∑

ν∈Ωu0
k

lp(ν)≥L
p
s

∑
ν∈Ωu0

k

lp(ν) − max
v0∈{1,2,...,ωT

s },∑
ν∈Ωv0

s
lp(μ)<L

p
s

∑
μ∈Ωv0

s

lp(μ)

≥ Lp
s − max

v0∈{1,2,...,ωT
s },∑

ν∈Ωv0
s

lp(μ)<L
p
s

∑
μ∈Ωv0

s

lp(μ) > 0.

Therefore, due to the calculation of the value rΩv0
s ,Ωu0

k
, the numerator in (2.48)

is strongly positive at least for β = 0. Since we have to take the maximum
value among all values calculated for each β = 0, 1, . . . , |N(Ωv0

s , Ωu0

k )| − 1
(see formula (2.48)), we obtain rΩv0

s ,Ωu0
k

> 0.

�

Next, we present necessary and sufficient conditions for an infinitely large
relative stability radius 	B

s (p ∈ T ) for problem J /ai ≤ pi ≤ bi/
∑ Ci if B ⊂

Λ(G) and T ⊂ Rq
+. Note that the deterministic problem J //

∑ Ci with λ > 1
cannot have an optimal digraph with an infinitely large stability radius 	s(p)
(see Remark 1.2). Recall that 	s(p) = 	Λ(G)

s (p ∈ Rq
+).

Theorem 2.7 For digraph Gs ∈ B ⊆ Λ(G), we have 	B
s (p ∈ T ) = ∞ if and

only if equality Ω∗
sk = ∅ holds for each digraph Gk ∈ B.
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Proof. Necessity. Following the contradiction method, we suppose that
	B

s (p ∈ T ) = ∞ but there exists a digraph Gk ∈ B such that the set of
representatives Ωv0

s , v0 ∈ {1, 2, . . . , ωT
s }, belongs to set Ω∗

sk.
It follows that inequality∑

μ∈Ωv0
s

lp
∗
(μ) >

∑
ν∈Ωu

k

lp
∗
(ν)

holds for the vector p∗ calculated according to formula (2.52) for the set
of representatives Ωu

k, u ∈ {1, 2, . . . , ωT
k }. Thus, due to Remark 2.7, there

exists a vector p′ ∈ T such that∑
μ∈Ωv0

s

lp
′
(μ) >

∑
ν∈Ωu

k

lp
′
(ν).

Since the latter inequality holds for all sets Ωu
k, u ∈ {1, 2, . . . , ωT

k }, this
inequality holds for a critical set Ωu∗

k ∈ Ωk(p) as well. Therefore, we obtain∑
μ∈Ωv0

s

lp
′
(μ) >

∑
ν∈Ωu∗

k

lp
′
(ν) = Lp′

k

and hence, digraph Gs cannot be optimal for the processing times given by
vector p′ ∈ T. We get a contradiction as follows:

	B
s (p ∈ T ) < d(p, p′) ≤ max

Oij∈QJ
{bij − pij, pij − aij} < ∞.

Sufficiency. Due to Lemma 2.6, equality Ω∗
sk = ∅ (valid for each digraph

Gk ∈ B) implies that digraph Gs ∈ B dominates all digraphs Gk ∈ B in

polytope T. Hence, inequality Lp′
s ≤ Lp′

k holds for each vector p′ ∈ T and so
	B

s (p ∈ T ) = ∞.
�

From the above proof of necessity, we obtain an upper bound for the
relative stability radius 	B

s (p ∈ T ) as follows.

Corollary 2.8 If 	B
s (p ∈ T ) < ∞, then

	B
s (p ∈ T ) ≤ max{{bij − pij, pij − aij} : Oij ∈ QJ}.

Moreover, we can strengthen Corollary 2.6.

Corollary 2.9 The following propositions are equivalent:
1) ΛT (G) = {Gs},
2) 	Λ(G)

s (p ∈ T ) = ∞,
3) Gk ∈ Λ(G) ⇒ Gs �T Gk,

4) Gk ∈ Λ(G) ⇒ Ω∗
sk = ∅.
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To present necessary and sufficient conditions for 	B
s (p ∈ T ) = 0, we need

the following auxiliary lemma. Let Ωk denote the set {Ωu
k : u = 1, 2, . . . , ωk}.

Lemma 2.7 If Ωk �= Ωk(p), inclusion Ωk(p
′) ⊆ Ωk(p) holds for any vector

p′ ∈ Oε(p) ∩ Rq
+ with a real εk > ε > 0 defined as follows:

εk =
1

qn
min

⎧⎪⎨⎪⎩Lp
k −

∑
ν∈Ωu

k

lp(ν) : Ωu
k ∈ Ωk\Ωk(p)

⎫⎪⎬⎪⎭ . (2.56)

The following claim is a generalization of Theorem 1.6.

Theorem 2.8 Let Gs be a digraph with the minimal value Lp
s, p ∈ T, among

the digraphs B ⊆ Λ(G). The equality 	B
s (p ∈ T ) = 0 holds if and only if

1) there exists a digraph Gk ∈ B such that Lp
s = Lp

k, k �= s,

2) the set Ωv∗
s ∈ Ω∗

sk ∩ Ωs(p) is such that for any set Ωu∗
k ∈ Ωk(p), there

exists an operation Oij ∈ QJ for which condition (2.57) (or condition (2.58))
holds:

nij(Ω
v∗
s ) ≥ nij(Ω

u∗
k ), (2.57)

nij(Ω
v∗
s ) ≤ nij(Ω

u∗
k ), (2.58)

3) inequality (2.57) (inequality (2.58)) is satisfied as a strict one for at
least one set Ωu0

k ∈ Ωk(p).

Proof. Necessity. We prove necessity by contradiction. Assume 	B
s (p ∈

T ) = 0 but the conditions of the theorem are not satisfied. We consider four
cases i), ii), iii) and iv) of violating these conditions.

i) Assume that there does not exist another optimal digraph Gk ∈ B such
that Lp

s = Lp
k, k �= s. If B \ {Gs} �= ∅, we can calculate the value

ε∗ =
1

qn
min
t �=s

(Lp
t − Lp

s), (2.59)

which is strictly positive since Lp
s < Lp

t for each Gt ∈ B, t �= s. Using
Lemma 2.7, one can verify that for any real ε, which satisfies the inequalities
0 < ε < ε∗, the difference in the right-hand side of equality (2.59) remains
positive when vector p is replaced by any vector p0 ∈ Oε(p)∩ T . Indeed, for
any v ∈ {1, 2, . . . , ωT

s }, the cardinality of set Ωv
s may be at most equal to

q · n: |Ωv
s| ≤ q · n. Thus, the difference

Lp
t − Lp

s = Lp
t − max

v∈{1,2,...,ωT
s }

∑
ν∈Ωv

s

lp(ν)

may not be ‘overcome’ using a vector p0 if d(p, p0) < ε∗. Hence, we conclude
that digraph Gs remains optimal for any vector p0 = (p0

1,1, p
0
1,2, . . . , p

0
nnn

) ∈ T
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of the processing times provided that d(p, p0) ≤ ε < ε∗. Therefore, we have
	B

s (p ∈ T ) ≥ ε∗ > ε > 0 which contradicts the assumption 	B
s (p ∈ T ) = 0.

ii) Assume that there exists a digraph Gk ∈ B such that Lp
s = Lp

k, k �= s,
and Ω∗

sk ∩ Ωs(p) = ∅. Note that Ω∗
st �= ∅ for all digraphs Gt ∈ B, t �= s.

Otherwise, we get 	B
s (p ∈ T ) = ∞ due to Theorem 2.7.

Assume that there exists a set Ω∗
st �= ∅ for the digraphs Gs and Gt with

Lp
t > Lp

s, i.e., there exists a set Ωv′
s ∈ Ω∗

st. Similarly to the proof of Corol-
lary 2.7, we can show that all values rΩv′

s ,Ωu
t

calculated for each digraph Gt

with Lp
t > Lp

s cannot be equal to zero. We obtain a strongly positive nu-
merator in formula (2.48) at least for β = 0 :∑

ν∈Ωu
t

lp(ν) − ∑
μ∈Ωv′

s

lp(μ) > 0.

Therefore, the maximum taken according to (2.48) is also strongly positive,
i.e., rΩv′

s ,Ωu
t

> ε > 0, where we can choose any ε such that inequality

ε < min

⎧⎪⎪⎨⎪⎪⎩εs, εk,
1

qn
min
Gt∈B,

L
p
t >L

p
s

(Lp
t − Lp

s)

⎫⎪⎪⎬⎪⎪⎭ (2.60)

is satisfied. This means that only in the case of the calculation of the value
rΩv

s ,Ωu
k

for the optimal digraphs Gk ∈ B, Lp
k = Lp

s, with Ω∗
sk �= ∅, we can

obtain rΩv
s ,Ωu

k
= 0.

Assume that there exists a set Ω∗
sk �= ∅ for the digraphs Gs and Gk with

Lp
k = Lp

s, i.e., there exists a set Ωv′′
s ∈ Ω∗

sk. In this case, we can set

ε′ = min

⎧⎨⎩εs, εk,
1

qn
min

⎧⎨⎩Lp
s − max

∑
μ∈Ωv

s

lp(μ) :
∑

ν∈Ωv
s

lp(μ) < Lp
s

⎫⎬⎭
⎫⎬⎭ .

Taking into account our assumption that for each digraph Gk ∈ B, Lp
s =

Lp
k, k �= s, set Ω∗

sk ∩Ωs(p) is empty, it follows from the proof of Corollary 2.7
that rΩv′′

s ,Ωu
k

> ε′ > 0. Hence, for all digraphs Gt, L
p
t ≥ Lp

s, inequality

rB
ts > min{ε, ε′} holds, where the value rB

ts is calculated due to formula
(2.54) using the value rΩv

s ,Ωu
t

> 0. Therefore, the relative stability radius
satisfies the inequalities 	B

s (p ∈ T ) > min{ε, ε′} > 0, which contradicts the
assumption 	B

s (p ∈ T ) = 0.
iii) Assume that there exists a digraph Gk ∈ B such that Lp

s = Lp
k, k �= s,

and for any set Ωv∗
s ∈ Ω∗

sk ∩ Ωs(p), there exists a set Ωu∗
k ∈ Ωk(p) such that

nij(Ω
v∗
s ) = nij(Ω

u∗
k ) for any operation Oij ∈ QJ .

In this case, we can take any ε that satisfies inequality (2.60). Due to
ε < εs, we get from Lemma 2.7 that equality

Lp0

s = max
Ωv∗

s ∈Ωs(p0)

∑
μ∈Ωv∗

s

lp
0

(μ) = max
Ωv∗

s ∈Ωs(p)

∑
μ∈Ωv∗

s

lp
0

(μ) (2.61)
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holds for any vector p0 ∈ Oε(p) ∩ T . On the other hand, since there exists
a set Ωu∗

k ∈ Ωk(p) such that nij(Ω
v∗
s ) = nij(Ω

u∗
k ), Oij ∈ Q, for any set

Ωv∗
s ∈ Ω∗

sk ∩ Ωs(p) and for any digraph Gk, L
p
s = Lp

k, we obtain inequality

max
Ωv∗

s ∈Ωs(p)

∑
μ∈Ωv∗

s

lp
0

(μ) ≤ max
Ωu

k∈Ωk(p)

∑
ν∈Ωu∗

k

lp
0

(ν),

because of ε < εs and ε < εk. Therefore, due to (2.61), we have

Lp0

s ≤ max
Ωu

k∈Ωk(p)

∑
ν∈Ωu∗

k

lp
0

(ν) (2.62)

for any optimal digraph Gk, k �= s. Since

ε <
1

qn
min

Lp
t �=Lp

s

{Lp
t − Lp

s},

the condition Lp
t �= Lp

s implies Lp0

t �= Lp0

s . So taking into account (2.60) and
the latter implication, we conclude that digraph Gs becomes an optimal
digraph for any vector p0 ∈ T, provided that d(p, p0) ≤ ε. Consequently, we
have 	B

s (p ∈ T ) ≥ ε > 0, which contradicts the assumption 	B
s (p ∈ T ) = 0.

iv) Assume that conditions 1 and 2 of Theorem 2.8 hold. More exactly,
there exists a digraph Gk ∈ B such that Lp

s = Lp
k, k �= s, and one of the two

cases of condition 2 and one of the two cases of condition 3 hold. Assume
that for any set Ωv∗

s ∈ Ω∗
sk ∩ Ωs(p), there exists a set Ωu∗

k ∈ Ωk(p) such
that for any operation Oij ∈ QJ with nij(Ω

v∗
s ) > nij(Ω

u∗
k ), there exists a set

Ωu0

k ∈ Ωk(p) with nij(Ω
v∗
s ) < nij(Ω

u0

k ).
Arguing in the same way as in case iii), we can show that 	B

s (p ∈ T ) ≥
ε > 0, where ε is as in (2.60), since for any vector p0 ∈ Oε(p) ∩ T, the value∑

μ∈Ωv∗
s

lp
0

(μ) is less than or equal to the value
∑

ν∈Ωu∗
k

lp
0

(ν) or
∑

ν∈Ωu0
k

lp
0

(ν).

Sufficiency. We show that, if the conditions of Theorem 2.8 are satisfied,
then 	B

s (p ∈ T ) < ε for any given ε > 0. First, we give the following remark.

Remark 2.8 In the case of aij = bij for each operation Oij ∈ QJ , set
Ω∗

sk ∩ Ωs(p) is empty since vector p becomes equal to vector p∗ constructed
according to (2.52), and inequality (2.53) does not hold.

We construct a vector p′ = (p′1,1, p
′
1,2, . . . , p

′
nnn

) ∈ T with the components
p′ij ∈ {pij, pij + ε′, pij − ε′}, where ε′ = min{ε, εk, εmin} with the value εk > 0
defined in (2.56), and εmin = max{0, min{min{pij − aij : pij > aij, Oij ∈
QJ}, min{bij − pij : bij > pij, Oij ∈ QJ}}} using the following rule. For
each Ωu∗

k ∈ Ωk(p), mentioned in Theorem 2.8, we set either p′ij = pij + ε′ if
inequalities (2.57) hold, or p′ij = pij − ε′ if inequalities (2.58) hold.
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More precisely, we can choose ε′ as follows: If Ωk �= Ωk(p), then εk > 0,
and we can choose ε′ such that 0 < ε′ < min{ε, εk, εmin}. Otherwise, if
Ωk = Ωk(p), we choose ε′ such that 0 < ε′ < min{ε, εmin}. Such choices are
possible since in both cases, inequality εmin > 0 holds due to Remark 2.8.
Note that ε′ > 0 since pij > 0, Oij ∈ QJ . The following arguments are the
same for both cases of the choice of ε′.

After changing at most |Ωk(p)| components of vector p according to this
rule, we obtain a vector p′ of the processing times for which inequality∑

μ∈Ωv∗
s

lp
′
(μ) >

∑
ν∈Ωu∗

k

lp
′
(ν)

holds for each set Ωu∗
k ∈ Ωk(p). Due to ε′ ≤ εmin, we have p′ ∈ T. Since

ε′ ≤ εk, we have

Lp′
k = max

u∈{1,2,...,ωT
k }

∑
ν∈Ωu

k

lp
′
(ν) = max

Ωu
k∈Ωk(p)

∑
ν∈Ωu

k

lp
′
(ν)

=
∑

ν∈Ωu∗
k

lp
′
(ν) <

∑
μ∈Ωv∗

s

lp
′
(μ) ≤ Lp′

s .

Thus, we conclude that digraph Gs is not optimal for vector p′ ∈ T with
d(p, p′) = ε′ which implies 	B

s (p ∈ T ) < ε′ ≤ ε.
�

Theorem 2.8 directly implies the following assertion.

Corollary 2.10 If Gs ∈ B is the unique optimal digraph for vector p ∈ T ,
then 	B

s (p ∈ T ) > 0.

From Theorem 2.8, we obtain the following lower bound for the relative
stability radius 	B

s (p ∈ T ).

Corollary 2.11 If Gs ∈ B is an optimal digraph, then 	B
s (p ∈ T ) ≥ ε∗,

where ε∗ is calculated according to (2.59).

Proof. If there exists a digraph Gk ∈ B with Lp
s = Lp

k, k �= s, relation
	B

s (p ∈ T ) ≥ ε∗ = 0 holds due to Definition 2.6. Otherwise, inequality
	B

s (p ∈ T ) ≥ ε∗ follows from the above proof of necessity (case i)).
�

Example 2.2 (continued). Returning to Example 2.2 and using Theo-
rem 2.6, we can calculate the relative stability radius of digraph G1 ∈ B ⊆
Λ(G), |B| = 12, for vector p = p0 = (70, 30, 60, 20, 60, 70, 40, 30) of the
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processing times according to formula (2.55). After a pairwise compar-
ison of the sets of representatives for digraph GT

1 with those for the di-
graphs GT

2 , GT
3 , . . . , GT

12, we obtain equality 	B
1 (p0 ∈ T ) = 3, which means

that digraph G1 remains optimal at least for all vectors p ∈ O3(p
0) ∩ T

of the processing times. Due to the calculation of the relative stability
radius, we show that only digraphs G2 and G5 may be better than di-
graph G1 provided that vector p of the processing times belongs to poly-
tope T , and for each digraph Gk ∈ Λ(G) with k �= 2 and k �= 5, domi-
nance relation G1 �T Gk holds. We also obtain the following equalities:
	B

1 (p0 ∈ T ) = rB
2,1 = 3, 	

B\{G2}
1 (p0 ∈ T ) = r

B\{G2}
5,1 = 10, where the values

rB
k1 are calculated according to (2.54), and they give the minimum over all

digraphs Gk ∈ B which are not dominated by digraph G1. It follows from
Theorem 2.7 that 	

B\{G2,G5}
1 (p0 ∈ T ) = ∞.

Due to Theorem 2.4, set Λ∗(G) = {G1, G2, G5} is a G-solution to problem
J 3/n = 3, ai ≤ pi ≤ bi/

∑ Ci, since there exists a covering of polytope T by
the sets Ds = {p ∈ R8

+ : Lp
s ≤ Lp

k, k = 1, 2 . . . , λ} ∩ T with s ∈ {1, 2, 5}.
More exactly, for any digraph Gk ∈ Λ(G) and for any set Ds, s ∈ {1, 2, 5},
there exists a digraph Gs ∈ Λ∗(G) for which dominance relation Gs �Ds

Gk

holds (since dominance relation G1 �T Gk holds for each digraph Gk ∈
Λ(G), k �= 2, k �= 5, it follows that set {D1, D2, D5} is indeed a covering of
polytope T ). Moreover, since for each digraph Gs ∈ Λ∗(G), there exists a
point (see vectors p0, pε and x, given in Section 2.4), for which this digraph
is the unique optimal one, it follows from Theorem 2.5 that the G-solution
Λ∗(G) = {G1, G2, G5} is minimal.

Note that from a practical point of view, it is more useful to consider a cov-
ering of polytope T by nested balls O3(p

0), O10(p
0) and Or∗(p

0), where r∗ may
be any real number no less than max{bij − p0

ij, p
0
ij − aij : i = 1, 2, . . . , n; j =

1, 2, . . . , ni}. Indeed, due to the calculation of the stability radius 	B
1 (p0 ∈ T ),

we know that for each vector p ∈ O3(p
0), digraph G1 is optimal. Moreover,

for each vector p ∈ O10(p
0), at least one digraph G1 or G2 is optimal since

	
B\{G2}
1 (p0 ∈ T ) = 10. Finally, for each vector p ∈ Or∗(p

0), at least one

digraph G1, G2 or G5 is optimal since 	
B\{G2,G5}
1 (p0 ∈ T ) = ∞.

Remark 2.9 The solution of problem J 3/n = 3, ai ≤ pi ≤ bi/
∑ Ci takes

three iterations by the above algorithm (see Table 2.8). However, similarly
to the calculation of the relative stability radius and the construction of
a G-solution of the scheduling problem with the makespan criterion (see
Remark 2.4), we can construct a G-solution Λ∗(G) for the mean flow time
criterion in one scan as follows. We union one of the optimal digraphs Gs
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with all digraphs Gk, k �= s, for which a non-empty set Ω∗
sk �= ∅ exists, i.e., for

which dominance relation Gs �T Gk does not hold, and the union of these
digraphs composes such a G-solution Λ∗(G). In other words, a G-solution of
problem J /ai≤pi≤bi/

∑ Ci is the union of an optimal digraph and of all its
competitive digraphs Λ∗(G) = {Gs}∪ {Gk : Gs ��T Gk} = {Gs}∪ {∪I

i=1Γi},
where Γi is the set of competitive digraphs of digraph Gs with respect to set
B in iteration i = 1, 2, . . . , I.

Table 2.8: G-solution of problem J 3/n=3, ai≤pi≤bi/
∑ Ci with the initial vector p0 ∈ T

i Set B 	B
1 (p0 ∈ T ) Set Γi of competitive

digraphs of digraph G1

1 B = {G1, G2, . . . , G12} 3 {G2}
2 B \ {G2} 10 {G5}
3 B \ {G2, G5} ∞ ∅

Next, we consider a small problem J 3/n=2/
∑ Ci to illustrate the calcu-

lation of 	1(p) by formulas (1.39) and (1.40). Then we calculate the relative
stability radius for problem J 3/n = 2, ai ≤ pi ≤ bi/

∑ Ci. Without causing
any confusion, we use the same notations for different examples, i.e., for
Example 2.1 and Example 2.2.

Example 2.1 (continued). Returning to Example 2.1 from Section 2.1, we
consider the job shop problem with the mean flow time criterion J 3/n =
2/

∑ Ci, whose input data are given by the weighted mixed graph G(p) with
p = (75, 50, 40, 60, 55, 30), presented in Figure 2.1. Obviously, the set of all
feasible digraphs Λ(G) is the same, but we number these digraphs in non-
decreasing order of the objective function values: Lp

1 ≤ Lp
2 ≤ . . . ≤ Lp

5 (see
Figure 2.8). Note that for criterion

∑ Ci, we do not need to use dummy
operations. As we can see, digraph G1(p) is optimal for both criteria Cmax

and
∑ Ci. Next, we calculate the stability radius 	1(p) for digraph G1(p).

To this end, we construct an auxiliary Table 2.9, where for each feasible
digraph Gk, k ∈ {1, 2, 3, 4, 5}, column 2 presents the sets Ωu

k of represen-
tatives of the family of sets (H i

k)Ji∈J , column 3 presents the integer vector
n(Ωu

k) = (n1,1(Ω
u
k), n1,2(Ω

u
k), . . . , n2,3(Ω

u
k)), where the value nij(Ω

u
k) is equal

to the number of vertices Oij in the multiset {[ν] : ν ∈ Ωu
k} (for simplicity,

we use the notation nij instead of nij(Ω
u
k)), and column 4 presents the value

∑
ν∈Ωu

k

lp(ν) =
∑

Oij∈[ν], ν∈Ωu
k

pij · nij(Ω
u
k).



2.5. CHARACTERIZATION OF A G-SOLUTION 139

��
��

��
��

��
��

��
��

��
��

��
��

O1,1 O1,2 O1,3

O2,1 O2,2 O2,3

�

�

�

��

�

�

G1(p), Lp
1 = 325

��
��

��
��

��
��

��
��

��
��

��
��

O1,1 O1,2 O1,3

O2,1 O2,2 O2,3�

�

��




G2(p), Lp
2 = 410

��
��

��
��

��
��

��
��

��
��

��
��

O1,1 O1,2 O1,3

O2,1 O2,2 O2,3

�

�

�

�


 


G3(p), Lp
3 = 425

��
��

��
��

��
��

��
��

��
��

��
��

O1,1 O1,2 O1,3

O2,1 O2,2 O2,3

�

�

�

��

G4(p), Lp
4 = 435

��
��

��
��

��
��

��
��

��
��

��
��

O1,1 O1,2 O1,3

O2,1 O2,2 O2,3

�

�

�




�

G5(p), Lp
5 = 550

Figure 2.8: Digraphs Λ(G) = {G1, G2, . . . , G5} numbered in non-decreasing order of the
objective function values

∑ Ci

Table 2.9: Auxiliary information for problem J 3/n=2/
∑ Ci

Gk Ωu
k , u = 1, 2, . . . , ωk n1,1 n1,2 n1,3 n2,1 n2,2 n2,3

∑
ν∈Ωu

k

lp(ν)

1 2 3 4
G1 Ω1

1 ={O1,1, O1,2, O1,3;O1,1, O1,2, O2,3} 2 2 1 0 0 1 320
Ω2

1 ={O1,1, O1,2, O1,3;O2,1, O1,2, O2,3} 1 2 1 1 0 1 305
Ω3

1 ={O1,1, O1,2, O1,3;O1,1, O2,2, O2,3} 2 1 1 0 1 1 325
Ω4

1 ={O1,1, O1,2, O1,3;O2,1, O2,2, O2,3} 1 1 1 1 1 1 310
Ω5

1 ={O2,1, O1,2, O1,3;O1,1, O1,2, O2,3} 1 2 1 1 0 1 305
Ω6

1 ={O2,1, O1,2, O1,3;O2,1, O1,2, O2,3} 0 2 1 2 0 1 290
Ω7

1 ={O2,1, O1,2, O1,3;O1,1, O2,2, O2,3} 1 1 1 1 1 1 310
Ω8

1 ={O2,1, O1,2, O1,3;O2,1, O2,2, O2,3} 0 1 1 2 1 1 295
G2 Ω1

2 ={O1,1, O2,2, O2,3, O1,2, O1,3;O1,1, O2,2, O2,3} 2 1 1 0 2 2 410
Ω2

2 ={O1,1, O2,2, O2,3, O1,2, O1,3;O2,1, O2,2, O2,3} 1 1 1 1 2 2 395
Ω3

2 ={O2,1, O2,2, O2,3, O1,2, O1,3;O1,1, O2,2, O2,3} 1 1 1 1 2 2 395
Ω4

2 ={O2,1, O2,2, O2,3, O1,2, O1,3;O2,1, O2,2, O2,3} 0 1 1 2 2 2 380
G3 Ω1

3 ={O2,1, O2,2, O1,1, O1,2, O1,3;O2,1, O2,2, O2,3} 1 1 1 2 2 1 425
Ω2

3 ={O2,1, O2,2, O2,3, O1,2, O1,3;O2,1, O2,2, O2,3} 0 1 1 2 2 2 380
G4 Ω1

4 ={O1,1, O1,2, O1,3;O1,1, O1,2, O2,1, O2,2, O2,3} 2 2 1 1 1 1 435
G5 Ω1

5 ={O2,1, O2,2, O1,1, O1,2, O1,3; 2 2 1 2 2 1 550
O2,1, O2,2, O1,1, O1,2, O2,3}

The calculation of 	1(p) by formula (1.40) is given in Table 2.10, which
presents the results of the computations for each β = 1, 2, . . . , q − m, where
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Table 2.10: Calculation of the stability radius �1(p) for problem J 3/n=2/
∑ Ci

Gk |Ω1k| Ωv
1∈Ω1k Ωu

k , β pij(m+β)
,

∑m+β
α=1 pij(α)

(nij(α)
(Ωu

k)−nij(α)
(Ωv

1))∑m+β
α=1 |nij(α)

(Ωu
k) − nij(α)

(Ωv
1)|

max
β

max
Ωu

k

min
Ωv

1

1≤u≤ωk 1≤β≤q−m
1 2 3 4 5 6 7 8 9 10

G2 4 Ω1
1 Ω1

2 1 pij(5)
= 55 50(1−2)+55(2−0)

|1−2|+|2−0| = 20 22.5 22.5 22.5

2 pij(6)
= 30 50(1−2)+55(2−0)+30(2−1)

|1−2|+|2−0|+|2−1| = 22.5

Ω2
2,Ω

3
2 1 pij(4)

= 60 75(1−2)+50(1−2)+60(1−0)
1+1+1 = −65

3 12.5
2 pij(5)

= 55 −65+55(2−0)
3+2 = 45

5 = 9
3 pij(6)

= 30 45+30(2−1)
5+1 = 12.5

Ω4
2 1 pij(4)

= 60 75(0−2)+50(1−2)+60(2−0)
2+1+2 = −80

5 7.5
2 pij(5)

= 60 −80+55(2−0)
5+2 = 30

7 = 42
3

3 pij(6)
= 30 30+30(2−1)

7+1 = 7.5

Ω2
1,Ω

5
1 Ω1

2 1 pij(4)
= 75 50(1−2)+60(0−1)+75(2−1)

1+1+1 = −35
3 17.5 22.5

2 pij(5)
= 55 −35+55(2−0)

3+2 = 75
5 = 15

3 pij(6)
= 30 75+30(2−1)

5+1 = 17.5
Ω2

2,Ω
3
2 1 pij(5)

= 55 50(1−2)+55(2−0)
1+2 = 60

3 = 20 22.5
2 pij(6)

= 30 60+30(2−1)
3+1 = 22.5

Ω4
2 1 pij(4)

= 60 75(0−1)+50(1−2)+60(2−1)
1+1+1 = −65

3 12.5
2 pij(5)

= 55 −65+55(2−0)
3+2 = 45

5 = 9
3 pij(6)

= 30 45+30(2−1)
5+1 = 12.5

Ω6
1 Ω1

2 1 pij(4)
= 75 50(1−2)+60(0−2)+75(2−0)

1+2+2 = −20
5 15 22.5

2 pij(5)
= 55 −20+55(2−0)

5+2 = 90
7 = 126

7

3 pij(6)
= 30 90+30(2−1)

7+1 = 15
Ω2

2,Ω
3
2 1 pij(4)

= 75 50(1−2)+60(1−2)+75(1−0)
1+1+1 = −35

3 17.5
2 pij(5)

= 55 −35+55(2−0)
3+2 = 75

5 = 15
3 pij(6)

= 30 75+30(2−1)
5+1 = 17.5

Ω4
2 1 pij(5)

= 55 50(1−2)+55(2−0)
1+2 = 60

3 = 20 22.5
2 pij(6)

= 30 60+30(2−1)
3+1 = 22.5

G3 5 Ω1
1 Ω1

3 1 pij(5)
= 60 75(1−2)+50(1−2)+60(2−0)

1+1+2 = −5
4 17.5 17.5 17.5

2 pij(6)
= 55 −5+55(2−0)

4+2 = 17.5
Ω2

3 1 pij(4)
= 60 75(0−2)+50(1−2)+60(2−0)

2+1+2 = −80
5 7.5

2 pij(5)
= 55 −80+55(2−0)

5+2 = 30
7 = 42

7

3 pij(6)
= 30 30+30(2−1)

7+1 = 7.5

Ω2
1,Ω

5
1 Ω1

3 1 pij(5)
= 60 50(1−2)+60(2−1)

1+1 = 10
2 = 5 30 30

2 pij(6)
= 55 10+55(2−0)

2+2 = 30
Ω2

3 1 pij(4)
= 60 75(0−1)+50(1−2)+60(1+1−1)

1+1+1 = −65
3 12.5

2 pij(5)
= 55 −65+55(2−0)

3+2 = 45
5 = 9

3 pij(6)
= 30 45+30(2−1)

5+1 = 12.5
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Table 2.10 (continuation): Calculation of the stability radius �1(p) for problem J 3/n=2/
∑ Ci

Gk |Ω1k| Ωv
1∈Ω1k Ωu

k , β pij(m+β)
,

∑m+β
α=1 pij(α)

(nij(α)
(Ωu

k)−nij(α)
(Ωv

1))∑m+β
α=1 |nij(α)

(Ωu
k) − nij(α)

(Ωv
1)|

max
β

max
Ωu

k

min
Ωv

1

1≤u≤ωk 1≤β≤q−m
1 2 3 4 5 6 7 8 9 10

Ω3
1 Ω1

3 1 pij(5)
= 60 75(1−2)+60(2−0)

1+2 = 45
3 = 15 25 25

2 pij(6)
= 55 45+55(2−1)

3+1 = 25
Ω2

3 1 pij(4)
= 60 75(0−2)+60(2−0)

2+2 = −30
4 9 1

6

2 pij(5)
= 55 −30+55(2−1)

4+1 = 25
5 = 5

3 pij(6)
= 30 25+30(2−1)

5+1 = 91
6

Ω6
1 Ω1

3 1 pij(5)
= 75 50(1−2)+75(1−0)

1+1 = 25
2 = 12.5 33.75 33.75

2 pij(6)
= 55 25+55(2−0)

2+2 = 33.75
Ω2

3 1 pij(5)
= 55 50(1−2)+55(2−0)

1+2 = 60
3 = 20 22.5

2 pij(6)
= 30 60+30(2−1)

3+1 = 22.5

G4 2 Ω6
1 Ω1

4 1 pij(5)
= 75 60(1−2)+75(2−0)

1+2 = 90
3 = 30 36.25 36.25 35

2 pij(6)
= 55 90+55(1−0)

3+1 = 36.25

Ω8
1 Ω1

4 1 pij(5)
= 75 60(1−2)+75(2−0)

1+2 = 90
3 = 30 35 35

2 pij(6)
= 55 90+55(2−1)

3+1 = 35

G5 0

m is the number of operations Oij ∈ Ωv
1 ∪Ωu

k, Ωv
1 ∈ Ω1k, for which nij(Ω

v
1) <

nij(Ω
u
k). The cardinality of set Ω1k, k ∈ {1, 2, 3, 4, 5}, and the elements Ων

1 of
this set are presented in column 2 and column 3, respectively. The elements
of set Ωu

k, u = 1, 2, . . . , ωk, for which
∑

ν∈Ωu
k
lp(ν) ≥ Lp

1 = 325 are presented
in column 4.

Since the vector n(Ωu
k) = (n1,1(Ω

u
k), n1,2(Ω

u
k), . . . , n2,3(Ω

u
k)) is the same for

both sets Ω2
1 and Ω5

1, for both sets Ω4
1 and Ω7

1, and for both sets Ω2
2 and Ω3

2 (see
Table 2.9), the results calculated by formula (1.40) are the same for these
pairs of sets, too. Therefore, we combine these calculations in column 7 in
Table 2.10. In column 6 we give the sequence of the processing times of the
operations Oij ∈ Ωv

1 ∪ Ωu
k with nij(Ω

v
1) < nij(Ω

u
k) ordered in the following

way: pij(m+1)
≥ pij(m+2)

≥ . . . ≥ pij(q)
. Note that in column 7, we do not write

the components with nij(Ω
v
1) = nij(Ω

u
k) in the fraction from formula (1.40).

For the sets Ω1
1 and Ω1

2, we give a more detailed computation and for each
other pair of sets Ωv

1 and Ωu
k in each following iteration, we use the value of

the fraction obtained in the previous iteration. From the derived values in
column 7, we write their maximum for β = 1, 2, . . . , q − m, the maximum
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for Ωu
k, u = 1, 2, . . . , ωk, and the minimum for Ωv

1 ∈ Ω1k, respectively, in
columns 8, 9 and 10. Using formula (1.39), we take the minimum value
from column 10 and obtain 	1(p) = 17.5.

We consider a job shop problem J 3/n=2, ai≤pi≤bi/
∑ Ci (Example 2.1)

with the aim to illustrate the idea of constructing a G-solution to this problem
mentioned in Remark 2.9. The structural input data are given by the mixed
graph G in Figure 2.1. The numerical input data are given in Table 2.3.
Obviously, the set of all feasible digraphs Λ(G) is identical for both criteria
Cmax and

∑ Ci, and here we number these digraphs in non-decreasing order
of the values

∑ Ci with the same initial vector p = (75, 50, 40, 60, 55, 30) as
for problem J 3/n = 2, ai ≤ pi ≤ bi/Cmax considered in Chapter 2: Lp

1 ≤
Lp

2 ≤ . . . ≤ Lp
5 (see Figure 2.8). Using the modification of the critical path

method described on page 120, we can simplify digraphs G1, G2, . . . , G5. For
these input data (see Table 2.3), the corresponding digraphs GT

1 , GT
2 , . . . , GT

5
remain the same. This means that the number of sets of representatives ωT

k

is equal to the number ωk for each digraph Gk, k ∈ {1, 2, 3, 4, 5}, (Table 2.9).

We calculate the relative stability radius 	
Λ(G)
1 (p ∈ T ) for the optimal

digraph G1(p) presented in Figure 2.8. First, due to Remark 2.7, we have
to construct the set Ω∗

1k for each digraph Gk, k ∈ {2, 3, 4, 5}. To this end,
we construct an auxiliary Table 2.11, where for each combination of the sets
Ωv

1, v = 1, 2, . . . , ωT
1 , and Ωu

k, u = 1, 2, . . . , ωT
k , k ∈ {2, 3, 4, 5}, we obtain the

vector p∗ according to formula (2.52) (see column 4) and check inequality
(2.53) (see column 5). As we made in Table 2.10, we combine the same
calculations for each pair of sets Ω2

1 and Ω5
1, Ω4

1 and Ω7
1, Ω2

2 and Ω3
2. Since

Ω∗
sk ⊆ Ωsk, we do not perform such a calculation for the sets Ωu

k, which do
not belong to the sets Ω1k, k ∈ {2, 3, 4, 5}, (see Table 2.10). So, it follows
from column 5 that there is no set of representatives Ωv

1, v ∈ {1, 2, . . . , ωT
1 },

such that inequality (2.53) holds for each set of representatives Ωu
k, u ∈

{1, 2, . . . , ωT
k }.

Thus, Ω∗
1k = ∅ for each digraph Gk ∈ B = Λ(G) \ {G1}. Therefore,

from Theorem 2.6 and Theorem 2.7, it follows: 	
Λ(G)
1 (p ∈ T ) = ∞. (For

the numerical input data presented in Table 2.3, digraph G1 dominates all
digraphs Gk ∈ Λ(G) in polytope T and remains the best for all feasible vectors
x ∈ T of the processing times.) In such a case, we obtain a single-element
minimal G-solution ΛT (G) = {G1}.

To illustrate the case of formula (2.55) from Theorem 2.6, we give the
following example.

Example 2.3 We consider a job shop problem J 3/n = 2, ai ≤ pi ≤ bi/
∑ Ci
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Table 2.11: Auxiliary information for the construction of the sets Ω∗
1k, k ∈ {2, 3, 4, 5}, for

problem J 3/n=2, ai≤pi≤bi/
∑ Ci

Gk Ωv
1 Ωu

k p∗ ∈ T
∑

μ∈Ωv
1

lp
∗
(μ)>

∑
μ∈Ωv

1

lp
∗
(μ) Ω∗

1k

1 2 3 4 5 6
G2 Ω1

1 Ω1
2 (75, 90, 40, 60, 45, 20) 390 �> 410 Ω1

1 �∈ Ω∗
1,2

Ω2
2,Ω

3
2 (100, 90, 40, 50, 45, 20) 440 > 410

Ω4
2 (100, 90, 40, 50, 45, 20) 440 > 410

Ω2
1,Ω

5
1 Ω1

2 (35, 90, 40, 80, 45, 20) 400 > 330 {Ω2
1,Ω

5
1} �⊆ Ω∗

1,2

Ω2
2,Ω

3
2 (75, 90, 40, 60, 45, 20) 375 �> 395

Ω4
2 (100, 90, 40, 50, 45, 20) 390 > 360

Ω3
1 Ω1

2 (75, 50, 40, 60, 45, 20) 305 �> 370 Ω3
1 �∈ Ω∗

1,2

Ω2
2,Ω

3
2 (100, 50, 40, 50, 45, 20) 355 �> 370

Ω4
2 (100, 50, 40, 50, 45, 20) 355 > 320

{Ω4
1,Ω

7
1} �⊆ Ω1,2 {Ω4

1,Ω
7
1} �⊆ Ω∗

1,2

Ω6
1 Ω1

2 (35, 90, 40, 80, 45, 20) 400 > 330 Ω6
1 �∈ Ω∗

1,2

Ω2
2,Ω

3
2 (35, 90, 40, 80, 45, 20) 400 > 375

Ω4
2 (75, 90, 40, 60, 45, 20) 360 �> 380

Ω8
1 �∈ Ω1,2 Ω8

1 �∈ Ω∗
1,2

G3 Ω1
1 Ω1

3 (100, 90, 40, 50, 45, 30) 450 �> 450 Ω1
1 �∈ Ω∗

1,3

Ω2
3 (100, 90, 40, 50, 45, 20) 440 > 360

Ω2
1,Ω

5
1 Ω1

3 (75, 90, 40, 50, 45, 30) 375 �> 425 {Ω2
1,Ω

5
1} �⊆ Ω∗

1,3

Ω2
3 (100, 90, 40, 50, 45, 20) 390 > 360

Ω3
1 Ω1

3 (100, 50, 40, 50, 45, 30) 365 �> 410 Ω3
1 �∈ Ω∗

1,3

Ω2
3 (100, 50, 40, 50, 45, 20) 355 > 320

{Ω4
1,Ω

7
1} �⊆ Ω1,3 {Ω4

1,Ω
7
1} �⊆ Ω∗

1,3

Ω6
1 Ω1

3 (35, 90, 40, 60, 45, 30) 370 �> 405 Ω6
1 �∈ Ω∗

1,3

Ω2
3 (75, 90, 40, 60, 45, 20) 360 �> 380

Ω8
1 �∈ Ω1,3 Ω8

1 �∈ Ω∗
1,3

G4 Ω1
1 �∈ Ω1,4 Ω1

1 �∈ Ω∗
1,4

{Ω2
1,Ω

5
1} �⊆ Ω1,4 {Ω2

1,Ω
5
1} �⊆ Ω∗

1,4

Ω3
1 �∈ Ω1,4 Ω3

1 �∈ Ω∗
1,4

{Ω4
1,Ω

7
1} �⊆ Ω1,4 {Ω4

1,Ω
7
1} �⊆ Ω∗

1,4

Ω6
1 Ω1

4 (35, 50, 40, 80, 45, 30) 330 �> 365 Ω6
1 �∈ Ω∗

1,4

Ω8
1 Ω1

4 (35, 40, 40, 80, 55, 30) 325 �> 355 Ω8
1 �∈ Ω∗

1,4

G5 {Ω1,5} = ∅ {Ω∗
1,5} = ∅

with the same structural input data (Figure 2.1), but with different numerical
data (Table 2.12). We do not simplify the digraphs G1, G2, . . . , G5 for the
new numerical input data, i.e., the corresponding digraphs GT

1 , GT
2 , . . . , GT

5
have the same sets of representatives

{Ωu
k : u = 1, 2, . . . , ωT

k , ωT
k = ωk, k ∈ {1, 2, 3, 4, 5}}.

For the initial vector p = (75, 50, 40, 60, 55, 30), we have the same op-
timal digraph G1(p) and all feasible digraphs Λ(G) are numbered as for
the above problem (Figure 2.8). We calculate the relative stability radius

	
Λ(G)
1 (p ∈ T ) on the basis of Theorem 2.6. For the combination of the
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Table 2.12: Numerical data for problem J 3/n=2, ai≤pi≤bi/
∑ Ci

i 1 1 1 2 2 2
j 1 2 3 1 2 3

aij 35 30 40 45 10 15
bij 105 100 75 85 65 50

numerical input data given in Table 2.12, we construct the following sets:
Ω∗

1,2 = {Ω1
1, Ω

2
1, Ω

5
1, Ω

6
1}, Ω∗

1,3 = {Ω1
1, Ω

2
1, Ω

5
1, Ω

6
1}, Ω∗

1,4 = {Ω6
1}, Ω∗

1,5 = ∅.
This means that digraph G1 does not dominate digraphs G2, G3, G4 in poly-
tope T and due to Theorem 2.7, we have 	

Λ(G)
1 (p ∈ T ) �= ∞. In Table 2.13,

one can observe the calculation of the relative stability radius 	
Λ(G)
1 (p ∈ T )

for the vector p = (75, 50, 40, 60, 55, 30). Following Theorem 2.6, we must
compare digraph G1 with each digraph Gk, k ∈ {2, 3, 4}, for which Ω∗

1k �= ∅.
Thus, we perform the calculations due to formulas (2.48) and (2.55) for each
set Ωv

1 ∈ Ω∗
1k (see column 2) and each set Ωu

k (see column 3). For the sets Ωu
k

in column 3, inequality
∑

ν∈Ωu
k
lp(ν) ≥ Lp

1 = 325 holds (see Table 2.9). Col-

umn 5 contains the values Δij
β (Ωv

1, Ω
u
k), β = 0, 1, . . . , |N(Ωv

1, Ω
u
k)| − 1, defined

by formula (2.46) (see page 129) for each operation

Oij ∈ N(Ωu
k, Ω

v
1) =

⎧⎪⎨⎪⎩
⋃

μ∈Ωu
k∪Ωv

1

[μ] : nij(Ω
u
k) �= nij(Ω

v
1)

⎫⎪⎬⎪⎭ .

The order of these values is defined by (2.47). The corresponding val-
ues Nβ(Δ) are given in column 6. Column 8 contains the value rΩv

1,Ω
u
k

which is equal to the maximum of the values given in column 7 for β =
0, 1, . . . , |N(Ωv

1, Ω
u
k)| − 1 (see formula (2.48)). The values

rB
k1 = min

Ωv
1∈Ω∗

1k

max
u∈{1,2,...,ωT

k
},∑

ν∈Ωu
k

lp(ν)≥L
p
1

rΩv
1,Ω

u
k

calculated according to (2.54) are given in column 10.
As follows from Theorem 2.6, the last step is to take the minimum value

in column 10: 	
Λ(G)
1 (p ∈ T ) = min{rB

k1, k ∈ {2, 3, 4}} = r3,1 = 18.75.
As follows from Remark 2.9, we also construct an increasing sequence

of relative stability radii 	
Λ(G)
1 (p ∈ T ) = r3,1 = 18.75, 	

Λ(G)\{G3}
1 (p ∈ T ) =

r2,1 = 25, 	
Λ(G)\{G3,G2}
1 (p ∈ T ) = r4,1 = 40, 	

Λ(G)\{G3,G2,G4}
1 (p ∈ T ) = ∞

(see Figure 2.9) and a sequence of nested sets of competitive digraphs Gk

of digraph G1: Γ1 = {G3}, Γ2 = {G2}, Γ3 = {G4}, for which dominance
relation G1 �T Gk does not hold.
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Table 2.13: Calculation of the relative stability radius �
Λ(G)
1 (p ∈ T ) for problem J 3/n=

2, ai≤pi≤bi/
∑ Ci

Gk Ωv
1∈Ω∗

1k Ωu
k β Δij

β (Ωv
1,Ω

u
k) Nβ(Δ)

∑
ν∈Ωu

k

lp(ν)−
∑

μ∈Ωv
1

lp(μ)−
β∑

α=0

Δij
α (Ωv

1 , Ωu
k)·Nα(Δ)

∑
Oij∈QJ

|nij(Ω
u
k)−nij(Ω

v
1)| −

β∑
α=0

|Nα(Δ)|
max

β
max
Ωu

k

min
Ωv

1

1 2 3 4 5 6 7 8 9 10

G2 Ω1
1 Ω1

2 0 Δij
0 (Ω1

1,Ω
1
2)=0 0 410−320−0

4−0 = 90
4 = 22.5 25 25 25

1 Δ2,3
1 (Ω1

1,Ω
1
2)=15 1 90−15

4−1 = 75
3 = 25

2 Δ2,2
2 (Ω1

1,Ω
1
2)=45 2 75−45·2

3−2 < 0
Ω2

2,Ω
3
2 0 Δij

0 (Ω1
1,Ω

2
2)=0 0 395−320−0

6−0 = 75
6 = 12.5 12.5

1 Δ2,1
1 (Ω1

1,Ω
2
2)=15 1 75−15

6−1 = 60
5 = 12

2 Δ2,3
2 (Ω1

1,Ω
2
2)=15 1 60−15

5−1 = 45
4 = 11.25

3 Δ1,1
3 (Ω1

1,Ω
2
2)=30 1 45−30

4−1 = 15
3 = 5

4 Δ2,2
4 (Ω1

1,Ω
2
2)=45 2 15−45·2

3−2 < 0
Ω4

2 0 Δij
0 (Ω1

1,Ω
4
2)=0 0 380−320−0

8−0 = 60
8 = 7.5 7.5

1 Δ2,3
1 (Ω1

1,Ω
4
2)=15 1 60−15

8−1 = 45
7 = 63

7

2 Δ2,1
2 (Ω1

1,Ω
4
2)=15 2 45−15·2

7−2 = 15
5 = 3

3 Δ1,1
3 (Ω1

1,Ω
4
2)=30 2 15−30·2

5−2 < 0

Ω2
1,Ω

5
1 Ω1

2 0 Δij
0 (Ω2

1,Ω
1
2)=0 0 410−305−0

6−0 = 105
6 = 17.5 18 25

1 Δ2,3
1 (Ω2

1,Ω
1
2)=15 1 105−15

6−1 = 90
5 = 18

2 Δ2,1
2 (Ω2

1,Ω
1
2)=25 1 90−25

5−1 = 65
4 = 16.25

3 Δ1,1
3 (Ω2

1,Ω
1
2)=40 1 65−40

4−1 = 25
3 = 81

3

4 Δ2,2
4 (Ω2

1,Ω
1
2)=45 2 25−44·2

3−2 < 0
Ω2

2,Ω
3
2 0 Δij

0 (Ω2
1,Ω

2
2)=0 0 395−305−0

4−0 = 90
4 = 22.5 25

1 Δ2,3
1 (Ω2

1,Ω
2
2)=15 1 90−15

4−1 = 75
3 = 25

2 Δ2,2
2 (Ω2

1,Ω
2
2)=45 2 75−45·2

3−2 < 0
Ω4

2 0 Δij
0 (Ω2

1,Ω
4
2)=0 0 380−305−0

6−0 = 75
6 = 12.5 12.5

1 Δ2,1
1 (Ω2

1,Ω
4
2)=15 1 75−15

6−1 = 60
5 = 12

2 Δ2,3
2 (Ω2

1,Ω
4
2)=15 1 60−15

5−1 = 45
4 = 11.25

3 Δ1,1
3 (Ω2

1,Ω
4
2)=30 1 45−30

4−1 = 15
3 = 5

4 Δ2,2
4 (Ω2

1,Ω
4
2)=45 2 15−45·2

3−2 < 0

Ω6
1 Ω1

2 0 Δij
0 (Ω6

1,Ω
1
2)=0 0 410−290−0

8−0 = 120
8 = 15 15 25

1 Δ2,3
1 (Ω6

1,Ω
1
2)=15 1 120−15

8−1 = 105
7 = 15

2 Δ2,1
2 (Ω6

1,Ω
1
2)=25 2 105−25·2

7−2 = 55
5 = 11

3 Δ1,1
3 (Ω6

1,Ω
1
2)=40 2 55−40·2

5−2 < 0
Ω2

2,Ω
3
2 0 Δij

0 (Ω6
1,Ω

2
2)=0 0 395−290−0

6−0 = 105
6 = 17.5 18

1 Δ2,3
1 (Ω6

1,Ω
2
2)=15 1 105−15

6−1 = 90
5 = 18

2 Δ2,1
2 (Ω6

1,Ω
2
2)=25 1 90−25

5−1 = 65
4 = 16.25

3 Δ1,1
3 (Ω6

1,Ω
2
2)=40 1 65−40

4−1 = 25
3 = 81

3

4 Δ2,2
4 (Ω6

1,Ω
2
2)=45 2 25−45·2

3−2 < 0
Ω4

2 0 Δij
0 (Ω6

1,Ω
4
2)=0 0 380−290−0

4−0 = 90
4 = 22.5 25

1 Δ2,3
1 (Ω6

1,Ω
4
2)=15 1 90−15

4−1 = 75
3 = 25

2 Δ2,2
2 (Ω6

1,Ω
4
2)=45 2 75−45·2

3−2 < 0
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Table 2.13 (continuation): Calculation of the relative stability radius �
Λ(G)
1 (p ∈ T ) for problem

J 3/n=2, ai≤pi≤bi/
∑ Ci

Gk Ωv
1∈Ω∗

1k Ωu
k β Δij

β (Ωv
1,Ω

u
k) Nβ(Δ)

∑
ν∈Ωu

k

lp(ν)−
∑

μ∈Ωv
1

lp(μ)−
β∑

α=0

Δij
α (Ωv

1 , Ωu
k)·Nα(Δ)

∑
Oij∈QJ

|nij(Ω
u
k)−nij(Ω

v
1)| −

β∑
α=0

|Nα(Δ)|
max

β
max
Ωu

k

min
Ωv

1

1 2 3 4 5 6 7 8 9 10

G3 Ω1
1 Ω1

3 0 Δij
0 (Ω1

1,Ω
1
3)=0 0 425−320−0

6−0 = 105
6 = 17.5 18.7518.7518.75

1 Δ2,1
1 (Ω1

1,Ω
1
3)=15 2 105−15·2

6−2 = 75
4 = 18.75

2 Δ1,1
2 (Ω1

1,Ω
1
3)=30 1 75−30

4−1 = 45
3 = 15

3 Δ2,2
3 (Ω1

1,Ω
1
3)=45 2 45−45·2

3−2 < 0
Ω2

3 0 Δij
0 (Ω1

1,Ω
2
3)=0 0 380−290−0

8−0 = 60
8 = 7.5 7.5

1 Δ2,1
1 (Ω1

1,Ω
2
3)=15 1 60−15

8−1 = 45
7 = 63

7

2 Δ2,3
2 (Ω1

1,Ω
2
3)=15 2 45−15·2

7−2 = 15
5 = 3

3 Δ1,1
3 (Ω1

1,Ω
2
3)=30 2 15−30·2

5−2 < 0
Ω2

1,Ω
5
1 Ω1

3 0 Δij
0 (Ω2

1,Ω
1
3)=0 0 425−305−0

4−0 = 120
4 = 30 35 35

1 Δ2,1
1 (Ω2

1,Ω
1
3)=15 1 120−15

4−1 = 105
3 = 35

2 Δ2,2
2 (Ω2

1,Ω
1
3)=45 2 105−45·2

3−2 = 15
Ω2

3 0 Δij
0 (Ω2

1,Ω
2
3)=0 0 380−305−0

6−0 = 75
6 = 12.5 12.5

1 Δ2,1
1 (Ω2

1,Ω
2
3)=15 1 75−15

6−1 = 60
5 = 12

2 Δ2,2
2 (Ω2

1,Ω
2
3)=45 1 60−15

5−1 = 45
4 = 11.25

3 Δ1,1
3 (Ω2

1,Ω
2
3)=30 1 45−30

4−1 = 15
3 = 5

4 Δ2,2
4 (Ω2

1,Ω
2
3)=45 2 15−45·2

3−2 < 0
Ω6

1 Ω1
3 0 Δij

0 (Ω6
1,Ω

1
3)=0 0 425−290−0

4−0 = 135
4 = 33.75 33.7533.75

1 Δ1,1
1 (Ω6

1,Ω
1
3)=40 1 135−40

4−1 = 95
3 = 312

3

2 Δ2,2
2 (Ω6

1,Ω
1
3)=45 2 95−45·2

3−2 = 5
Ω2

3 0 Δij
0 (Ω6

1,Ω
2
3)=0 0 380−290−0

4−0 = 90
4 = 22.5 25

1 Δ2,3
1 (Ω6

1,Ω
2
3)=15 1 90−15

4−1 = 75
3 = 25

2 Δ2,2
2 (Ω6

1,Ω
2
3)=45 2 75−45·2

3−2 < 0

G4 Ω6
1 Ω1

4 0 Δij
0 (Ω6

1,Ω
1
4)=0 0 435−290−0

4−0 = 145
4 = 36.25 40 40 40

1 Δ2,1
1 (Ω6

1,Ω
1
4)=25 1 145−25

4−1 = 120
3 = 40

2 Δ1,1
2 (Ω6

1,Ω
1
4)=40 2 120−40·2

3−2 = 40

We draw the projections of the stability balls in Figure 2.9 for the same
components p1,3 and p2,2 of vector p as for problem J 3/n = 2, ai ≤ pi ≤
bi/Cmax from Example 2.1 in Section 2.1 (see Figure 2.4 and Figure 2.5).
From Theorem 2.4 and Remark 2.9, it follows that the set Λ∗(G) = {G1} ∪
{∪3

i=1Γi} = {G1} ∪ {Gk : G1 ��T Gk} = {G1, G2, G3, G4} is a G-solution of
problem J 3/n = 2, ai ≤ pi ≤ bi/

∑ Ci. Moreover, this G-solution is minimal
since for each digraph Gk ∈ Λ∗(G), there exists a feasible vector for which
this digraph is the unique optimal one (see Table 2.14).
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Figure 2.9: Projections of the stability balls with the center p = (75, 50, 40, 60, 55, 30) on
the plane for problem J 3/n=2, ai≤pi≤bi/

∑ Ci

Table 2.14: Optimal digraphs for problem J 3/n=2, ai≤pi≤bi/
∑ Ci with different initial

vectors p ∈ T

Initial vector Objective function Optimal �
Λ(G)
s (pj ∈ T ) Competitive

pj ∈ T values
∑ Ci digraph Gs digraph of Gs

1 2 3 4 5

p1 =(75, 95, 40, 60, 10, 30) Lp1

2 =365, Lp1

3 =380, G2 r
Λ(G)
3,2 = 3.75 G3

Lp1

1 =410, Lp1

4 =480,
Lp1

5 =550
p2 =(80, 95, 40, 55, 10, 35) Lp2

3 =380, Lp2

2 =385, G3 r
Λ(G)
2,3 = 1.25 G2

Lp2

1 =425, Lp2

4 =490,
Lp2

5 =555
p3 =(35, 35, 50, 85, 10, 30) Lp3

4 =315, Lp3

2 =320, G4 r
Λ(G)
1,4 = 1.25 G1

Lp3

1 =335, Lp3

3 =340,
Lp3

5 =410

As we have noted for criterion Cmax (Remark 2.5), fixing the vector p ∈ T

and the choice of an optimal digraph Gs(p) may have a large influence on
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the resulting G-solution of problem J /ai≤pi≤bi/
∑ Ci.

In the rest of this section, we prove a bound for the relative stability radii
	B

s (p ∈ T ), which is analogous to the bound proven for the relative stability
radius 	̂B

s (p ∈ T ) for the makespan criterion (see Lemma 2.4 on page 114).
This bound can restrict the number of feasible digraphs from set B which
have to be considered while calculating the relative stability radius.

Redundant Digraphs for Calculating 	B
s (p ∈ T )

To calculate the relative stability radius 	B
s (p ∈ T ) of an optimal digraph

Gs, we can use formulas (2.48) and (2.55) from Theorem 2.6. More exactly,
one must compare each set Ωv

s, v = 1, 2, . . . , ωT
s , of representatives of the

family of sets (H i
s)Ji∈J , with the sets Ωu

k, u = 1, 2, . . . , ωT
k , of representa-

tives of the family of sets (H i
k)Ji∈J of each digraph Gk ∈ B ⊆ Λ(G), k =

1, 2, . . . , |B|, k �= s. The following bound, in which rB
ks is defined by formula

(2.54) on page 130, restricts the number of feasible digraphs Gk with which a
comparison of the optimal digraph Gs has to be done during the calculation
of the relative stability radius 	B

s (p ∈ T ).

Lemma 2.8 If 	B
s (p ∈ T ) < ∞ and there exists a digraph Gk ∈ B such that

rB
ks ≤

Lp
t − Lp

s

nq − n
(2.63)

for some digraph Gt ∈ B, then it is not necessary to consider digraph Gt

during the calculation of the relative stability radius 	B
s (p ∈ T ).

Proof. To calculate the relative stability radius 	B
s (p ∈ T ) using Theo-

rem 2.6, we have to compare the optimal digraph Gs consecutively with
each feasible digraph Gi, i �= s, from set B. Let us compare the opti-
mal digraph Gs with a feasible digraph Gt, t �= k. Digraph Gt, t �= s,
is a competitive digraph for Gs if we can construct a vector x ∈ T

that satisfies condition (a∗) given on page 127, i.e., equality (2.38) holds:
Lx

s = Lx
t . Moreover, for any real ε > 0, which may be as small as de-

sired, there must exist a vector pε ∈ T such that equality d(x, pε) = ε

holds and inequality (2.39) Lpε

s > Lpε

t is satisfied for digraph Gt (see con-
dition (b∗)). More precisely, we must construct a vector x of the form
x = p(rB

ts) = (p1,1(r
B
ts), p1,2(r

B
ts), . . ., pnnn

(rB
ts)) with the components pij(r

B
ts)

from the set {pij, pij + min{rB
ts, bij − pij}, pij − min{rB

ts, pij − aij}} accord-
ing to formula (2.45). Due to condition (c∗) (see page 127), the distance



2.5. CHARACTERIZATION OF A G-SOLUTION 149

d(p, x) = d(p, p(rB
ts)) = rB

ts must achieve the minimal value among the dis-
tances between vector p and the other vectors in polytope T which satisfy
both conditions (a∗) and (b∗).

We suppose that the conditions of Lemma 2.8 are satisfied, i.e., inequality
(2.63) holds, and vector x = p(rB

ks) satisfies both conditions (a∗) and (b∗).
Then we show that the distance d(p, p(rB

ts)) cannot become less than the
distance d(p, p(rB

ks)). Next, we show that inequality rB
ks ≤ rB

ts follows from
condition (2.63). We have:

rB
ks ≤

Lp
t − Lp

s

nq − n
=

∑
ν∈Ωu∗

t
lp(ν) − ∑

μ∈Ωv∗
s

lp(μ)

n(q − 1)
= r′,

where Ωu∗
t , u∗ ∈ {1, 2, . . . , ωT

t }, and Ωv∗
s , v∗ ∈ {1, 2, . . . , ωT

s }, are critical sets
for the digraphs Gt and Gs, respectively. Since

∑
Oij∈QJ |nij(Ω

u∗
k )−nij(Ω

v∗
s )| <

n, we get the following inequalities:

r′ <

∑
ν∈Ωu∗

t
lp(ν) − ∑

μ∈Ωv∗
s

lp(μ)

(
∑

Oij∈QJ |nij(Ωu∗
k ) − nij(Ωv∗

s )|)(q − 1)

≤ max
u∈{1,2,...,ωT

t }

∑
ν∈Ωu

t
lp(ν) − ∑

μ∈Ωv∗
s

lp(μ)∑
Oij∈QJ |nij(Ωu

t ) − nij(Ωv∗
s )|

≤ min
Ωv

s∈Ωs,t

max
u∈{1,2,...,ωT

t }

∑
ν∈Ωu

t
lp(ν) − ∑

μ∈Ωv
s
lp(μ)∑

Oij∈QJ |nij(Ωu
t ) − nij(Ωv

s)|
≤ rB

ts.

Thus, the value rB
ts cannot become less than rB

ks and therefore, digraph
Gt need not to be considered during the calculation of the relative stability
radius 	B

s (p ∈ T ).

�

Bound (2.63) is tight. This lemma implies the following corollary.

Corollary 2.12 Let set B = {Gs = Gi1, Gi2, . . . , Gi|B|} be sorted in non-
decreasing order of the objective function values Lp

i1 ≤ Lp
i2 ≤ . . . ≤ Lp

i|B|. If
for the currently compared digraph Gik from set B ⊆ Λ(G), inequality

rB
iks ≤

Lp
it − Lp

i1

nq − n
(2.64)

holds for digraph Git ∈ B with Lp
ik ≤ Lp

it, then it is possible to exclude the di-
graphs Git, Git+1

, . . . , Gi|B| from further considerations during the calculation
of the relative stability radius 	B

s (p ∈ T ).
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Proof. Since set B ⊆ Λ(G) is sorted in non-decreasing order of the objec-
tive function values and inequality (2.64) holds for digraph Git, inequality

rB
iks ≤ Lp

ij
−Lp

i1

nq−n holds for each digraph Gij , j = t + 1, t + 2, . . . , |B|. Due to
Lemma 2.8, these digraphs need not to be considered during the calculation
of the relative stability radius.

�

Using Corollary 2.12, we can compare the optimal digraph Gs = Gi1 con-
secutively with the digraphs Gi2, Gi3, . . . , Gi|B| from set B in non-decreasing
order of the objective function values: Lp

i1 ≤ Lp
i2 ≤ . . . ≤ Lp

i|B|. If for the cur-
rently compared digraph Gk = Gir , inequality (2.63) holds, we can exclude
digraphs Gir , Gir+1

, . . . , Gi|B| from further considerations.

Since 	s(p) = 	Λ(G)
s (p ∈ Rq

+), Corollary 2.12 implies Corollary 2.13 which
allows us to restrict the number of feasible digraphs while calculating the
stability radius 	s(p) (see Definition 1.2 on page 28).

Corollary 2.13 Let set Λ(G) = {Gs = Gi1, Gi2, . . . , Giλ} be sorted in non-
decreasing order of the objective function values: Lp

i1 ≤ Lp
i2 ≤ . . . ≤

Lp
iλ. If for the currently compared digraph Gik from set Λ(G) = {Gs =

Gi1, Gi2, . . . , Gik, . . . , Git, . . . , Giλ}, inequality

r
Λ(G)
iks ≤ Lp

it − Lp
i1

q
(2.65)

holds for digraph Git ∈ Λ(G) with Lp
ik ≤ Lp

it, then it is possible to exclude the
digraphs Git, Git+1

, . . . , Giλ from further considerations during the calculation
of the stability radius 	s(p).

2.6. Algorithms for Problem J /ai≤pi≤bi/Φ

In this section, we focus on the criterion
∑ Ci but we indicate the ne-

cessary changes for the criterion Cmax as well. Using the above mathemat-
ical background, we propose Algorithm SOL

∑ Ci for finding a G-solution
Λ∗(G) ⊆ Λ(G) with a ‘relatively small’ cardinality. As the input data for
Algorithm SOL

∑ Ci, a set of schedules B ⊆ Λ(G), which is a G-solution of
problem J /ai≤pi≤bi/

∑ Ci, and a vector p ∈ T of the processing times are
used. This algorithm generates a covering of polytope T (Theorem 2.4) by
nested closed balls Or(p) with the common center p ∈ T and different radii
r which are relative stability radii 	B

s (p ∈ T ) of the same digraph Gs but for
different nested sets B. Let set B ⊆ Λ(G) be a given G-solution to problem
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J /ai≤pi≤ bi/
∑ Ci (in the worst case, the whole set Λ(G) of digraphs may

be used as set B). We also fix a vector p ∈ T of the processing times and the
number the digraphs of set B = {G1, G2, . . . , G|B|} in non-decreasing order
of the values of the objective function. An ‘expected’ vector of the process-
ing times (or a vector which has been considered in a previous calculation
or some other suitable vector from polytope T ) may be used as the input
vector p in the following algorithm. In square brackets we give the changes
of this algorithm in the case of criterion Cmax.

Algorithm SOL
∑ Ci [Algorithm SOL Cmax]

Input: Fixed vector p = (p1,1, p1,2, . . . , pnnn
) ∈ T ,

set B = {G1, G2, . . . , G|B|} such that Lp
1≤Lp

2≤ . . .≤Lp
|B|

for criterion
∑ Ci [ lp1≤ lp2≤ . . .≤ lp|B| for criterion Cmax].

Output: Relative stability radius 	B
1 (p ∈ T ) [	̂B

1 (p ∈ T )]
of the optimal digraph G1 and a G-solution Λ∗(G).

Step 1: Set k = 2 and Λ = ∅.
Step 2: For digraph Gk ∈ B, test the dominance relation

G1 �T Gk using Lemma 2.5 with the
objective function Φp

k = Lp
k [Φp

k = lpk].
Step 3: IF G1 ��T Gk THEN calculate value rB

k1
[value r̂B

k1] using formulas (2.48) and (2.54)
[formula (2.25)] for the input vector p

ELSE GOTO Step 5.
Step 4: Set Λ := Λ ∪ {Gk}.
Step 5: Set k := k + 1.

IF k ≤ |B| THEN GOTO Step 2.
ELSE using Theorem 2.6
[Theorem 2.3 and Remark 2.6]
calculate 	B

1 (p ∈ T ) = min{rB
k1 : G1 ��T Gk}

[	̂B
1 (p ∈ T ) = min{r̂B

k1 : G1 ��T Gk}].
Set Λ∗(G) = Λ ∪ {G1} STOP

It is easy to see that set Λ∗(G) = {Gi1=1, Gi2, . . . , Gi|Λ∗(G)|}, i1 < i2 <

. . . < i|Λ∗(G)|, generated by Algorithm SOL
∑ Ci is a G-solution of problem

J /ai≤pi≤bi/
∑ Ci. Indeed, set Λ∗(G) is a subset of set B which is assumed

to be a G-solution of problem J /ai ≤ pi ≤ bi/
∑ Ci and set Λ∗(G) includes

digraph G1 and also each digraph Gk, 2 ≤ k ≤ |B|, provided that dominance
relation G1 �T Gk does not hold.
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Along with a G-solution Λ∗(G), Algorithm SOL
∑ Ci calculates the value

rB
k1 for each digraph Gk ∈ B such that dominance relation G1 �T Gk does

not hold (see Step 3). The value rB
k1 denotes the largest distance d(p, p′)

such that inequality Lp′
1 > Lp′

k is guaranteed for each vector p′ ∈ T of the
processing times. Therefore, dominance relation G1 �T ∗ Gk holds for each
polytope T ∗ = T ∩ Or(p) if r ≤ rB

k1, and we have G1 ��T ∗ Gk for polytope
T ∗ = T ∩ Or(p) if r > rB

k1. Let us put the digraphs in set Λ∗(G) in non-
decreasing order of the values rB

k1: Λ∗(G) = {Gj1=1, Gj2, . . . , Gj|Λ∗(G)|}, where
rB

j21 ≤ rB
j31 ≤ . . . ≤ rB

j|Λ∗(G)|1. Due to Theorem 2.6, it follows that 	B
1 (p ∈ T ) =

rB
j21. Similarly, for set B \ {Gj2}, we have equality 	

B\{Gj2
}

1 (p ∈ T ) = rB
j31,

and in general, we have equality 	
B\{∪l

k=2Gjk
}

1 (p ∈ T ) = rB
jl+11, where 1 < l <

|Λ∗(G)|.
These values rB

k1 will be used in Algorithm MINSOL
∑ Ci which follows.

Moreover, they may be used in a realization of the best schedule. Indeed,
to realize a G-solution Λ∗(G) (when the values rB

k1 are known), we can start
with digraph G1 which is the optimal digraph (one of the optimal digraphs)
for the ‘expected’ vector p ∈ T of the processing times. If we will get
additional information about the error r of the processing times pij, we can
use r for a suitable modification of the schedule which is currently realized.
To this end, we select rB

jl1 such that inequalities rB
jl1 < r ≤ rB

jl+11 hold, and

we can find a better digraph in set ∪l
u=1Giu which may be realized further

instead of the initial digraph G1. It is practically important that, if the
possible error of the given processing times is no more than r, we have the
guarantee that set ∪l

u=1Giu contains at least one optimal digraph.

Note that the G-solution Λ∗(G) generated by Algorithm SOL
∑ Ci may

be not minimal. To exclude redundant digraphs, we can test the dominance
relation �T between the digraphs from set Λ∗(G) \ {Gi1=1} which may be
done as follows. First, we exclude all digraphs Gik, 2 < k ≤ |Λ∗(G)|, from
the set Λ∗(G) for which dominance relation Gi2 �T Gik holds. To this end,
we repeat Algorithm SOL

∑ Ci with the set Λ∗(G) \ {Gi1=1} being used
instead of set B. Then, similarly, we can exclude all digraphs from the
G-solution which are dominated by digraph Gi3 and so on. After no more
than |Λ∗(G)| − 2 repetitions of Algorithm SOL

∑ Ci, we can remove all
redundant digraphs (or an essential part of the redundant digraphs) from the
set Λ∗(G). As a result, we often obtain a minimal G-solution ΛT (G). Next,
we give a formal algorithm for finding a minimal G-solution on the basis of
the above repetitions of Algorithm SOL

∑ Ci (Step 3) and the verification
of the strong dominance relation (Step 5). We set Λ′ = Λ∗(G) \ {Gi1=1} =
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{Gi2, Gi3, . . . , Gi|Λ∗(G)|}, where Λ∗(G) is obtained by Algorithm SOL
∑ Ci

provided that inequalities Lp
2 ≤ Lp

3 ≤ . . . ≤ Lp
|Λ∗(G)| hold.

Algorithm MINSOL
∑ Ci [Algorithm MINSOL Cmax]

Input: Set Λ′ = Λ∗(G) \ {Gi1=1} = {Gi2, Gi3, . . . , Gi|Λ∗(G)|}.
Output: Minimal dominant set ΛT (G).

Step 1: Set ΛT (G) = {Gi1=1}.
Step 2: Set B = Λ′ and change the subscripts of the

digraphs as follows: Gu := Giu+1
, 1 ≤ u < |Λ′| − 1,

i.e., in the following Steps 3 and 4 the ordered
set (Gi2, Gi3, . . . , G|Λ′|+1) will be referred
to as the ordered set (G1, G2, . . . , G|Λ′|).

Step 3: Implement Algorithm SOL
∑ Ci [Algorithm SOL Cmax]

with the input set B = {G1, G2, . . . , G|B|} defined
in Step 2 and with the same vector p.

Step 4: Set Λ′ := Λ′ \ {G1} and ΛT (G) := ΛT (G) ∪ {G1}.
IF |Λ′| ≥ 2 THEN GOTO Step 2
ELSE GOTO Step 5.

Step 5: FOR each digraph Gs ∈ ΛT (G) DO
BEGIN

Calculate vector p(s) ∈ T such that the strong
dominance relation Gs ≺p(s) Gk holds for
each digraph Gk ∈ ΛT (G) \ {Gs}.
IF there does not exist such a vector p(s) ∈ T
THEN set ΛT (G) := ΛT (G) \ {Gs}

END STOP

Obviously, the G-solution ΛT (G) generated by Algorithm MINSOL
∑ Ci

satisfies the conditions of Theorem 2.5 and hence, this G-solution is minimal.
However, Step 5 may be rather complicated. It needs to be discussed in more
detail. As the desired vector p(s) for digraph Gs, we can test the vector pij(r)
calculated by formula (2.45) in Algorithm SOL

∑ Ci, where r = rB
ks + ε with

ε being a small positive real number. This vector will be either sufficient
for Step 5 or not. In the latter case, i.e., when for vector p(s) the strong
dominance relation Gs ≺p(s) Gk does not hold for at least one digraph Gk ∈
ΛT (G) \ {Gs}, the realization of Step 5 in Algorithm MINSOL

∑ Ci may
be more sophisticated.
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In our computational experiments we test Algorithm MINSOL∗ ∑ Ci

(Algorithm MINSOL∗ Cmax) which consists of Steps 1 – 4 of the above
Algorithm MINSOL

∑ Ci (Algorithm MINSOL Cmax). If for the G-
solution ΛT (G) = Λ∗(G) generated by Algorithm MINSOL∗ ∑ Ci inequal-
ity |Λ∗(G)| ≤ 2 holds, then set Λ∗(G) obviously satisfies the conditions of
Theorem 2.5 and therefore, this G-solution is minimal. If |Λ∗(G)| > 2, the G-
solution Λ∗(G) may be not minimal. Indeed, even if Λ∗(G) = {G1, G2, G3},
Algorithm MINSOL∗ ∑ Ci only guarantees that no digraph from set Λ∗(G)
dominates another digraph from set Λ∗(G). However, it might be that two
digraphs ‘jointly dominate’ the remaining one which is not recognized by
Algorithm MINSOL∗ ∑ Ci. Nevertheless, Algorithm MINSOL∗ ∑ Ci of-
ten constructs a minimal G-solution even if |ΛT (G)| > 2. Indeed, it is easy
to see that, if a schedule is the unique optimal schedule in the interior of
its stability region, then dominance relation �D implies the strong domi-
nance relation ≺D (except for points at the boundary of the stability region,
where an optimal schedule usually is not unique). Fortunately, as it was
demonstrated in [334] by experiments, a mean flow time optimal schedule is
uniquely determined for most randomly generated job shop problems pro-
vided that the processing times are real numbers (not necessarily integers as
it is often assumed in classical scheduling theory), and thus, due to the test of
the dominance relation �D, Algorithm MINSOL∗ ∑ Ci usually constructs
a minimal G-solution.

Next, we present three algorithms for constructing a G-solution B (for
any regular criterion Φ) used as input set in Algorithm SOL

∑ Ci (Algorithm
SOL Cmax). The first one (called Algorithm EXPL) is based on an explicit
enumeration of all semiactive schedules for the case of a classical job shop
problem. The other two algorithms (called B&B1 and B&B2) are of the
branch-and-bound type and may be used for the job shop problem J /ai ≤
pi≤bi/Φ with uncertain numerical input data and any regular criterion.

Algorithm EXPL

Input: Polytope T , mixed graph G(p) = (Q(p), A, E), p ∈ T .
Output: Optimal digraph Gs(p), set B = {GT

1 , GT
2 , . . . , GT

|B|} ⊆ Λ(G).

Step 1: Generate the feasible digraphs Λ(G) = {G1, G2, . . . , Gλ}
via an explicit enumeration of the permutations
of the operations Qk for k = 1, 2, . . . , m.

Test whether the generated digraph has a circuit.
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Step 2: Calculate the values Φa
k, Φb

k and Φp
k for each digraph Gk,

k = 1, 2, . . . , λ. Transform digraph Gk into digraph GT
k .

Step 3: Find a digraph GT
s such that Φb

s = min{Φb
k : Gk ∈ Λ(G)}.

Step 4: Set B = {GT
k : Gk ∈ Λ(G), Φb

s > Φa
k} STOP

As follows from Lemma 2.5, set Λ(G) \B contains only digraphs Gk such
that dominance relation GT

s �T GT
k holds (Step 4 of Algorithm EXPL),

and Algorithm EXPL excludes only such digraphs from the set Λ(G). To
present branch-and-bound algorithms, we need the following arguments.
Both branch-and-bound algorithms realize an implicit enumeration scheme
which may be represented by a branching tree. Each vertex of this tree
is a mixed graph G(s) = (Q, A(s), E(s)) with A ⊆ A(s) and E(s) ⊆ E. The
root of the tree is a mixed graph G = G(1), and a pair G(s) and G(k) is
connected by the arc (G(s), G(k)) if and only if the mixed graph G(k) is ob-
tained directly from the mixed graph G(s) by orientating one edge. In both
branch-and-bound algorithms under consideration, an edge is oriented only
if it is a conflict one, i.e., when both orientations of this edge imply a conflict
with previously calculated earliest starting times. Next, we give a formal
definition of a conflict edge. For a mixed graph G(s) = (Q, A(s), E(s)) with
[Oij, Ouv] ∈ E(s), let us define the following three digraphs:

Gs0 = (Q, A(s), ∅),
Gs′ = (Q, A(s) ∪ {(Oij, Ouv)}, ∅) and

Gs′′ = (Q, A(s) ∪ {(Ouv, Oij)}, ∅).
Definition 2.7 An edge [Oij, Ouv] ∈ E(s) of the mixed graph G(s) is called a
conflict edge, if there exists a vector p ∈ T such that

lps0(Ouv) < lps′(Ouv), (2.66)

lps0(Oij) < lps′′(Oij). (2.67)

Obviously, if inequalities (2.66) and (2.67) hold, then each orientation of
the edge [Oij, Ouv] implies an increase of value lps′(Ouv) or value lps′′(Oij). To
verify whether an edge is a conflict one, one can use the following conditions.

Lemma 2.9 An edge [Oij, Ouv] ∈ E(s) is not a conflict edge if one of the
following inequalities (2.68) or (2.69) holds:

las0(Ouv) ≥ lbs0(Oij) + bij, (2.68)

las0(Oij) ≥ lbs0(Ouv) + buv. (2.69)
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Proof. It is easy to see that inequality (2.66) may hold only if a maximal
path ending in vertex Ouv includes arc (Oij, Ouv), i.e., if equality

lps′(Ouv) = lps0(Oij) + pij (2.70)

holds. Similarly, inequality (2.67) may hold only if

lps′′(Oij) = lps0(Ouv) + puv. (2.71)

First, suppose that inequality (2.68) holds. For any vector p ∈ T , we
obtain lps0(Ouv) ≥ las0(Ouv) ≥ lbs0(Oij) + bij ≥ lps0(Oij) + pij. Taking into
account (2.70), we conclude that inequality lps0(Ouv) ≥ lps′(Ouv) holds which
means that edge [Oij, Ouv] is not a conflict one.

Now, suppose that inequality (2.69) holds. For any vector p ∈ T , we have
lps0(Oij) ≥ las0(Oij) ≥ lbs0(Ouv) + buv ≥ lps0(Ouv) + puv. Taking into account
(2.71), we conclude that inequality lps0(Oij) ≥ lps′′(Oij) holds which means
that edge [Oij, Ouv] is not a conflict one.

�

For each edge [Oij, Ouv] ∈ E(s), one can calculate the conflict measure:

min{max{0, lps0(Oij) + pij − l̄ps0(Ouv)}, max{0, lps0(Ouv) + puv − l̄ps0(Oij)}},
where l̄ps0(Oij) denotes the latest starting time of operation Oij, i.e., the
difference between the weight of the critical path μ in digraph Gs0 and the
maximal weight of the path in Gs0 starting from vertex Oij:

l̄ps(Oij) = lp(μ) − ∑
Ouv∈[ν]

puv.

Here path ν has the maximal weight among all paths in digraph Gs0 starting
from Oij and ending in vertex Olnl

, Jl ∈ J.
This conflict measure gives the smallest possible increase of the earliest

starting time of the operation due to the orientation of this edge (e.g., for
a non-conflict edge this measure is equal to zero). So, in order to branch a
set Λ(G(s)) into two subsets Λ(G(s′)) and Λ(G(s′′)), where

G(s′) = (Q, A(s) ∪ {(Oij, Ouv)}, E(s) \ {[Oij, Ouv]}) and

G(s′′) = (Q, A(s) ∪ {[Ouv, Oij]}, E(s) \ {[Oij, Ouv]}),
we select the edge [Oij, Ouv] which has the largest value of the conflict mea-
sure. We use the lower bound (2.72) in both branch-and-bound algorithms.
Indeed, for any digraph Gt = (Q, A(s) ∪ At, ∅) ∈ Λ(G(s)), the bound

n∑
i=1

lpt (Oini
) ≥

n∑
i=1

lps0(Oini
) (2.72)
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is valid since the set of arcs in digraph Gs0 = (Q, A(s), ∅) is a subset of
the arcs in digraph Gt. Note that, if digraph G(s) has no conflict edge,
there exists a digraph Gt ∈ Λ(G(s)) such that condition (2.72) is realized as
equality. To construct such a digraph, we have to replace each remaining
edge [Oij, Ouv] ∈ Es by the arc (Oij, Ouv) if inequality (2.68) holds, or by
the arc (Ouv, Oij) if inequality (2.69) holds. Obviously, for each pij and puv

with aij ≤ pij ≤ bij and auv ≤ puv ≤ buv, all operations in the resulting
digraph will have the same earliest starting times as in digraph Gs0. We use
the latter as a stopping rule for branching the set Λ(G(s)). Next, we present
an algorithm for constructing a set of k schedules which are the best for the
input vector p ∈ T of the processing times and which will be used as the
input set B in Algorithm SOL

∑ Ci and Algorithm SOL Cmax depending
on the chosen objective function values Φp

s = Lp
s and Φp

s = lps, respectively.

Algorithm B&B1

Input: Polytope T , mixed graph G(p) = (Q(p), A, E), p ∈ T ,
number k of the best generated digraphs.

Output: Optimal digraph Gs(p), set B = {G1, G2, . . . , Gk} ⊆ Λ(G).

Step 1: Set X = {G} := {G(1)}, Y = ∅ and Φ = ∞.
Step 2: IF X = ∅ THEN GOTO Step 8;

ELSE select a mixed graph G(s) ∈ X

with the smallest value Φp
s0.

Set X := X \ {G(s)}.
Step 3: IF the mixed graph G(s) has no conflict edge

THEN GOTO Step 6.
Step 4: Select a conflict edge [Oij, Ouv] ∈ E(s)

with the largest conflict measure.
Step 5: IF Φp

s′ < Φ THEN set X := X ∪ {G(s′)};
IF Φp

s′′ < Φ THEN set X := X ∪ {G(s′′)}
GOTO Step 2.

Step 6: IF |Y | < k THEN set Y := Y ∪ {G(s)}
GOTO Step 2;
ELSE IF Φp

s0 < Φ (where Φ = Φp
t )

THEN set Y := Y ∪ {G(s)} \ {G(t)}.
Step 7: Calculate Φ = max{Φp

t : G(t) ∈ Y }
GOTO Step 2.

Step 8: Construct the set Λ(G(t)) for each mixed graph G(t) ∈ Y .
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Step 9: Select the subset B of the k best digraphs from
set

⋃
G(t)∈Y Λ(G(t)).

Step 10: Calculate Φ∗ = min{Φb
s : Gs ∈ B}.

Set B := B \ {Gt : Φa
t ≥ Φ∗} STOP

In Algorithm B&B1, the lower bound for the objective function is cal-
culated in Step 7, branching is realized in Step 5, and the stopping rule of
branching is realized in Step 3. Step 6 has a special form in order to con-
struct the k best schedules (instead of only one optimal schedule). Steps 8
and 9 are necessary only if k > 1. Indeed, if k = 1, then it is sufficient to con-
sider only one best schedule from the set Λ(G(s)), and for any mixed graph
G(s) = (Q, A(s), E(s)), set Λ(G(s)) has at least one best schedule Gu ∈ Λ(G(s))
for which Φp

u reaches the minimal possible value Φp
s, where Gs0 = (Q, A(s), ∅)

(condition (2.72) turns into an equality). If k > 1, we have to generate also
other schedules from the set Λ(G(s)). Unfortunately, we cannot use Algo-
rithm EXPL for a fast generation of set Λ(G(s)) because the edges of the
set E \ E(s) are already oriented. Step 8 realizes a procedure based on the
sequential orientation of non-conflict edges, which is essentially slower than
the permutation enumeration used in Algorithm EXPL.

Using sufficiency of Lemma 2.5, Algorithm B&B2 aims to construct a
set of schedules which necessarily dominate all other schedules from the set
Λ(G) in polytope T . Steps 1–5 and Steps 8–10 in Algorithm B&B2 are
similar to those in Algorithm B&B1. So, we describe only Steps 6 and 7 of
Algorithm B&B2, which are different from those in Algorithm B&B1:

Algorithm B&B2 (specific part)

Step 6: IF Φa
s0 ≤ Φ THEN set Y := Y ∪ {G(s)}.

Step 7: Calculate Φ = min{Φb
(t) : G(t) ∈ Y } GOTO Step 2.

In Section 2.7, we present some computational results for randomly gener-
ated job shop problems solved by the above algorithms coded in Fortran-77.

Example 2.2 (continued). As it was noted, the G-solution Λ∗(G) and the
minimal G-solution ΛT (G) of the problem with uncertain processing times
may be not unique. From Remark 2.5, it follows that fixing the vector p ∈ T

and the choice of an optimal digraph Gs(p) have a large influence on the
resulting G-solution for criterion Cmax. For the job shop problem J 3/n =
3, ai ≤ pi ≤ bi/

∑ Ci from Example 2.2, we find a G-solution set Λ∗(G) with
different initial vectors p ∈ T (see column 1 in Table 2.15) the components of
which are taken from the closed intervals [aij, bij] (vectors a and b are given
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Table 2.15: G-solution of problem J 3/n = 3, ai ≤ pi ≤ bi/
∑ Ci for different initial vectors

p ∈ T

Initial vector Gs Set B Gk, Gs ��T Gk rB
ks

pj ∈ T
1 2 3 4 5

p1 =(60, 20, 46, G5 B={G5, G2, G1, G9, G3, G4, G1 �B
5 (p1∈T ) = rB

1,5 = 0.5
30, 70, 80, 50, 30) G7, G6, G8, G12, G11, G10}

G2 rB
2,5 = 0.6667

G3 rB
3,5 = 5.6667

G4 rB
4,5 = 7.7143

G6 rB
6,5 = 12.3333

G8 rB
8,5 = 12.8333

G7 rB
7,5 = 14

G10 rB
10,5 = 19

G-solution: Λ∗(G) = {G1, G2, G3, G4, G5, G6, G8, G7, G10}
Minimal G-solution: ΛT (G) = {G1, G2, G5}

p2 =(60, 20, 50, G2 B={G2, G1, G5, G9, G3, G4, G1 �B
2 (p2∈T ) = rB

1,2 = 3.3333
30, 50, 80, 50, 30) G7, G6, G8, G10, G12, G11}

G5 rB
5,2 = 15

G4 rB
4,2 = 16.6667

G8 rB
8,2 = 16.6667

G7 rB
7,2 = 20

G-solution: Λ∗(G) = {G1, G2, G4, G5, G7, G8}
Minimal G-solution: ΛT (G) = {G1, G2, G5}

p3 =(80, 20, 50, G2 B={G2, G1, G5, G3, G4, G7, G1 �B
2 (p3∈T ) = rB

1,2 = 1
10, 65, 60, 45, 35) G8, G9, G6, G10, G11, G12}

G8 rB
8,2 = 11

G4 rB
4,2 = 15

G5 rB
5,2 = 18.3333

G7 rB
7,2 = 20

G-solution: Λ∗(G) = {G1, G2, G4, G5, G7, G8}
Minimal G-solution: ΛT (G) = {G1, G2, G5}

p4 =(60, 20, 45, G1 B={G1, G2, G3, G4, G5, G6, G2 �B
1 (p4∈T ) = rB

2,1 = 1.25
10, 50, 60, 30, 30) G8, G7, G9, G10, G11, G12}

G5 rB
5,1 = 18.3333

G-solution: Λ∗(G) = {G1, G2, G5}
Minimal G-solution: ΛT (G) = {G1, G2, G5}

p5 =(70, 30, 52.5, G1 B={G1, G2, G3, G4, G5, G6, G2 �B
1 (p5∈T ) = rB

2,1 = 2.5
20, 60, 70, 40, 35) G7, G8, G9, G10, G11, G12}

G5 rB
5,1 = 9.2857

G-solution: Λ∗(G) = {G1, G2, G5}
Minimal G-solution: ΛT (G) = {G1, G2, G5}

p6 =(80, 40, 60, G1 B={G1, G2, G4, G5, G3, G6, G2 �B
1 (p6∈T ) = rB

2,1 = 8
30, 70, 80, 50, 40) G7, G8, G9, G11, G10, G12}

G5 rB
5,1 = 18.75

G-solution: Λ∗(G) = {G1, G2, G5}
Minimal G-solution: ΛT (G) = {G1, G2, G5}

p7 =(80, 40, 60, G1 B={G1, G4, G7, G2, G5, G8, G2 �B
1 (p7∈T ) = rB

2,1 = 12
30, 65, 60, 30, 35) G3, G6, G10, G9, G11, G12}

G5 rB
5,1 = 19.2857

G-solution: Λ∗(G) = {G1, G2, G5}
Minimal G-solution: ΛT (G) = {G1, G2, G5}
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Table 2.15 (continuation): G-solution of problem J 3/n=3, ai≤pi≤bi/
∑ Ci for different initial

vectors p ∈ T

Initial vector Gs Set B Gk, Gs ��T Gk rB
ks

pj ∈ T
1 2 3 4 5

p8 =(60, 20, 49, G2 B={G2, G5, G1, G9, G3, G4, G5 �B
2 (p8∈T ) = rB

5,2 = 0
30, 69, 80, 50, 40) G7, G6, G8, G12, G10, G11}

G1 rB
1,2 = 0.1667

G4 rB
4,2 = 15

G8 rB
8,2 = 17.0909

G7 rB
7,2 = 20

G-solution: Λ∗(G) = {G1, G2, G4, G5, G7, G8}
Minimal G-solution: ΛT (G) = {G1, G2, G5}
G5 B={G5, G2, G1, G9, G3, G4, G2 �B

5 (p8∈T ) = rB
2,5 = 0

G7, G6, G8, G12, G10, G11}
G1 rB

1,5 = 0.125
G3 rB

3,5 = 5.1667
G4 rB

4,5 = 7.6250
G6 rB

6,5 = 12
G8 rB

8,5 = 12.5455
G7 rB

7,5 = 14
G10 rB

10,5 = 18.8
G-solution: Λ∗(G) = {G1, G2, G3, G4, G5, G6, G7, G8, G10}
Minimal G-solution: ΛT (G) = {G1, G2, G5}

p9 =(60, 20, 50, G1 B={G1, G2, G5, G9, G3, G4, G2 �B
1 (p9∈T ) = rB

2,1 = 0
30, 70, 80, 50, 30) G7, G6, G8, G12, G11, G10}

G5 rB
5,2 = 0

G-solution: Λ∗(G) = {G1, G2, G5}
Minimal G-solution: ΛT (G) = {G1, G2, G5}
G2 B={G2, G1, G5, G9, G3, G4, G1 �B

2 (p9∈T ) = rB
1,2 = 0

G7, G6, G8, G12, G11, G10}
G5 rB

5,2 = 0
G4 rB

4,2 = 15
G8 rB

8,2 = 17.2727
G7 rB

7,2 = 20
G-solution: Λ∗(G) = {G1, G2, G4, G5, G7, G8}
Minimal G-solution: ΛT (G) = {G1, G2, G5}
G5 B={G5, G1, G2, G9, G3, G4, G1 �B

5 (p9∈T ) = rB
1,5 = 0

G7, G6, G8, G12, G11, G10}
G2 rB

2,5 = 0
G9 rB

9,5 = 5
G4 rB

4,5 = 7.1429
G6 rB

6,5 = 12
G8 rB

8,5 = 12.7273
G7 rB

7,5 = 14
G10 rB

10,5 = 19
G-solution: Λ∗(G) = {G1, G2, G4, G5, G6, G7, G8, G9, G10}
Minimal G-solution: ΛT (G) = {G1, G2, G5}

in Table 2.7). The three algorithms EXPL, B&B1 and B&B2 construct
the same set B = {G1, G2, . . . , G12} for Example 2.2 as it was constructed
with the initial vector p0 (see page 122), but the digraphs from the set B



2.6. ALGORITHMS FOR PROBLEM J /AI ≤PI ≤BI/Φ 161

form another order according to non-decreasing mean flow time objective
function values with different feasible vectors (see column 3 in Table 2.15).
We calculate the following sums of the job completion times with the initial
vectors p1, p2, . . . , p9 from Table 2.15 (to avoid a confusion, we leave the same
subscript of the digraphs indicating the location according to non-decreasing
values of function

∑ Ci calculated with the vector p0 (see page 122)):

Lp1

5 = 482, Lp1

2 = 486, Lp1

1 = 486, Lp1

9 = 512, Lp1

3 = 516, Lp1

4 = 536, Lp1

7 =

566, Lp1

6 = 596, Lp1

8 = 636, Lp1

12 = 666, Lp1

11 = 676, Lp1

10 = 686;

Lp2

2 = 450, Lp2

1 = 470, Lp2

5 = 470, Lp2

9 = 500, Lp2

3 = 500, Lp2

4 = 520, Lp2

7 =

550, Lp2

6 = 580, Lp2

8 = 580, Lp2

10 = 630, Lp2

12 = 650, Lp2

11 = 660;

Lp3

2 = 455, Lp3

1 = 460, Lp3

5 = 505, Lp3

3 = 510, Lp3

4 = 515, Lp3

7 = 520, Lp3

8 =

520, Lp3

9 = 555, Lp3

6 = 570, Lp3

10 = 575, Lp3

11 = 635, Lp3

12 = 645;

Lp4

1 = 365, Lp4

2 = 370, Lp4

3 = 395, Lp4

4 = 415, Lp4

5 = 420, Lp4

6 = 435, Lp4

8 =

435, Lp4

7 = 445, Lp4

9 = 450, Lp4

10 = 485, Lp4

11 = 495, Lp4

12 = 505;

Lp5

1 = 438, Lp5

2 = 460, Lp5

3 = 497.5, Lp5

4 = 502.5, Lp5

5 = 510, Lp5

6 = 532.5, Lp5

7 =

538.5, Lp5

8 = 547.5, Lp5

9 = 560, Lp5

10 = 612.5, Lp5

11 = 617.5, Lp5

12 = 627.5;

Lp6

1 = 510, Lp6

2 = 550, Lp6

4 = 590, Lp6

5 = 600, Lp6

3 = 600, Lp6

6 = 630, Lp6

7 =

630, Lp6

8 = 660, Lp6

9 = 670, Lp6

11 = 740, Lp6

10 = 740, Lp6

12 = 750;

Lp7

1 = 460, Lp7

4 = 515, Lp7

7 = 520, Lp7

2 = 520, Lp7

5 = 550, Lp7

8 = 560, Lp7

3 =

580, Lp7

6 = 585, Lp7

10 = 635, Lp7

9 = 640, Lp7

11 = 660, Lp7

12 = 670;

Lp8

2 = 497, Lp8

5 = 497, Lp8

1 = 498, Lp8

9 = 527, Lp8

3 = 528, Lp8

4 = 558, Lp8

7 =

578, Lp8

6 = 618, Lp8

8 = 646, Lp8

12 = 698, Lp8

10 = 706, Lp8

11 = 708;

Lp9

1 = 490, Lp9

2 = 490, Lp9

5 = 490, Lp9

9 = 520, Lp9

3 = 520, Lp9

4 = 540, Lp9

7 =

570, Lp9

6 = 600, Lp9

8 = 640, Lp9

12 = 670, Lp9

11 = 680, Lp9

10 = 690.

First, we construct a G-solution Λ∗(G) by Algorithm SOL
∑ Ci, and then

a minimal G-solution ΛT (G) by Algorithm MINSOL∗ ∑ Ci. In column 2
of Table 2.15, we give the chosen optimal digraph Gs(p

j) for the fixed vec-
tor pj. The set B := B \ {Gs} ordered according to non-decreasing values
Lpj

u , u ∈ {1, 2, . . . , |B|}, is presented in column 4. For digraph Gk ∈ B,

we test dominance relation Gs �T Gk using Lemma 2.5 with the objective
function values Φp

s = Lp
s (Step 2 of Algorithm SOL

∑ Ci). For all digraphs
Gk with Gs ��T Gk (see column 4), we calculate the value rB

ks using for-
mulas (2.48) and (2.54) from Theorem 2.6 for the input vector pj. Col-
umn 5 presents a non-decreasing order of the values rB

ks calculated according
to (2.54). Due to Theorem 2.6, it follows that the minimal value of rB

ks is
equal to the relative stability radius 	B

s (pj ∈T ). An optimal digraph Gs and
all digraphs Gk, for which the dominance relation Gs �T Gk does not hold,
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form a G-solution Λ∗(G) of problem J 3/n=3, ai≤pi≤ bi/
∑ Ci. As we see,

different choices of the initial vector p ∈ T may give different G-solutions.
The best choice of such a feasible vector is still an open question.

We fix, for example, vector p4 (vector p6) to be equal to the vector of
given lower bounds a (upper bounds b, respectively), and fix vector p5 with
the components pij = 1

2(bij − aij). Such a choice gives the following G-
solution: Λ∗(G) = ΛT (G) = {G1, G2, G5}. Note that there is no minimal
G-solution with a smaller cardinality than set ΛT (G) = {G1, G2, G5} has.
Moreover, each of the digraphs G1, G2 and G5 is the unique optimal one
for some vector p ∈ T , i.e., for example, the following strong dominance
relations hold (see column 3 of Table 2.15):

G1 ≺p0 Gk, Gk ∈ Λ(G) \ {G1},
G2 ≺p2 Gk, Gk ∈ Λ(G) \ {G2},
G5 ≺p1 Gk, Gk ∈ Λ(G) \ {G5}.

This means that there is no proper subset of set {G1, G2, G5} which
is a G-solution of problem J 3/n = 3, ai ≤ pi ≤ bi/

∑ Ci, and so the G-
solution Λ∗(G) = {G1, G2, G5} is minimal in the sense of inclusion and
in the sense of a cardinality equal to 3. As we see, the developed Algo-
rithm SOL

∑ Ci may construct some redundant schedules, which are not
necessarily in a minimal G-solution ΛT (G) of problem J /ai ≤ pi ≤ bi/

∑ Ci.
As it was noted, for the scheduling problem with the makespan criterion
(Remark 2.5), not only fixing the initial vector p ∈ T has a large influ-
ence on the resulting G-solution, but also the choice of an optimal digraph
Gs for the further calculations, if it is not uniquely determined. In par-
ticular, for vectors p8 and p9, the optimal schedule is not unique. For
example, there are two optimal digraphs G2(p

8) and G5(p
8) for vector p8,

therefore, we run Algorithm SOL
∑ Ci twice. First, we order the digraphs

in set B as follows: {G2, G5, G1, G9, G3, G4, G7, G6, G8, G12, G10, G11}, and
we make all calculations according to Algorithm SOL

∑ Ci for the first di-
graph G2 in set B. Secondly, we order the digraphs in set B as follows:
{G5, G2, G1, G9, G3, G4, G7, G6, G8, G12, G10, G11}, and we make all calcula-
tions for the first digraph G5. Thus in the first case, the G-solution Λ∗(G)
consists of six schedules since there are five digraphs Gk for which dominance
relation G2 �T Gk does not hold. In the second case, the G-solution Λ∗(G)
consists of nine schedules since there are eight digraphs Gk, G5 ��T Gk.
Since there are three optimal digraphs for vector p9 at all, the corresponding
cardinalities of the obtained G-solutions Λ∗(G) are 3, 6 and 9, respectively
(Table 2.15).
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As we see from Table 2.15, the covering of polytope T by a minimal num-
ber of stability balls (cardinality-minimal covering) is an interesting question
for further research. Note that in the general case, a cardinality-minimal
covering is a more difficult problem than an inclusion-minimal covering. An
algorithm for constructing a cardinality-minimal covering of polytope T is
presented in the last chapter of this book but only for a single-machine
scheduling problem with minimizing the weighted sum of job completion
times.

2.7. Computational Results

The algorithms derived in Section 2.6 were coded in Fortran-77 and were
tested on a PC 486 (120 MHz) for an exact G-solution and on a PC 486
(50 MHz) for a heuristic G-solution of problem J /ai ≤ pi ≤ bi/

∑ Ci and on
a PC 486 (133 MHz) for an exact and a heuristic G-solution of problem
J /ai≤pi≤ bi/Cmax. Here the term ‘exact G-solution’ is used for indicating
a set Λ∗(G) which satisfies Definition 2.5 in contrast to the ‘heuristic G-
solution’ indicating a set Λ ⊂ Λ(G) which generally may not contain an
optimal schedule for each vector p ∈ T .

The experimental design was as follows. First, we considered series of
instances of problem J /ai ≤ pi ≤ bi/

∑ Ci with small n and m for which an
exact G-solution and the exact minimal G-solution may be calculated within
one hour on a PC 486 (120 MHz). After finding upper bounds for such n

and m, we started experiments with medium size problems in order to find
at least their heuristic G-solutions. The experiments were continued on both
computers in order to find upper bounds on n and m for a ‘good’ heuristic G-
solution on a PC 486 (50 MHz) (see Table 2.20), and to increase the problem
size for an exact G-solution on a PC 486 (120 MHz) (see Table 2.18).

Table 2.16: Types of problems considered in the experiments

Types of Errors of the processing times Types of
problems problems

Exact solutions: A 5%, 10%, 15%, 20%
sets B, Λ∗(G) B 2%, 6%, 8%, 10% B Heuristic
and ΛT (G) C 1%, 3%, 5%, 7% C solution:

1%, 2%, 3%, 4% D set B
0.1%, 0.2%, 0.3%, 0.4% E

We tested the algorithms for the makespan criterion from Section 2.6 with
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Table 2.17: Minimal lower and maximal upper bounds for the processing times

Errors Lower bound Upper bound The actual processing time p∗ij
20% (1 − 0.2)pij (1 + 0.2)pij 0.8pij ≤ p∗ij ≤ 1.2pij

15% (1 − 0.15)pij (1 + 0.15)pij 0.85pij ≤ p∗ij ≤ 1.15pij

10% (1 − 0.1)pij (1 + 0.1)pij 0.9pij ≤ p∗ij ≤ 1.1pij

8% (1 − 0.08)pij (1 + 0.08)pij 0.92pij ≤ p∗ij ≤ 1.08pij

7% (1 − 0.07)pij (1 + 0.07)pij 0.93pij ≤ p∗ij ≤ 1.07pij

6% (1 − 0.06)pij (1 + 0.06)pij 0.94pij ≤ p∗ij ≤ 1.06pij

5% (1 − 0.05)pij (1 + 0.05)pij 0.95pij ≤ p∗ij ≤ 1.05pij

4% (1 − 0.04)pij (1 + 0.04)pij 0.96pij ≤ p∗ij ≤ 1.04pij

3% (1 − 0.03)pij (1 + 0.03)pij 0.97pij ≤ p∗ij ≤ 1.03pij

2% (1 − 0.02)pij (1 + 0.02)pij 0.98pij ≤ p∗ij ≤ 1.02pij

1% (1 − 0.01)pij (1 + 0.01)pij 0.99pij ≤ p∗ij ≤ 1.01pij

0.4% (1 − 0.004)pij (1 + 0.004)pij 0.996pij ≤ p∗ij ≤ 1.004pij

0.3% (1 − 0.003)pij (1 + 0.003)pij 0.997pij ≤ p∗ij ≤ 1.003pij

0.2% (1 − 0.002)pij (1 + 0.002)pij 0.998pij ≤ p∗ij ≤ 1.002pij

0.1% (1 − 0.001)pij (1 + 0.001)pij 0.999pij ≤ p∗ij ≤ 1.001pij

the corresponding changes for criterion Cmax for the same randomly gener-
ated test problems. Heuristic G-solutions of problem J /ai≤pi≤bi/Cmax are
presented in Table 2.21 and exact G-solutions are given in Table 2.19.

For criterion Φ =
∑ Ci (Tables 2.19 and 2.21 for criterion Φ = Cmax),

both Tables 2.18 and 2.20 present computational results only for classical
job shop problems. (In a classical job shop, each job has to be processed by
each machine exactly once). So, each randomly generated instance Jm/n=
k, ai ≤ pi ≤ bi/Φ has |QJ | = mn operations and the corresponding mixed
graph (QJ , AJ , EJ) has (m−1) ·n arcs and

(
n
2

) ·m edges (note that the latter
parameter has the most influence on the running times of our algorithms).
For more than 700 classical job shop problems with different combinations
of n ≤ 10 and m ≤ 8, we calculated the average number of all feasible
schedules λ, the average cardinality |B| of set B, the average cardinality
|Λ∗(G)| of set Λ∗(G), and the average cardinality |ΛT (G)| of set ΛT (G) for
both criteria

∑ Ci and Cmax.

For each combination of n and m under consideration, three types of
series (called A, B and C) of instances were considered for the case of an
exact G-solution (see Table 2.18 and Table 2.19). Each series consists of
10 instances with randomly generated technological routes. The expected
processing times, which form the input vector p, are real numbers uniformly
distributed in the segment [10, 100]. In each instance of types A, B and
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Table 2.18: Exact G-solutions of randomly generated problems J /ai≤pi≤bi/
∑ Ci

n × m λ′ CPU time for λ′ CPU time λ′ CPU time
type λ∗ Scheme Scheme Scheme λ∗ for Scheme λ∗ for Scheme

λ λT I II III λT IV λT V
1 2 3 4 5 6 7 8 9

3 × 3 5.2 0.6 0.7 0.6 4.8 0.4 4.8 0.2
C 1.9 1.0 1.1 1.0 1.9 0.8 1.9 0.6
91 1.9 1.1 1.3 1.1 1.9 0.9 1.9 0.7

3 × 3 9.3 0.7 0.8 0.5 6.1 0.2 6.6 0.2
B 2.9 1.2 1.3 1.0 2.7 0.6 2.7 0.6
91 2.6 1.4 1.5 1.2 2.4 0.9 2.4 0.9

3 × 3 16.5 0.7 0.8 0.9 10.6 0.3 11.3 0.3
A 3.3 1.5 1.7 1.8 2.9 1.0 3.0 1.0
77 3.3 1.7 1.9 2.0 2.9 1.4 3.0 1.4

3 × 4 3.4 1.9 1.6 1.1 3.0 0.8 3.0 0.3
C 1.7 2.2 1.9 1.8 1.5 1.0 1.5 0.6

262 1.7 2.3 2.0 1.5 1.5 1.1 1.5 0.6
3 × 4 15.1 2.4 2.6 2.5 9.5 0.9 10.0 0.7

B 3.0 5.9 5.9 5.9 2.5 3.2 2.5 3.0
301 2.7 6.0 6.0 6.1 2.4 3.5 2.4 3.3

3 × 4 32.5 2.7 3.2 3.4 15.2 0.8 16.8 0.9
A 5.1 12.0 12.1 12.3 3.8 5.6 3.9 6.4

277 4.1 14.1 14.1 14.3 3.1 7.5 3.2 8.3
3 × 5 4.7 8.3 6.3 5.8 4.1 1.4 4.2 1.0

C 1.5 8.6 6.6 6.2 1.5 1.8 1.5 1.4
605 1.4 8.7 6.8 6.3 1.5 1.9 1.5 1.4

3 × 5 12.9 10.5 11.6 10.6 9.5 2.2 10.2 1.1
B 3.4 12.8 13.7 12.8 3.3 3.8 3.3 2.9

894 3.1 13.0 14.0 13.0 3.0 4.3 3.0 3.3
3 × 5 77.6 12.9 20.8 21.3 30.5 2.4 33.0 2.8

A 11.9 63.4 68.9 70.1 8.7 19.4 9.0 27.1
897 10.8 96.5 100.6 102.2 7.7 40.5 8.0 52.8

3 × 6 9.3 48.8 51.4 34.2 7.1 2.5 7.3 1.5
C 3.5 49.2 52.0 34.8 2.8 2.9 2.8 2.0

1556 2.7 49.5 52.8 35.6 2.1 3.2 2.1 2.3
3 × 6 21.0 49.1 66.5 58.9 13.9 3.6 14.1 2.3

B 4.6 71.9 88.2 80.6 4.5 19.5 4.5 18.3
1761 4.2 77.2 93.2 85.7 4.1 24.7 4.1 23.6
3 × 6 65.3 48.3 119.2 139.5 19.2 2.4 23.4 2.7

A 7.6 198.3 262.0 282.7 4.8 51.8 6.0 54.1
1559 7.0 476.0 526.2 548.3 4.5 111.5 5.6 289.4
3 × 7 5.4 307.6 343.0 310.0 4.1 5.4 4.4 1.6

C 1.5 308.3 343.7 310.7 1.5 5.9 1.5 2.2
4611 1.5 308.4 343.9 310.8 1.5 6.0 1.5 2.3
3 × 7 38.6 313.8 751.0 769.7 21.2 7.3 23.0 7.2

B 6.6 363.8 797.2 817.0 4.9 39.9 5.1 43.3
4805 5.7 371.1 804.1 824.0 4.3 45.3 4.5 49.3
3 × 7 156.0 279.7 1319.0 1274.7 21.5 2.4 27.0 3.7

A 19.2 923.4 1934.1 1897.3 9.2 91.4 10.2 108.6
2743 17.9 1032.7 2038.5 2003.1 8.2 123.0 9.2 144.8
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Table 2.18 (continuation): Exact G-solutions of randomly generated problems J /ai ≤ pi ≤
bi/

∑ Ci

n × m λ′ CPU time for λ′ CPU time λ′ CPU time
type λ∗ Scheme Scheme Scheme λ∗ for Scheme λ∗ for Scheme

λ λT I II III λT IV λT V
1 2 3 4 5 6 7 8 9

3 × 8 20.4 2338.2 2106.5 1935.0 15.7 19.7 15.8 7.1
C 4.7 2348.2 2115.2 1938.5 4.0 28.1 4.0 15.5

21923 4.6 2354.6 2121.7 1943.6 3.9 33.2 3.9 20.6
3 × 8∗ 28.7 2060.8 4192.0 4018.8 26.0 9.9 27.0 7.1

B 7.4 2172.5 4282.2 4107.4 7.2 57.5 7.2 55.4
8961 7.3 2196.4 4302.5 4120.9 6.3 80.3 6.3 78.2

3 × 8∗ 141.5 2054.5 4119.2 3742.9 56.3 9.0 59.2 12.7
A 17.3 3999.9 5938.1 5556.0 19.1 1477.5 21.0 1463.0

8296 16.3 4501.5 6039.7 5811.8 17.6 1952.4 19.6 1963.1
4 × 3 13.3 19.2 14.2 9.5 11.4 6.1 11.7 2.3

C 3.2 20.3 15.4 10.7 3.2 7.3 3.2 3.5
2907 2.8 21.0 17.4 12.7 2.8 8.1 2.8 4.3
4 × 3 38.9 17.5 27.8 28.8 29.9 5.4 30.7 3.4

B 6.3 41.4 50.8 51.9 5.5 24.5 5.5 22.6
2217 5.5 45.4 54.8 55.8 4.8 28.3 4.8 26.4
4 × 3 290.9 28.6 70.7 69.0 110.1 5.9 115.2 8.1

A 31.0 414.0 440.4 442.0 22.5 288.4 22.8 293.9
2990 27.7 688.6 699.1 703.9 19.6 501.9 19.9 509.8
4 × 4 34.2 303.1 867.3 852.4 23.9 15.8 24.1 5.9

C 7.5 328.5 891.5 876.5 6.5 33.4 6.5 23.6
17159 6.3 330.5 893.0 878.0 5.5 35.1 5.5 25.3
4 × 4∗ 88.3 308.2 1501.2 1354.7 52.2 14.4 52.9 9.0

B 16.1 1293.8 2444.9 2297.2 13.5 782.8 13.5 780.5
17763 14.5 1574.0 2771.7 2580.5 12.0 999.6 12.0 997.6
4 × 4 477.7 319.4 2682.9 2505.1 131.7 15.4 132.0 23.8

A 30.8 3070.1 5355.7 5180.0 24.8 2680.7 24.8 2639.4
16143 30.1 3466.2 5771.4 5594.7 24.0 2905.8 24.0 2879.2

C, all operations are partitioned into four approximately equal parts with
different maximal errors of the processing times (see Table 2.16). For an
instance of type C, these errors are 1%, 3%, 5% and 7%, for an instance of
type B, the errors are 2%, 6%, 8% and 10%, and for an instance of type A,
the errors are 5%, 10%, 15% and 20% (see Table 2.16). In particular, the
operations of the fourth part of an instance of type A have the most uncertain
processing times: If the input (expected) processing time is supposed to be
equal to pij, then the lower bound for the actual processing time is equal to
(1−0.2)pij and the upper bound is equal to (1+0.2)pij (see Table 2.17). On
the other hand, the operations of the first part of an instance of type C have
the processing times with the smallest error: If the input processing time is
supposed to be equal to pij, then the lower bound is equal to (1−0.01)pij and
the upper bound is equal to (1+0.01)pij. Table 2.18 for

∑ Ci (Table 2.19 for
Cmax) presents the results for the following three computational schemes, in
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Table 2.19: Exact G-solutions of randomly generated problems J /ai≤pi≤bi/Cmax

n × m λ′ CPU time for λ′ CPU time λ′ CPU time
type λ∗ Scheme Scheme Scheme λ∗ for Scheme λ∗ for Scheme

λ λT I II III λT IV λT V
1 2 3 4 5 6 7 8 9

3 × 3 4.2 0.17 0.31 0.15 3.4 0.22 3.4 0.10
C 1.3 0.17 0.31 0.16 1.3 0.26 1.3 0.15
91 1.1 0.17 0.31 0.16 1.2 0.26 1.3 0.16

3 × 3 16.0 0.18 0.28 0.28 7.4 0.14 7.8 0.14
B 2.6 0.18 0.29 0.30 2.0 0.19 2.0 0.19
91 2.4 0.20 0.30 0.30 1.7 0.20 1.6 0.19

3 × 3 12.8 0.14 0.31 0.30 8.3 0.19 8.5 0.17
A 2.2 0.15 0.32 0.31 2.2 0.24 2.2 0.23
77 2.0 0.15 0.32 0.31 2.0 0.25 2.0 0.23

3 × 4 7.0 0.76 0.86 0.53 4.0 0.48 4.3 0.22
C 1.5 0.77 0.86 0.54 1.5 0.52 1.5 0.25

262 1.3 0.77 0.86 0.54 1.3 0.53 1.3 0.25
3 × 4 18.1 0.85 1.0 0.92 10.9 0.55 11.0 0.42

B 3.0 0.90 1.1 0.95 2.5 0.61 2.7 0.49
301 2.2 0.90 1.1 0.96 2.0 0.64 2.0 0.51

3 × 4 36.4 0.80 1.22 1.14 13.6 0.46 15.0 0.45
A 7.1 0.85 1.27 1.19 5.1 0.54 5.5 0.55

277 5.8 0.89 1.29 1.21 4.2 0.57 4.5 0.59
3 × 5 8.0 4.05 2.87 2.24 5.4 0.87 5.5 0.40

C 2.2 4.06 2.88 2.25 1.9 0.93 1.9 0.45
605 1.6 4.07 2.89 2.25 1.7 0.94 1.7 0.45

3 × 5 11.8 4.79 4.48 3.22 7.2 1.33 7.6 0.44
B 3.1 4.83 4.50 3.23 2.4 1.41 2.4 0.52

894 2.3 4.83 4.51 3.23 2.1 1.42 2.1 0.52
3 × 5 103.7 5.25 9.19 8.80 24.9 1.43 29.2 1.32

A 17.8 5.48 9.41 9.02 8.2 1.61 8.5 1.52
897 13.8 5.62 9.48 9.08 6.6 1.70 6.8 1.63

3 × 6 7.0 25.98 20.83 11.42 4.1 1.49 4.7 0.57
C 2.4 25.99 20.83 11.43 2.1 1.54 2.3 0.62

1556 2.2 25.99 20.83 11.43 1.9 1.54 2.1 0.63
3 × 6 21.6 25.73 22.48 19.36 11.5 2.15 12.2 1.08

B 4.3 25.79 22.54 19.42 3.9 2.26 3.9 1.23
1761 3.5 25.83 22.57 19.43 3.1 2.31 3.1 1.29
3 × 6 67.8 25.37 54.80 54.62 18.1 1.48 19.5 1.30

A 12.5 25.64 55.06 54.89 7.2 1.68 8.0 1.51
1559 8.8 25.78 55.18 55.01 4.8 1.83 5.4 1.68
3 × 7 7.5 169.47 114.97 99.24 4.0 3.18 4.1 0.60

C 1.7 169.51 114.99 99.26 1.4 3.26 1.4 0.68
4611 1.5 169.51 115.00 99.27 1.3 3.28 1.3 0.70
3 × 7 42.4 180.42 264.59 261.54 17.8 3.93 19.7 2.29

B 7.1 180.65 264.80 261.74 4.4 4.17 5.3 2.55
4805 5.7 180.71 269.88 261.78 3.9 4.29 4.4 2.69
3 × 7 90.4 152.22 604.40 523.97 16.6 1.39 19.2 1.66

A 17.7 152.76 604.89 524.45 7.6 1.59 8.6 1.91
2743 13.2 153.00 605.10 524.66 5.6 1.72 6.3 2.06
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Table 2.19 (continuation): Exact G-solutions of randomly generated problems J /ai ≤ pi ≤
bi/Cmax

n × m λ′ CPU time for λ′ CPU time λ′ CPU time
type λ∗ Scheme Scheme Scheme λ∗ for Scheme λ∗ for Scheme

λ λT I II III λT IV λT V
1 2 3 4 5 6 7 8 9

3 × 8 19.3 1297.43 841.55 795.93 11.3 11.39 11.2 2.66
C 5.2 1297.54 841.65 796.02 3.9 11.53 4.3 2.83

21923 4.6 1297.58 841.68 796.05 3.4 11.60 3.6 2.92
3 × 8∗ 32.9 1190.78 1959.74 1938.03 13.5 5.74 14.4 2.10

B 7.2 1191.12 1960.05 1938.35 4.6 6.01 4.9 2.37
8961 4.4 1191.19 1960.11 1938.39 3.2 6.18 3.2 2.55

3 × 8∗ 160.3 1161.51 3411.75 3022.93 40.9 5.21 44.8 6.73
A 23.6 1164.83 3414.66 3026.13 12.2 6.39 13.1 7.99

8296 19.0 1166.78 3415.74 3027.31 9.9 7.69 10.2 9.42
4 × 3 18.1 8.47 6.35 3.93 12.1 3.47 12.4 1.11

C 3.3 8.55 6.41 3.99 3.1 3.56 3.1 1.20
2907 2.1 8.56 6.41 3.99 2.4 3.61 2.1 1.24
4 × 3 40.9 7.35 10.01 8.67 27.7 3.19 29.3 1.29

B 7.2 7.48 10.10 8.77 5.0 3.34 7.0 1.45
2217 4.2 7.50 10.12 8.78 2.0 3.39 3.8 1.53
4 × 3 286.4 8.94 23.07 21.36 92.3 3.50 96.3 3.64

A 24.8 9.61 23.64 21.95 17.2 4.08 16.3 4.25
2990 21.3 9.74 23.75 22.03 14.1 4.45 13.3 4.61
4 × 4 41.8 164.20 199.87 201.76 19.9 7.84 19.9 2.53

C 6.4 164.41 200.05 201.95 3.8 7.99 3.8 2.67
17159 2.4 164.43 200.05 201.96 2.4 7.04 2.4 2.71
4 × 4∗ 79.0 169.08 199.25 190.39 27.1 7.52 27.3 2.47

B 14.7 169.58 199.69 190.85 7.2 7.79 6.9 2.73
17763 9.5 169.62 199.72 190.88 4.5 7.94 4.4 2.86
4 × 4 434.9 164.40 729.63 638.22 104.2 8.27 112.8 9.52

A 43.5 165.76 730.90 639.48 20.5 9.34 25.7 10.74
16143 34.8 166.43 731.42 640.01 15.6 10.17 20.0 11.70

which Algorithms EXPL, B&B1 and B&B2 are used with Φp
s = Lp

s (with
Φp

s = lps, respectively) for the mean flow time criterion (for the makespan
criterion).

Scheme I: Algorithm EXPL →
Algorithm SOL

∑ Ci (Algorithm SOL Cmax) →
Algorithm MINSOL∗ ∑ Ci (Algorithm MINSOL∗ Cmax)

Scheme II: Algorithm B&B1 →
Algorithm SOL

∑ Ci (Algorithm SOL Cmax) →
Algorithm MINSOL∗ ∑ Ci (Algorithm MINSOL∗ Cmax)

Scheme III: Algorithm B&B2 →
Algorithm SOL

∑ Ci (Algorithm SOL Cmax) →
Algorithm MINSOL∗ ∑ Ci Algorithm MINSOL∗ Cmax

Each of these schemes constructs first a G-solution B, then a G-solution
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Table 2.20: Heuristic G-solutions of randomly generated problems J /ai≤pi≤bi/
∑ Ci

n x m; type k B&B1∗ B&B2∗

λ′ CPU λ′ CPU
MIN AVE MAX time MIN AVE MAX time

1 2 3 4 5 6 7 8 9 10
4 x 4; B 150 18 52.3 102 34.3 18 52.9 103 21.5
4 x 4; C 150 4 22.4 53 35.8 4 22.6 53 13.0
4 x 4; D 150 1 11.1 39 47.1 1 12.2 50 12.2
4 x 5; C 150 5 35.8 140 102.9 5 37.0 145 41.3
4 x 5; D 150 2 8.6 18 72.8 2 8.6 18 18.8
4 x 6; C 150 15 33.8 78 148.5 15 35.6 78 63.1
4 x 6; D 150 1 7.2 12 100.5 1 7.3 12 22.3
4 x 7; C 150 6 52.0 134 170.6 5 54.6 136 98.9
4 x 7; D 150 3 12.8 29 177.3 3 12.9 29 56.4
4 x 8; C 150 15 54.4 120 416.4 14 58.7 122 292.0
4 x 8; D 150 7 27.5 57 287.8 7 27.8 55 134.2
4 x 9; C 150 6 78.0 150 495.1 8 80.3 150 335.6
4 x 9; D 150 3 22.9 56 458.4 4 22.9 54 156.1

4 x 10; C 150 25 86.6 150 682.9 24 87.8 150 852.5
4 x 10; D 150 3 28.5 70 707.9 3 29.1 66 362.5
5 x 3; C 150 19 62.0 146 85.9 19 62.8 147 65.2
5 x 3; D 150 2 38.6 150 95.1 2 38.5 150 51.9
5 x 4; C 150 11 63.1 150 191.8 11 64.3 150 154.0
5 x 4; D 150 2 23.2 50 182.6 2 23.4 52 106.7
5 x 5; C 150 63 114.5 150 500.5 62 116.2 150 854.6
5 x 5; D 150 11 36.9 133 499.0 11 37.4 139 291.1
5 x 5; E 100 1 1.7 4 366.0 1 1.7 4 86.6
5 x 6; C 150 15 81.4 150 862.3 16 82.7 150 1220.3
5 x 6; D 150 7 49.0 89 761.5 7 48.6 88 493.6
5 x 7; D 150 9 47.9 150 1390.3 9 48.9 150 1642.0
5 x 7; E 50 1 2.6 7 539.3 1 2.6 7 214.7
5 x 8; D 100 18 78.5 100 1803.5 18 80.5 100 2446.7
5 x 8; E 50 1 3.2 6 1054.5 1 3.2 6 328.1
5 x 9; E 50 1 2.5 6 1531.3 1 2.5 6 653.4

5 x 10; E 50 1 2.5 5 2071.7 1 2.5 5 617.9
6 x 3; D 150 19 101.3 150 538.4 19 100.3 150 621.4
6 x 3; E 50 1 4.2 18 456.8 1 4.2 18 309.8
6 x 4; D 150 20 99.9 150 1197.8 18 81.3 150 1858.1
6 x 4; E 100 1 2.3 6 936.7 1 2.3 6 403.6
6 x 5; D 100 6 90.1 100 1671.0 6 88.1 100 3022.7
6 x 5; E 50 1 2.8 8 1382.4 1 2.8 8 724.1
6 x 6; C 50 50 50 50 2389.6 50 50 50 7350.4
6 x 6; D 50 15 46.5 50 1997.6 15 46.5 50 5252.0
6 x 6; E 50 1 4.1 12 1997.6 1 3.5 12 1226.2
7 x 3; D 150 42 122.5 150 1311.9 76 131.8 150 2302.3
7 x 4; E 100 1 7.1 20 2204.5 1 7.0 24 3608.4
7 x 5; E 50 1 8.4 39 3074.2 2 15.7 50 6139.9
8 x 3; E 50 1 4.5 9 1781.5 1 5.1 11 3103.3
9 x 2; E 100 1 14.1 100 1297.3 1 14.9 100 1958.7

10 x 2; E 50 2 14.1 50 1651.6 2 9.3 50 2781.4

Λ∗(G) by Algorithm SOL
∑ Ci (SOL Cmax) and finally a minimal G-solution

ΛT (G) by Algorithm MINSOL∗ ∑ Ci (MINSOL∗ Cmax). In Table 2.18
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Table 2.21: Heuristic G-solutions of randomly generated problems J /ai≤pi≤bi/Cmax

n x m; type B&B1∗ B&B2∗

λ′ CPU λ′ CPU
MIN AVE MAX time MIN AVE MAX time

1 2 3 4 5 6 7 8 9
4 x 4; B 5 27.2 51 7.29 5 27.3 50 2.46
4 x 4; C 2 19.9 62 7.59 2 19.9 64 2.51
4 x 4; D 4 11.8 28 9.70 4 12.5 35 1.81
4 x 5; C 7 32.1 69 15.97 7 33.1 74 6.58
4 x 5; D 1 5.2 19 14.10 1 5.4 20 1.56
4 x 6; C 6 28.0 79 27.53 6 29.7 82 8.69
4 x 6; D 2 10.6 45 21.91 2 10.7 44 3.82
4 x 7; C 6 38.7 118 31.93 5 41.3 129 16.43
4 x 7; D 1 12.4 45 35.68 1 13.4 45 7.85
4 x 8; C 14 60.6 143 63.53 18 66.0 134 38.91
4 x 8; D 3 18.3 45 51.04 3 18.5 45 13.59
4 x 9; C 8 55.1 145 76.46 8 60.6 150 42.13
4 x 9; D 1 24.5 101 74.88 1 25.8 109 25.55

4 x 10; C 16 74.9 150 100.86 17 82.3 150 78.79
4 x 10; D 5 29.6 81 95.54 5 31.8 86 51.35
5 x 3; C 22 101.0 150 13.06 22 100.4 150 11.64
5 x 3; D 19 93.1 150 13.15 19 93.3 150 12.18
5 x 4; C 17 86.1 150 26.86 17 88.4 150 21.81
5 x 4; D 17 42.1 102 29.31 17 44.1 102 15.63
5 x 5; B 57 133.1 150 46.29 60 136.4 150 128.36
5 x 5; C 86 142.2 150 55.33 88 143.3 150 125.10
5 x 5; D 13 59.7 150 55.67 13 60.7 150 31.70
5 x 5; E 1 14.6 84 55.43 1 15.1 89 12.20
5 x 6; C 19 91.3 150 83.44 23 95.9 150 94.73
5 x 6; D 7 49.8 104 88.35 7 54.0 131 52.46
5 x 7; D 35 103.9 150 148.23 35 104.6 150 364.76
5 x 7; E 1 8.2 24 112.03 1 8.2 24 21.18
5 x 8; D 22 92.1 150 211.49 21 91.9 150 331.82
5 x 8; E 2 11.3 58 179.53 2 10.9 58 49.70
5 x 9; E 1 8.9 57 233.89 1 9.1 57 49.22

5 x 10; E 1 5.9 21 309.72 1 5.9 21 53.87
6 x 3; D 25 132.7 150 57.70 25 137.5 150 141.25
6 x 3; E 5 102.9 150 65.60 8 119.7 150 160.52
6 x 4; D 78 139.7 150 130.70 86 140.5 150 327.15
6 x 4; E 2 59.2 150 100.75 2 59.6 150 62.80
6 x 5; D 109 135.8 150 155.49 112 139.3 150 319.53
6 x 5; E 1 37.0 143 157.26 1 37.0 143 125.21
6 x 6; C 150 150 150 271.68 150 150 150 1136.78
6 x 6; D 25 110.0 150 255.49 42 126.3 150 550.78
6 x 6; E 1 17.6 43 255.48 1 17.7 43 133.24
7 x 3; D 150 150 150 169.66 110 146.0 150 414.17
7 x 4; E 4 87.1 150 268.30 12 96.2 150 505.38
7 x 5; E 5 87.1 150 342.51 2 124.7 150 1057.61
8 x 3; E 2 134.4 150 234.02 36 138.6 150 585.55
9 x 2; E 150 150 150 157.68 150 150 150 416.59

10 x 2; E 150 150 150 209.69 150 150 150 606.73
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(Table 2.19), λ denotes the average number of schedules (third row in column
1), λ′ the average cardinality of set B, λ∗ the average cardinality of set Λ∗(G),
and λT the average cardinality of set ΛT (G) (first, second and third rows
in column 2, respectively). Of course, for each instance, λ, λ′, λ∗ and λT

are integers, but their average values are real numbers given in Table 2.18,
Table 2.19 and the tables below with one decimal place.

The application of Scheme I to Example 2.2 of problem J 3/n=3, ai≤pi≤
bi/

∑ Ci described in Section 2.4, gives the following sets of schedules. First,
Algorithm EXPL constructs the set Λ(G) = {G1, G2, . . . , G22} of all sched-
ules and set B ⊂ Λ(G) with |B| = 12 (see Step 4, where sufficiency from
Lemma 2.5 is used). Then, using the G-solution B, Algorithm SOL

∑ Ci

constructs the set Λ∗(G) = {G1, G2, G5} which is also a G-solution. Fi-
nally, Algorithm MINSOL

∑ Ci shows that G-solution Λ∗(G) is minimal:
ΛT (G) = Λ∗(G). For Example 2.2, we have λ = 22, λ′ = 12 and λ∗ = λT = 3.
The average CPU time (in seconds) for constructing set B, set Λ∗(G) and
set ΛT (G) (first, second and third rows) are presented in columns 3, 4 and
5 for Schemes I, II and III, respectively. As follows from Table 2.18 and
Table 2.19, in most cases for both criteria

∑ Ci and Cmax, Scheme III based
on Algorithm B&B2 is the best for the problems of type C, while Scheme I
based on Algorithm EXPL is the best for the problems of types A and B. As
it was mentioned, Steps 8 and 9 for the branch-and-bound algorithm are not
so fast as Step 1 of Algorithm EXPL. Moreover, due to a large uncertainty
of the input vector p for problems A and B, Algorithms B&B1 and B&B2
have to construct a lot of intermediate digraphs G(t) in the branching tree
which are not in the set Λ(G). Unfortunately, an exact minimal G-solution
was obtained within 1.5 hours by the worst of the Schemes I, II or III only
for some combinations of n and m with n ≤ 4 and m ≤ 8 and an exact
G-solution was not obtained by Scheme I for some combinations of n and m

for the reason ‘not enough memory’ or ‘limit of time’ (such series are marked
in the first column of Table 2.18 and Table 2.19 by an asterisk).

To solve problems with a larger size, we were forced to consider restricted
variants of the branch-and-bound algorithms: Algorithm B&B1∗ (Algorithm
B&B2∗) denotes Algorithm B&B1 (Algorithm B&B2, respectively) without
Steps 8 and 9. In general, such modifications do not guarantee to obtain
a G-solution B, but they are essentially faster. Fortunately, for almost all
problems presented in Table 2.18 and Table 2.19, the restricted variants of
the branch-and-bound algorithms still give a G-solution, i.e., for each p ∈ T
the set B constructed contains an optimal schedule. The main reason for
this computational result is that Steps 8 and 9 often generate only schedules
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which are dominated by other ones. Therefore, it is possible to exclude these
schedules due to Theorem 2.4 (see page 124). Columns 6 – 9 of Table 2.18 (of
Table 2.19) present computational results on a PC 486 (120 MHz) (on a PC
486 (133 MHz), respectively) for the following two computational schemes.

Scheme IV: Algorithm B&B1∗ with Φp
s = Lp

s (with Φp
s = lps) →

Algorithm SOL
∑ Ci (Algorithm SOL Cmax) →

Algorithm MINSOL∗ ∑ Ci (Algorithm MINSOL∗ Cmax).
Scheme V: Algorithm B&B2∗ with Φp

s = Lp
s (with Φp

s = lps) →
Algorithm SOL

∑ Ci (Algorithm SOL Cmax) →
Algorithm MINSOL∗ ∑ Ci (Algorithm MINSOL∗ Cmax).

More precisely, column 6 presents the average approximate values λ′ (first
row), λ∗ (second row) and λT (third row) calculated by Algorithm B&B1∗.
Column 7 presents the average running times for constructing approxima-
tions of the sets B, Λ∗(G) and ΛT (G) by Algorithm B&B1∗. Similarly,
column 8 presents the average approximate values λ′, λ∗ and λT calculated
by Algorithm B&B1∗. Column 9 presents the average running times for
constructing approximations of the sets B, Λ∗(G) and ΛT (G) by Algorithm
B&B2∗. From Table 2.18 for criterion

∑ Ci and Table 2.19 for criterion Cmax,
it follows that Algorithm B&B2∗ in Scheme V is often faster than Algorithm
B&B1∗ in Scheme IV. There exist only 3 series of problems (all of type A),
for which Algorithm B&B1∗ is faster, on average, than Algorithm B&B2∗.
Only for some series of type A, Algorithm B&B1∗ is, on average, faster than
Algorithm B&B2∗. Note also that Algorithm B&B2∗ gives more often an
exact G-solution than Algorithm B&B1∗.

As it follows from Table 2.18 and Table 2.19, even the heuristic Schemes
IV and V require rather large running times. So, for larger problem sizes,
we used only Algorithms B&B1∗ and B&B2∗ for constructing the sets B
heuristically, i.e., without a guarantee that the constructed set B is indeed
a G-solution. Obviously, the cardinality of a G-solution increases not only
with increasing the size of the problem (which in turn increases the running
time), but also with increasing the uncertainty of the numerical input data.
Therefore, to reduce the cardinality of a G-solution, we consider along with
instances of types A, B, and C also problems of the following two types D
and E with smaller errors of the given processing times, namely: Problems
of type D with the errors of the processing times equal to 1 %, 2 %, 3 % and
4 %, and problems of type E with the errors of the processing times equal
to 0.1 %, 0.2 %, 0.3 % and 0.4 % (see Table 2.16). Heuristic G-solutions are
represented in Table 2.20 for problems J /ai≤pi≤bi/

∑ Ci and in Table 2.21
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for problems J /ai ≤ pi ≤ bi/Cmax with the same structural and numerical
input data. Next, we describe the design of Table 2.20. The values of k

used for criterion
∑ Ci are given in column 2. Columns 3–6 (and columns

7–10) present computational results for Algorithm B&B1∗ (and Algorithm
B&B2∗, respectively). Column 3 (column 7) gives the minimal value of the
cardinality λ′ of the set B constructed, column 4 (column 8) the average
value of λ′, and column 5 (column 9) the maximal value of λ′. The average
CPU times are given in column 6 for Algorithm B&B1∗ and in column 10
for Algorithm B&B2∗. Table 2.21 has a similar design with the exception
of the column with the values of k used. For criterion Cmax, we set k = 150
for all computational results presented for problems J /ai≤pi≤bi/Cmax. As
follows from Table 2.20 and Table 2.21, if the problems have a small size,
Algorithm B&B2∗ is superior to Algorithm B&B1∗ (both in running time
and the quality of the G-solution constructed). However, if the number of
potentially optimal schedules is large (due to a large problem size or due to a
large uncertainty of the numerical input data), then Algorithm B&B1∗ has
a smaller running time, however, the quality of the G-solution constructed
by Algorithm B&B2∗ remains still better. Moreover, the value of k has a
large influence on the quality and the running time of Algorithm B&B1∗ in
contrast to Algorithm B&B2∗ which is independent of k. In principle, we use
the parameter k in Algorithm B&B2∗ mainly to have the same conditions
for the comparison with Algorithm B&B1∗.

2.8. Comments and References

In spite of obvious practical importance, the literature on stability and
sensitivity analysis in sequencing and scheduling is not numerous. Out-
side the approach considered in this book, one can mention the papers
[24, 26, 88, 89, 92, 107, 108, 123, 155, 162, 184, 186, 187, 214, 221, 227,
228, 230, 231, 234, 255, 259, 260, 267, 363, 370], where close or different
measures for stability and sensitivity of an optimal (approximate) sequence
or schedule were introduced and studied. Note that the stability notions in
the general OR literature have been introduced almost simultaneously with
the development of the first methods for solving mathematical programming
problems. However, a direct transformation of most stability and sensitivity
results obtained in non-integer mathematical programming to discrete opti-
mization problems (in particular, to scheduling problems) has provided only
simple conclusions. The first papers, presenting specific stability concepts
for scheduling problems, were published since the late 1980s.
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Since a schedule contains both combinatorial and temporal structures,
scheduling problems provide sufficiently wide issues for a stability and sensi-
tivity analysis (see [155]). The combinatorial structure of a schedule includes
which machine is chosen to process an operation and the sequence in which
the set of jobs are processed in the schedule. The temporal structure of a
schedule characterizes when a job is processed, which specifies some parts
of a schedule as local in relation to others. Next, we survey some known
results for stability and sensitivity analysis in sequencing and scheduling.

A study of sensitivity analysis for single-stage scheduling problems was
initiated by Hall and Posner [155]. In particular, they developed a sen-
sitivity analysis for problems 1//

∑
wiCi, P//

∑ Ci, 1//Lmax and other list
scheduling problems, i.e., those that are optimally solvable by a sequence of
jobs generated by a specific priority rule. In [155], it was shown that the
modified instance (when a concrete change of one processing time or one job
weight is given) of some polynomially solvable problems (among them prob-
lems 1//

∑
wiCi, 1/ri, pmtn/

∑ Ci, and 1/ri, di, pi = 1/
∑

wiCi) can be solved
more efficiently using the optimal schedule known for the original problem
instance. Based on observations for integer mathematical programming,
Geffrion and Nauss [131] provided several answers to the question: What
can be said about the stability of an optimal schedule before it is found?
In [155], the following results from [131] were represented using scheduling
terminology.

If the set of feasible schedules is reduced and schedule s is still feasible,
then schedule s is still optimal. Due to this quite simple claim, for a schedul-
ing problem with any regular criterion, the following two parameter changes
do not alter an optimal schedule s. Namely, an increase in the release time,
which is not later than the time when the job is started with the processing
in schedule s, and a decrease in the deadline, which is not earlier than the
time when the processing of the job is completed in schedule s.

If job Ji is completed at its lower bound in schedule s and the weight of
job Ji increases, then schedule s is still optimal. Due to this claim, for a
scheduling problem with any regular criterion, the following two parameter
changes do not alter an optimal schedule s: An increase in the weight of a
job that is processed first in schedule s and an increase in the weight of a
job the processing of which starts in schedule s at its release time.

If job Ji is completed at its upper bound in schedule s and the weight of
job Ji decreases, then schedule s is still optimal. Due to this claim, for a
scheduling problem with any regular criterion, the following two parameter
changes do not alter an optimal schedule s: A decrease in the weight of a
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job the processing of which is completed at its deadline in schedule s and
a decrease in the weight of a job that is processed last in a single machine
scheduling problem.

Hall and Posner [155] described also other sufficient conditions under
which an increase in the set of feasible schedules does not change an optimal
non-preemptive schedule for a regular criterion and without given prece-
dence constraints. If the deadline dk of job Jk is increased when there is a
consecutive idle time of at least maxJi∈J{Pk : Ci(s) > Ck(s)} in the closed
interval [Ck(s), dk], then the originally optimal schedule s remains optimal.
For a bottleneck criterion (like minimizing the maximum lateness), the fol-
lowing sufficient condition was given in [155] as well: If an increase in the
operation processing time does not create a new bottleneck or increase the
current bottleneck, then the originally optimal schedule remains optimal.

In [186], the sensitivity of a heuristic algorithm with respect to the vari-
ation of the processing time of one job was investigated. In [267], results for
the traveling salesman problem were used for a single machine scheduling
problem with minimizing total tardiness [204].

The stability of an optimal line balance for a fixed number of stations
(and for a fixed cycle time) was investigated in [317, 320, 321, 322]. The
assembly line balancing problem with variable operation times has been
considered in [130, 147, 208, 287, 361]. In [130, 361], fuzzy set theory was
used to represent the uncertainty of the operation times. Genetic algorithms
were used either to minimize the total operation time for each station [130]
or to minimize the efficiency of the fuzzy line balance [361]. In [208], the
entire decision process has been decomposed into two parts: The determin-
istic problem and the stochastic problem. For the former problem, integer
mathematical programming is used to minimize the number of stations. For
the latter problem, which takes into account the variations of the operation
times over different products, queuing network analysis is used to determine
the necessary capacity of the material-handling system. In [287], the dy-
namic programming method and the branch-and-bound method have been
used to minimize the total labor cost and the expected incompletion cost
arising from operations not completed within the cycle time. Branch-and-
bound algorithms were developed in [55, 272, 287, 290], integer mathematical
programming algorithms in [96, 208, 272].

Single and multi-machine problems are analyzed considering criteria de-
pending on the completion times and the due dates. In particular, Chu
and Gordon [83], Gordon and Tarasevich [141] considered a single machine
problem including both the due date assignment and the scheduling deci-
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sions. In [83], it was assumed that the due dates are proportional to the job
processing times. In [83, 141], the objective was to minimize the weighted
earliness-tardiness and the penalty related to the size of the dates with re-
spect to the processing times. Lahlou and Dauzere-Peres [199] considered
a single machine scheduling problem provided that the processing time of a
job depends on the time at which the job is started (the planning horizon is
divided into time windows and with each one a coefficient is associated that
is used to determine the actual processing time of a job starting in this time
window). It is proven that such a problem with the makespan criterion is
NP-hard even with two time windows being given.

The complexity of a sensitivity and stability analysis of a discrete opti-
mization problem was studied in [63, 135, 137, 163, 164, 261, 276, 309, 312].
In particular, Ramaswamy and Chakravarti [276] have shown that the prob-
lem of determining the arc tolerance for a discrete optimization problem is
as hard as the original problem itself (the arc tolerance is the maximum
change, i.e., increase or decrease, of a single weight, which does not destroy
the optimality of a solution). This means that in the case of the traveling
salesman problem, the arc tolerance problem is NP-hard even if an opti-
mal tour is given. Gordeev [135] proved the NP-hardness of the problem of
calculating the stability radius for the polynomially solvable shortest path
problem in a digraph without negative circuits. In [190], the definitions
of the stability radius of an ε-approximate solution for the Boolean prob-
lem of minimizing a linear form was introduced. Sotskov [309, 312] has
shown that the stability radius of an ε-approximate solution may be cal-
culated in polynomial time if the number of unstable components grows
rather slowly, namely as O(log2 N), where N is the number of cities in the
traveling salesman problem. There has been a lot of published works on
a sensitivity analysis of specific discrete optimization problems such as the
minimum spanning tree, the shortest path, the minimum Hamiltonian path
and the traveling salesman problem with min-sum or min-max objectives
[38, 154, 227, 228, 230, 277, 298, 356]. A stability analysis for the minimum
spanning tree problem was considered by Gusfield [154] and Tarjan [356].
Shier and Witzgall [298] proposed algorithms for finding the exact tolerances
for the shortest path tree problem. The algorithms of Gusfield [154] and Tar-
jan [356] for a stability analysis of the minimum spanning tree may also be
used with minor modifications for the shortest path tree problem as pointed
out by the authors in their respective papers. Libura [227, 228] developed
a stability analysis for the minimum Hamiltonian path and the traveling
salesman problems. Libura et al. [230] argued that it is rather convenient
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from a computational point of view to use a set of k shortest tours when
applying a stability analysis to the symmetric traveling salesman problem.

It is clear that a learning (forgetting) effect may decrease (increase) the
processing time of a job. Alidaee and Womer [8] cited a lot of examples
from practice, where the processing time of a job may increase or decrease
with its starting time in the production duration. In [34, 79, 128, 140,
174, 249, 250, 251], single-stage processing systems have been considered
provided that the processing time of a job is dependent on its position in a
schedule. In particular, Gawiejnowicz [128] considered a learning effect in
a single machine scheduling problem with the Cmax criterion. Biskup [34]
has shown that single machine problems of minimizing the deviation from
a common due date and of minimizing total flow time remain polynomially
solvable even if a learning effect being taken into account. Mosheiov [249,
250] provided a polynomial solution for some multi-criteria single machine
problems and for the minimum flow time scheduling problem on parallel
identical machines. Mosheiov and Sidney [251] extended the learning effect
to the case when the jobs are associated with a specific learning rate. Cheng
and Wang [79] studied a piecewise-linear model of a learning effect for the
case of a single machine problem with minimizing maximum lateness.

To model scheduling in an uncertain environment, a two-person non-zero
sum game was introduced by Chrysslouris et al. [82], where the decision-
maker was considered as player 1 and the ‘nature’ as player 2. An agent-
based negotiation approach was developed in [366] to integrate planning and
scheduling. The negotiation protocol has enhanced the processing system
robustness over the previous works. The makespan and total flow time prob-
lems were experimentally compared with those of other search techniques.
The stability of an optimal situation in a finite cooperative game with a
parametric concept of equilibrium was investigated in [56, 57].

In this book, it was assumed that multiple processing time changes are
independent. However, in some real world scheduling problems multiple
parameter changes are related. This may be due to the relationships between
the numerical parameters, such as the correlation between the value and
work required. Hall and Posner [155] demonstrated for some single-stage
scheduling problems that a sensitivity analysis may depend on the position
of the jobs with changed parameters. The results presented in this chapter
were originally published in [44, 200, 201, 202, 203, 311, 318, 327, 329, 334,
339, 340, 341]. In Section 1.5, we developed algorithms for calculating the
stability radii 	̂s(p) and 	s(p) on the basis of the formulas from [44, 311, 339].
The computational results were originally published in [202, 334, 340].
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Table 2.22: Common notations

Symbols Description
J Symbol for a job shop (in the α field of the three-field notation α/β/γ)
F Symbol for a flow shop
O Symbol for an open shop
G Symbol for a general shop
M Set of machines: M = {M1,M2, . . . ,Mm}
J Set of jobs: J = {J1, J2, . . . , Jn}
Ci(s) Completion time of job Ji ∈ J in schedule s
QJ Set of all operations for processing all jobs J :

QJ = {Qik : Ji ∈ J, k = 1, 2, . . . , ni}
Φ(C1, C2, . . . , Cn) Objective function of the job completion times where Ci = Ci(s)
Φp

k Value of the objective function calculated for digraph Gk ∈ Λ(G)
(schedule k) with processing times given by vector p ∈ Rq

+

Φ Regular criterion
Cmax = maxn

i=1 Ci Criterion of minimizing the maximum flow time (makespan)∑ Ci =
∑n

i=1 Ci Criterion of minimizing mean flow time
Ci(s) Completion time of job Ji ∈ J in schedule s
B := B + C In this case sign := means that B is substituted by B + C
|B| Cardinality of set B (number of elements in set B if it is finite)
|b| Absolute value of the real number b ∈ R1, i.e.,

|b| = b, if b ∈ R1
+, |b| = −b, if b ∈ R1 \ R1

+

Rn Space of n-dimensional real vectors with the maximum metric
Rn

+ Space of non-negative real vectors with the maximum metric
Qn

+ Set of all n-dimensional (strictly) positive rational vectors
Qn

≥0 Set of all n-dimensional non-negative rational vectors
Nn Set of all n-dimensional natural vectors
d(p, p′) Distance between vector p ∈ Rn and vector p′ ∈ Rn :

d(p, p′) = maxn
i=1 |pi − p′i|

�a� The smallest integer greater than or equal to the real number a
[μ] + [ν] ‘Symmetric difference’ of set [μ] and set [ν] :

[μ] + [ν] = [μ] ∪ [ν] \ [μ] ∩ [ν]
G = (Q,A,E) Mixed graph defining the structural input data
q Number of operations: q = |QJ | =

∑n
i=1 ni =

∑m
k=1 |QJ

k |
Gk = (Q,A ∪ Ek, ∅) Acyclic digraph generated from the mixed graph G
Ek Signature of schedule k ∈ S, Gk ∈ Λ(G)
G(p) = (Q(p), A,E) Weighted mixed graph with the vector p of job processing times
Gk(p) = (Q(p), A ∪ Ek, ∅) Acyclic weighted digraph
GT

k Minimal subgraph of Gk containing all dominant paths
with respect to polytope T

Λ(G) = {G1, G2, . . . , Gλ} Set of acyclic digraphs generated from the mixed graph G
S = {1, 2, . . . , λ} Set of semiactive schedules
λ Number of semiactive schedules
SΦ(p) Set of optimal semiactive schedules with respect to criterion Φ
O�(p) Stability ball of an optimal digraph with radius � and center p ∈ Rq

+

�s(p) Stability radius of an optimal digraph Gs for a regular criterion
�̂s(p) Stability radius of an optimal digraph Gs for the makespan criterion
�s(p) Stability radius of optimal digraph Gs for the mean flow time criterion
[μ] Set of vertices (operations) which are contained in path μ
lp(μ) Weight of path μ in the digraph with processing times p ∈ Rq

+

H̃i
k Set of paths in digraph Gk ending in the last operation of job Ji

Hi
k Set of dominant paths in H̃i

k



Chapter 3

Two-Machine Flow Shop and Job
Shop

Punctuality is a thief of time
Oscar Wilde

In the first two sections of this chapter, the flow shop problem with n

jobs processed on two machines is addressed, where interval job processing
times are given before scheduling. It is assumed that the probability distri-
butions of the random processing times are unknown, and only their lower
and upper bounds are given before scheduling. In such a case, there may
not exist a unique schedule that remains optimal for all possible realizations
of the job processing times, and so we look for a minimal set of schedules
(permutations) which dominates all feasible schedules for the given objective
function. We obtain necessary and sufficient conditions for the case when it
is possible to fix the order of two jobs for the makespan criterion (in spite
of the uncertainty of the numerical input data). We characterize the easiest
case of the two-machine flow shop problem with interval processing times,
i.e., we prove necessary and sufficient conditions for the existence of a single
schedule which is dominant for the makespan criterion. On the other hand,
we describe the set of the hardest problems such that any semiactive sched-
ule may be a unique optimal one for some possible realizations of the job
processing times. Along with the off-line scheduling problem, we consider
the on-line problem, where a part of the schedule is already realized. We
show how to use the additional information available for the on-line problem
to obtain a better solution than that constructed for the off-line version of
the problem. All the conditions proven may be tested in polynomial time.

179
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3.1. Flow Shop with Interval Processing Times

We address the flow shop problem when it is impossible to obtain reli-
able probability distributions for the random processing times. As such, a
schedule obtained by assuming certain probability distributions may not be
close to an optimal schedule in a practical realization of the process.

Let two machines M = {M1, M2} be given to process n ≥ 2 jobs J =
{J1, J2, ..., Jn} that follow the same machine route (flow shop), i.e., each job
Ji ∈ J has to be processed by machine M1 and then by machine M2 without
preemption on each machine (Condition 4 on page 12). All the n jobs are
available to be processed from time 0. Ci(π) denotes the completion time
of job Ji ∈ J in schedule π. Cmax denotes the minimization of the schedule
length Cmax(π):

Cmax = min
π∈S

Cmax(π) = min
π∈S

{max{Ci(π) : Ji ∈ J}},
where S denotes the set of all semiactive schedules. The set of semiactive
schedules has the cardinality |S| = (n!)2. In contrast to the conventional
two-machine flow shop problem F2//Cmax [177], we assume that the pro-
cessing time pij of job Ji ∈ J on machine Mj ∈ M is unknown before
scheduling. In the realization of the process, pij may take any real value
in the (closed) interval [pL

ij, pU
ij], where the lower bound pL

ij and the up-
per bound pU

ij are fixed, but the probability distributions of the random
processing times between these bounds are unknown. Such a two-machine
minimum-length flow shop problem with interval processing times is denoted
by F2/pL

ij ≤ pij ≤ pU
ij/Cmax. Problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax is called an

uncertain problem in contrast to problem F2//Cmax which is called a deter-
ministic problem.

Let Sπ = {π1, π2, . . . , πn!} be the set of all permutations of the n jobs
from set J : πk = (Jk1

, Jk2
, . . . , Jkn

), k ∈ {1, 2, . . . , n!}, {k1, k2, . . . , kn} =
{1, 2, . . . , n}. The set Sπ defines the permutation schedules that are dominant
for the deterministic problem F2//Cmax. In other words, there exists at least
one optimal schedule with the same sequence of jobs on both machine M1

and M2, i.e., the set Sπ of permutation schedules dominates the set S of
semiactive schedules for the deterministic problem F2//Cmax. Let the set of
all feasible vectors p = (p1,1, p1,2, . . . , pn1, pn2) of the job processing times be
denoted by T :

T = {p : pL
ij ≤ pij ≤ pU

ij, Ji ∈ J, Mj ∈ M}. (3.1)

For a fixed vector p ∈ T , the uncertain problem F2/pL
ij ≤ pij ≤ pU

ij/Cmax
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turns into the deterministic problem F2//Cmax associated with the vector
p of job processing times, and so for each vector p ∈ T , it is sufficient to
look for an optimal schedule among the permutation schedules. Thus, it is
sufficient to examine the set of permutation schedules for solving the uncer-
tain problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax as well. The set of the permutation

schedules has the cardinality |Sπ| = n!. Next, we shall restrict further the
set of feasible permutations that are sufficient to be examined for solving
problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax.

Since preemption in the processing of job Ji ∈ J on machine Mj ∈ M is
not allowed, each permutation πk ∈ Sπ defines a unique set of the earliest
completion times C1(πk), C2(πk), . . . , Cn(πk), which in turn defines a semiac-
tive schedule for the deterministic problem F2//Cmax. In what follows, we
shall not distinguish a permutation πk ∈ Sπ from the semiactive schedule
defined by this permutation. We need such an agreement for the uncertain
problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax in which the processing times are not

fixed before scheduling, and as a result, it is impossible to calculate a priori
(before the realization of the process) all completion times for permutation
πk ∈ S. For the uncertain problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax, we use the

notation Ci(πk, p) for the completion time of job Ji ∈ J , and the notation
Cmax(πk, p) = max{Ci(πk, p) : Ji ∈ J} for the makespan value, provided
that a concrete vector p ∈ T of the job processing times is just treated.

Johnson [177] proved that it takes O(n log2 n) time to construct an opti-
mal permutation πi = (Ji1, Ji2, . . . , Jin) ∈ Sπ for the deterministic problem
F2//Cmax. Such an optimal permutation πi satisfies the condition

min{pik1, pim2} ≤ min{pim1, pik2} (3.2)

with 1 ≤ k < m ≤ n. In what follows, each permutation πi satisfying
condition (3.2) will be called a Johnson permutation. The following simple
algorithm allows us to construct at least one Johnson permutation.

Johnson’s algorithm. Partition the set of jobs into two subsets J = N1 ∪
N2 with N1 containing the jobs with pi1 ≤ pi2 and N2 the jobs with pi1 ≥ pi2.
(A job with the equality pi1 = pi2 may be either in set N1 or in set N2.) Now
construct an optimal schedule, where the jobs from set N1 are processed first,
and they are processed in a non-decreasing order of pi1. The jobs from set
N2 follow the jobs from set N1 in a non-increasing order of pi2.

Obviously, if all the processing times are different (pij �= puv if i �= u or
j �= v), then Johnson algorithm generates a single Johnson permutation for
the deterministic problem F2//Cmax. Otherwise, Johnson’s algorithm may
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generate several permutations. Each permutation πj generated by Johnson’s
algorithm is a Johnson permutation, i.e., πj satisfies condition (3.2) with
i = j. However, the opposite claim is not correct: There may exist a
Johnson permutation that cannot be constructed by Johnson’s algorithm.
We present this as the following remark.

Remark 3.1 Let set Πc (set Πa, respectively) be the set of all Johnson
permutations for problem F2//Cmax (the set of all permutations constructed
using Johnson’s algorithm). Then inclusion Πa ⊆ Πc must hold, and there
are instances of problem F2//Cmax such that set Πa is a proper subset of
set Πc, i.e., it may happen that Πc \ Πa �= Ø.

The following example illustrates Remark 3.1.

Example 3.1 We consider problem F2//Cmax with the job set J = {J1, J2,

J3, J4} and the processing times defined by vector p = (3, 4, 4, 5, 4, 3, 2, 2). It
is easy to see that there are four Johnson permutations π1 = (J4, J1, J2, J3),
π2 = (J1, J4, J2, J3), π3 = (J1, J2, J4, J3) and π4 = (J1, J2, J3, J4), i.e., each
permutation from set Πc = {π1, π2, π3, π4} satisfies condition (3.2). How-
ever, Johnson’s algorithm can generate only two permutations, namely, π1

and π4. Thus, we obtain {π1, π4} = Πa ⊂ Πc = {π1, π2, π3, π4}.
It is also useful to give the following remark.

Remark 3.2 For problem F2//Cmax, some optimal schedule may be defined
by a permutation from set Sπ that does not satisfy condition (3.2).

In other words, inequalities (3.2) are sufficient for the optimality of a
permutation πi ∈ Sπ but they are not necessary for the optimality of a
permutation. In particular, for problem F2//Cmax, more general sufficient
conditions for the optimality of a permutation were proven in [48, 232], and
so larger sets of optimal permutations can often be constructed. Neverthe-
less, in this section, the set of optimal permutations for the deterministic
problem F2//Cmax associated with a vector p ∈ T of processing times will be
restricted by Johnson ones. We argue as follows. The aim of this section is
to construct a minimal set of dominant schedules for the uncertain problem
F2/pL

ij ≤ pij ≤ pU
ij/Cmax, and so we can remove all the redundant permuta-

tions πk ∈ Sπ. Specifically, if there is no vector p ∈ T such that permutation
πk ∈ Sπ is a Johnson one for the deterministic problem F2//Cmax associ-
ated with the vector p of processing times, then we can remove permutation
πk from further considerations. Summarizing, we introduce the following
definition of a J-solution to the uncertain problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax.



3.1. FLOW SHOP WITH INTERVAL PROCESSING TIMES 183

Definition 3.1 The set of permutations Sπ(T ) ⊆ Sπ is called a J-solution
to the uncertain problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax, if for each vector p ∈

T , the set Sπ(T ) contains at least one permutation that is a Johnson one
for the deterministic problem F2//Cmax associated with the vector p of job
processing times, provided that any proper subset of set Sπ(T ) loses such
a property (i.e., any proper subset of set Sπ(T ) is not a J-solution to the
uncertain problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax).

From Definition 3.1, it follows that set Sπ(T ) contains at least one optimal
schedule πk ∈ Sπ(T ) ⊆ Sπ for each vector p ∈ T of the job processing times:
Cmax(πk, p) = min{Cmax(πi, p) : πi ∈ Sπ}, and set Sπ(T ) is a minimal set
(with respect to inclusion) which possesses such a property. Thus, to solve
problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax exactly, one can restrict the search by the

set of schedules Sπ(T ). As it will be shown in Section 3.2, the set of schedules
Sπ(T ) provides more choices (than a single schedule) for a decision-maker
to organize the optimal realization of the process in real-time.

The remainder of the section is organized as follows. First, we prove ne-
cessary and sufficient conditions for the easiest case of problem F2/pL

ij ≤
pij ≤ pU

ij/Cmax when one schedule dominates all others: |Sπ(T )| = 1, and for
the hardest case when |Sπ(T )| = n!. Then we find necessary and sufficient
conditions for fixing the order of two jobs in a J-solution. In contrast to
Chapter 2, where exponential algorithms based on an exhaustive enumera-
tion of the semiactive schedules were derived for constructing a minimal set
of dominant schedules for the job-shop problem Jm/pL

ij ≤ pij ≤ pU
ij/Cmax

with m ≥ 2 machines, in this section we develop polynomial procedures for
presenting the set Sπ(T ) for the special case of the latter problem when
m = 2 and all the jobs have the same machine route.

Minimal (Maximal) Cardinality of a J-solution

Let us study the case when there exists a permutation πi ∈ Sπ consti-
tuting a single-element set (singleton) that is a J-solution Sπ(T ) = {πi}
to the uncertain problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax. Due to Definition 3.1,

such a permutation πi has to be a Johnson permutation for the determin-
istic problem F2//Cmax associated with any possible vector p ∈ T of the
job processing times. In other words, permutation πi has to dominate each
permutation πk ∈ Sπ, i.e., the inequality

Cmax(πi, p) ≤ Cmax(πk, p) (3.3)

must hold for any vector p ∈ T and any permutation πk ∈ Sπ. We construct
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a partition J = J0 ∪ J1 ∪ J2 ∪ J ∗ of the n jobs defined as follows:

J0 = {Ji ∈ J : pU
i1 ≤ pL

i2, p
U
i2 ≤ pL

i1};
J1 = {Ji ∈ J : pU

i1 ≤ pL
i2, p

U
i2 > pL

i1} = {Ji ∈ J \ J0 : pU
i1 ≤ pL

i2};
J2 = {Ji ∈ J : pU

i1 > pL
i2, p

U
i2 ≤ pL

i1} = {Ji ∈ J \ J0 : pU
i2 ≤ pL

i1};
J ∗ = {Ji ∈ J : pU

i1 > pL
i2, p

U
i2 > pL

i1};
where some subsets J0, J1, J2, and/or J ∗ of set J may be empty. Obviously,
for each job Jk ∈ J0, from the inequalities pU

k1 ≤ pL
k2 and pU

k2 ≤ pL
k1, we obtain

the equalities pL
k1 = pU

k1 = pL
k2 = pU

k2. Since both intervals for the processing
times of job Jk on machines M1 and M2 turn into a point, the processing
times pk1 and pk2 are fixed in problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax, and they

are equal for both machines: pk1 = pk2 := pk. Remark 3.3 directly follows
from the definitions of the sets J1, J2 and J ∗.

Remark 3.3 The sets J1 and J2 are such that both inclusions J1 ⊆ N1

and J2 ⊆ N2 may hold for any vector p ∈ T of the processing times (sets N1

and N2 are those used in Johnson’s algorithm). The jobs from set J0 may
be either in set N1 or in set N2 regardless of vector p ∈ T . The jobs from
set J ∗ may be either in set N1 or in set N2 depending on the vector p ∈ T .

Using the partition J = J0 ∪J1 ∪J2 ∪J ∗, we prove the following claim.

Theorem 3.1 There exists a single-element J-solution Sπ(T ) ⊂ Sπ,
|Sπ(T )| = 1, to problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax if and only if

a) for any pair of jobs Ji and Jj from set J1 (from set J2, respectively)
either pU

i1 ≤ pL
j1 or pU

j1 ≤ pL
i1 (either pU

i2 ≤ pL
j2 or pU

j2 ≤ pL
i2),

b) |J ∗| ≤ 1 and for job Ji∗ ∈ J ∗ (if any), the following inequalities hold:

pL
i∗1 ≥ max{pU

i1 : Ji ∈ J1}; (3.4)

pL
i∗2 ≥ max{pU

j2 : Jj ∈ J2}; (3.5)

max{pL
i∗1, pL

i∗2} ≥ pk for each job Jk ∈ J0. (3.6)

Proof. Sufficiency. Let conditions a) and b) hold. We have to construct a
permutation πj ∈ Sπ that is a Johnson permutation for any vector p ∈ T of
the job processing times.

We shall construct the set N1 and the set N2 using the sets J1, J2, J0 and
J ∗. From the definition of the sets J1 and J2, it follows that both inclusions
J1 ⊆ N1 and J2 ⊆ N2 may hold for any vector p ∈ T of the job processing
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times (see Remark 3.3). Each job from set J0 may be included either into
set N1 or into set N2 regardless of the vector p ∈ T of job processing times
(Remark 3.3). Note that, if for jobs Jk ∈ J0 and Ji∗ ∈ J ∗, inequality
pL

i∗1 < pk (inequality pL
i∗2 < pk) holds, then we shall include job Jk into set

N2 (set N1, respectively). Next, we show that, due to condition a), we can
order all the jobs from set N1 (the jobs from set N2, respectively) using
inequalities (3.2) in the same optimal way for all possible vectors p ∈ T
of the job processing times. Indeed, if inequalities pU

i1 ≤ pL
j1 (inequalities

pL
i2 ≤ pL

j2) hold, then due to condition (3.2), we can locate job Ji ∈ J1 before
job Jj ∈ J1 (job Ji ∈ J2 after job Jj ∈ J2, respectively). Job Jk ∈ J0

from set N1 (from set N2, respectively) will be located after all jobs Ji ∈ J1

(before all jobs Ji ∈ J2) in such a way that inequality pL
i1 < pk (inequality

pL
i2 < pk) will hold. It is easy to see that job Jk ∈ J0 will be ordered with

the other jobs from set N1 (from set N2, respectively) in such a way that
conditions (3.2) hold for any vector p ∈ T of the job processing times. If for
the jobs Ji and Jj from set N1 both inequalities pU

i1 ≤ pL
j1 and pU

j1 ≤ pL
i1 hold

(condition a)), then there are two possibilities to order these two jobs with
respect to inequalities (3.2). For uniqueness, we shall order these jobs with
respect to their indices, i.e., job Ji will be located before job Jj provided
that i < j. The same agreement will be used for ordering a pair of jobs
from set N2 if both inequalities pU

i2 ≤ pL
j2 and pU

j2 ≤ pL
i2 hold (condition

a)). As a result, we obtain a permutation π1 (permutation π2) of the jobs
from set N1 (from set N2), which are ordered with respect to inequalities
(3.2) for any possible vector p ∈ T of the job processing times. Thus, if
J ∗ = Ø, the permutation πj = (π1, π2) ∈ Sπ obtained by the concatenation
of permutations π1 and π2 provides a single-element J-solution Sπ(T ) = {πj}
to problem F2/pL

ij ≤ pij ≤ tUij/Cmax.

Let there exist a job Ji∗ ∈ J ∗ �= Ø. Then there exist two possible cases
(i) and (ii) depending on the realization of the processing times of job Ji∗

on machine M1 and machine M2 (see Remark 3.3).

(i) pi∗1 < pi∗2

In this case, job Ji∗ has to belong to set N1. Due to conditions (3.4) and
(3.6), in a Johnson permutation job Ji∗ has to be processed after all other
jobs from set N1. Therefore, a Johnson permutation has to be as follows:
(π1, Ji∗, π

2).

(ii) pi∗1 ≥ pi∗2

If pi∗1 > pi∗2 (if pi∗1 = pi∗2, respectively), job Ji∗ has to belong (may
belong) to set N2. Due to conditions (3.5) and (3.6), in a Johnson per-
mutation job Ji∗ has to be processed before all other jobs from set N2.
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Therefore, in case (ii), a Johnson permutation may be the same as in case
(i): πj = (π1, Ji∗, π

2).

Thus, in both cases (i) and (ii), we obtain the same Johnson permutation
πj ∈ Sπ, i.e., permutation πj satisfies condition (3.2) with i = j for any
vector p ∈ T of the job processing times. So, due to Definition 3.1, there
exists a single-element J-solution Sπ(T ) = {πj} to problem F2/pL

ij ≤ pij ≤
pU

ij/Cmax, which completes the proof of sufficiency.

Necessity. We prove necessity of conditions a) and b) by contradiction.
Assume now that there exists the singleton Sπ(T ) that is a J-solution to
problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax, but at least one condition of a) or b) does

not hold.

1. Assume that condition a) does not hold. Then the following two cases
(a–1) and (a–2) have to be investigated.

(a–1) There exist at least two jobs Ji ∈ J1 and Jj ∈ J1 with pL
i1 < pU

j1
and pL

j1 < pU
i1.

We construct two vectors p′ ∈ T with p′ = (p′1,1, p
′
1,2, . . . , p

′
n1, p

′
n2) and

p′′ ∈ T with p′′ = (p′′1,1, p
′′
1,2, . . . , p′′n1, p

′′
n2) such that for vector p′ the condition

pL
i1 = p′i1 < p′j1 = pU

j1 (3.7)

holds, and for vector p′′ the condition

pL
j1 = p′′j1 < p′′i1 = pU

i1 (3.8)

holds. The other components p′uv and p′′uv of the vectors p′ and p′′ may take
arbitrary but the same feasible values: pL

uv ≤ p′uv = p′′uv ≤ pU
uv. Due to

condition (3.2) for vector p′ of the job processing times, a Johnson permu-
tation must have the form πk = (. . . , Ji, . . . , Jj, . . .) ∈ Sπ, while for vector
p′′ of the job processing times, a Johnson permutation must have the form
πl = (. . . , Jj, . . . , Ji, . . .) ∈ Sπ. Due to the strict inequality (3.7) (strict
inequality (3.8), respectively), this order of the jobs Ji and Jj has to be
the same in all Johnson permutations constructed for vector p′ (vector p′′)
of the processing times. Due to Definition 3.1, inclusion {πk, πl} ⊆ Sπ(T )
must hold for any J-solution Sπ(T ) to problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax,

contradicting the assumption.

(a–2) The case when there exist at least two jobs Ji ∈ J2 and Jj ∈ J2

with pL
i2 < pU

j2 and pL
j2 < pU

i2 can be analyzed similarly to the above case
(a–1).

2. Assume that conditions a) hold and that condition b) does not hold.
Then there exist four possible cases as follows:
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(b–1) Let there exist at least two jobs Ji∗ ∈ J ∗ and Ji∗∗ ∈ J ∗, i.e.,
|J ∗| > 1, and for job Ji∗, inequalities pL

i∗1 < pU
i∗2 and pL

i∗2 < pU
i∗1 hold. For

job Ji∗∗, similar inequalities hold: pL
i∗∗1 < pU

i∗∗2 and pL
i∗∗2 < pU

i∗∗1.

In case (b–1), one can construct two vectors p∗ = (p∗1,1, p
∗
1,2, . . . , p

∗
n2) ∈ T

and p∗∗ = (p∗∗1,1, p∗∗1,2, . . . , p
∗∗
n2) ∈ T such that for vector p∗, conditions pL

i∗1 =
p∗i∗1 < p∗i∗2 = pU

i∗2 and pL
i∗∗2 = p∗i∗∗2 < p∗i∗∗1 = pU

i∗∗1 hold and for vector p∗∗,
conditions pL

i∗2 = p∗∗i∗2 < p∗∗i∗1 = pU
i∗1 and pL

i∗∗1 = p∗∗i∗∗1 < p∗∗i∗∗2 = pU
i∗∗2 hold. The

other components p∗uv and p∗∗uv of the vectors p∗ and p∗∗ may take arbitrary but
the same feasible values: pL

uv ≤ p∗uv = p∗∗uv ≤ pU
uv. If there exist only two such

jobs Ji∗ and Ji∗∗ (i.e., |J ∗| = 2), then for vector p∗ a Johnson permutation
is as follows: πa = (π(1), Ji∗, π

[1], π(2), Ji∗∗, π
[2]) ∈ Sπ while for vector p∗∗, a

Johnson permutation is πb = (π(1), Ji∗∗, π
[1], π(2), Ji∗, π

[2]) ∈ Sπ, where π1 =
(π(1), π[1]), π2 = (π(2), π[2]). (Hereafter, it is assumed that permutations π[1]

and π(2) may be empty.) Due to Definition 3.1, inclusion {πa, πb} ⊆ Sπ(T )
holds, contradicting the assumption |Sπ(T )| = 1.

The case |J ∗| > 2 may be analyzed similarly.

(b–2) Let J ∗ = {Ji∗} and inequality (3.4) be violated, i.e., there exists
at least one job Ji ∈ J1 such that the opposite inequality holds:

pL
i∗1 < pU

i1. (3.9)

We consider the vector p0 = (p0
1,1, p

0
1,2, . . . , p

0
n1, p0

n2) ∈ T , where p0
i1 = pU

i1,

p0
i∗1 = pL

i∗1, p0
i∗2 = pU

i∗2 and the other components p0
uv may take any feasible

values: pL
uv ≤ p0

uv ≤ pU
uv. Since for job Ji∗ inequality pL

i∗1 < pU
i∗2 holds (which

follows from the definition of set J ∗ ⊆ J), we obtain

p0
i∗1 < p0

i∗2. (3.10)

Therefore, inclusion Ji∗ ∈ N1 must hold for vector p0 ∈ T of the job process-
ing times. From (3.9), it follows

p0
i∗1 < p0

i1. (3.11)

Thus, for the vector p0 of job processing times, both jobs Ji and Ji∗ have
to belong to set N1, and for this vector, a Johnson permutation must be as
follows: πc = (π(1) \{Ji}, Ji∗, π

[1], Ji, π
2) ∈ Sπ, where π(1) \{Ji} denotes per-

mutation π(1) without job Ji. Due to the strict inequalities (3.10) and (3.11),
this order of jobs Ji∗ and Ji has to be fixed in any Johnson permutation,
which may be constructed for the vector p0 ∈ T of job processing times.
On the other hand, we consider vector p = (p1,1, p1,2, . . . , pn1, pn2) ∈ T with
the same components as vector p0 except the following three components:
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pi1 = pL
i1, pi∗1 = pU

i∗1, pi∗2 = pL
i∗2. As a result, we obtain two inclusions:

Ji ∈ N1 and Ji∗ ∈ N2. For the vector p of job processing times, a Johnson
permutation is as follows: πd = (π(1) \ {Ji}, J1, π[1], π(2), Ji∗, π

[2]) ∈ Sπ (note
that πc cannot be a Johnson permutation for this vector p). Due to Definition
3.1, any J-solution Sπ(T ) to problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax under consid-

eration must include at least two permutations, namely: {πc, πd} ⊆ Sπ(T ).
We get a contradiction to the assumption |Sπ(T )| = 1.

(b–3) The case when inequality (3.5) from condition b) is violated, i.e.,
there exists at least one job Jj ∈ J2 such that the opposite inequality pL

i∗2 <

pU
j2 holds, may be analyzed similarly to the above case (b–2).

(b–4) Let inequality (3.6) be violated, i.e., there exists at least one job
Jk ∈ J0 such that the opposite inequality holds:

max{pL
i∗1, p

L
i∗2} < pk. (3.12)

We consider the vector p++ = (p++
1,1 , p++

1,2 , . . . , p++
n1 , p++

n2 ) ∈ T , where p++
i∗1 =

pL
i∗1 and p++

i∗2 = pU
i∗2 provided that the other components p++

uv may take any
feasible values: pL

uv ≤ p++
uv ≤ pU

uv. Since for job Ji∗ inequality pL
i∗1 < pU

i∗2
holds, we obtain p++

i∗1 < p++
i∗2 . From inequality (3.12), it follows pk > p++

i∗1 .
Therefore, we obtain

min{p++
i∗1 , pk} < min{p++

i∗2 , pk}. (3.13)

Due to condition (3.2), a Johnson permutation for the vector p++ of
job processing times has to be as follows: πf = (. . . , Ji∗, . . . , Jk, . . .) ∈ Sπ.
Due to the strict inequality (3.13), this order of jobs Ji∗ and Jk has to be
fixed in any Johnson permutation, which may be constructed for the vector
p++ ∈ T of job processing times. On the other hand, we can consider vector
p

′+ = (p
′+
1,1, p

′+
1,2, . . . , p

′+
n1, p

′+
n2) ∈ T with the same components as vector p++

except the following ones: p
′+
i∗1 = pU

i∗1, p
′+
i∗2 = pL

i∗2. Similarly, we can obtain
the inequalities p

′+
i∗2 < p

′+
i∗1 and pk > p

′+
i∗2. Hence, we obtain

min{p′+
i∗1, pk} > min{p′+

i∗2, pk}. (3.14)

Due to condition (3.2), a Johnson permutation constructed for vector
p

′+ has to look as follows: πg = (. . . , Jk, . . . , Ji∗, . . .) ∈ Sπ. Due to the
strict inequality (3.14), this order of jobs Ji∗ and Jk has to be fixed in any
Johnson permutation, which may be constructed for vector p

′+ ∈ T (note
that πf cannot be a Johnson permutation for vector p

′+, while πg cannot
be a Johnson permutation for vector p++). Due to Definition 3.1, any J-
solution Sπ(T ) to problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax must include at least
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two permutations, namely: {πf , πg} ⊆ Sπ(T ). We get a contradiction to the
assumption |Sπ(T )| = 1. Thus, equality |Sπ(T )| = 1 implies conditions a)
and b), and this completes the proof.

�

Example 3.2 We consider problem F2/pL
ij ≤ pij ≤ pU

ij/Cmax with the set of
jobs J = {J1, J2, J3, J4} and the intervals of the processing times defined in
Table 3.1.

Table 3.1: Lower and upper bounds for the job processing times of Example 3.2
Ji J1 J2 J3 J4

pL
i1 1 3 3 2

pU
i1 3 4 4 2

pL
i2 3 4 1 2

pU
i2 4 5 3 2

It is easy to see that the condition of Theorem 3.1 holds, and so
there exists a single-element J-solution Sπ(T ). Indeed, permutation π2 =
(J1, J4, J2, J3) (and permutation π3 = (J1, J2, J4, J3) as well) is a Johnson
permutation for any feasible vector p ∈ T of the job processing times since
condition (3.2) holds for this permutation. Thus, we obtain two single-
element J-solutions Sπ

1 (T ) and Sπ
2 (T ) to the uncertain problem F2/pL

ij ≤
pij ≤ pU

ij/Cmax, namely: Sπ
1 (T ) = {π2} and Sπ

2 (T ) = {π3}.
Note that Example 3.1 is a deterministic counterpart of Example 3.2 as-

sociated with the vector p = (3, 4, 4, 5, 4, 3, 2, 2) of the upper bounds pU
ij, i ∈

{1, 2, 3, 4}, j ∈ {1, 2}, given in Table 3.1. As it was shown for Example 3.1,
Johnson’s algorithm generates only two permutations π1 = (J4, J1, J2, J3)
and π4 = (J1, J2, J3, J4). On the other hand, for the deterministic prob-
lem F2//Cmax associated with the vector p = (1, 3, 3, 4, 3, 1, 2, 2) of the lower
bounds pL

ij, i ∈ {1, 2, 3, 4}, j ∈ {1, 2}, given in Table 3.1, Johnson’s algorithm
generates only two permutations π2 = (J1, J4, J2, J3) and π3 = (J1, J2, J4, J3).

If one will consider only permutations from set Πa (see Remark 3.1) to be
included into a dominant set of permutations, then one has to include more
than one permutation into such a dominant set of permutations for the Ex-
ample 3.2 of the uncertain problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax. However, due

to the correct definition of the Johnson permutations (i.e., those satisfying
condition (3.2)), for constructing a singleton Sπ(T ) for Example 3.2, one
can select a permutation from the whole set Πc = {π1, π2, π3, π4} of John-
son permutations (see Remark 3.1) for a deterministic problem F2//Cmax

associated with the vector p ∈ T of job processing times.
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Next, we analyze the opposite extreme case when a J-solution to the
uncertain problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax has a maximal possible cardi-

nality: |Sπ(T )| = n!. We use the following notations: pL
max = max{pL

im :
Ji ∈ J, Mm ∈ M} and pU

min = min{pU
im : Ji ∈ J, Mm ∈ M}.

Theorem 3.2 If for problem F2/pL
ij ≤ pij ≤ pU

ij/Cmax inequality

pL
max < pU

min (3.15)

holds, then Sπ(T ) = Sπ.

Proof. Let πk = (Jk1
, Jk2

, . . . , Jkn
) be an arbitrary permutation from set

Sπ. In order to prove that this permutation has to belong to each J-solution
Sπ(T ) to the uncertain problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax, we show that it

is possible to construct a vector p′ = (p′1,1, p
′
1,2, . . . , p′n1, p

′
n2) ∈ T with the

following condition:

pL
max = p′k11 < p′k21 < . . . < p′kn1 < p′k12 = p′k22 = . . . = p′kn2 = pU

min. (3.16)

Indeed, due to the strict inequality (3.15), the length of the segment
[pL

max, p
U
min], pL

max < pU
min, is strictly positive, and moreover, the seg-

ment [pL
max, p

U
min] is equal to the intersection of 2n segments [pL

im, pU
im],

i ∈ {1, 2, . . . , n}, m ∈ {1, 2}:

[pL
max, pU

min] =

⎧⎨⎩
n⋂

i=1
[pL

i1, pU
i1]

⎫⎬⎭ ⋂ ⎧⎨⎩
n⋂

i=1
[pL

i2, pU
i2]

⎫⎬⎭ .

Since the segment [pL
max, p

U
min] of non-negative real numbers is everywhere

dense, it is possible to find 2n real numbers p′1,1, p
′
1,2, . . . , p′n1, p

′
n2 which

satisfy all inequalities (3.16). Thus, we can construct the above vector p′ ∈ T
for the fixed permutation πk ∈ Sπ. For such a vector p′ ∈ T , all the jobs
from set J have to belong to set N1 (i.e., set N2 has to be empty). It
is easy to see that within permutation πk, all n jobs are linearly ordered
with respect to inequalities (3.2). Therefore, permutation πk is an optimal
Johnson permutation for the vector p′ of job processing times. Since p′i1 �= p′j1
for each pair of jobs Ji and Jj, i �= j, permutation πk is a unique Johnson
permutation for the vector p′ ∈ T of job processing times. As a result,
permutation πk has to belong to any J-solution Sπ(T ) (see Definition 3.1).

Since permutation πk was assumed to be arbitrary in set Sπ, the last claim
remains correct for any permutation from set Sπ. Thus, all permutations
from set Sπ have to belong to a J-solution Sπ(T ) of the uncertain problem
F2/pL

ij ≤ pij ≤ pU
ij/Cmax, i.e., Sπ(T ) = Sπ.

�
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The above proof of Theorem 3.2 contains the proof of the following claim.

Corollary 3.1 If inequality (3.15) holds, then for each permutation πk ∈
Sπ, there exists a vector p ∈ T such that πk is a unique Johnson permutation
for the deterministic problem F2//Cmax associated with the vector p of job
processing times.

It is clear that testing condition a) of Theorem 3.1 takes O(n log2 n) time
and testing condition b) takes O(n) time. Thus, the conditions of Theorem
3.1 may be tested in O(n log2 n) time. The complexity of calculating the
values pL

max and pU
min defines the complexity of testing condition (3.15). Thus,

testing the condition of Theorem 3.2 and Corollary 3.1 takes O(n) time.

General Case of Problem F2/pL
ij ≤ pij ≤ pU

ij/Cmax

We show how to delete redundant permutations from set Sπ for construct-
ing a J-solution to problem F2/pL

ij ≤pij ≤pU
ij/Cmax. To this end, we shall fix

the order of jobs Jv ∈ J and Jw ∈ J in the desired J-solution if there exists at
least one Johnson permutation of the form πk = (s1, Jv, s2, Jw, s3) ∈ Sπ for
any vector p ∈ T of the job processing times. Hereafter, the subsequences
s1, s2 and/or s3 may be empty, e.g., jobs Jv and Jw may be adjacent in
the permutation: πk = (s1, Jv, Jw, s3) ∈ Sπ. Next, we prove three sufficient
conditions for fixing such an order of two jobs.

Lemma 3.1 If the following condition holds:

pU
w2 ≤ pL

w1 and pU
v1 ≤ pL

v2; (3.17)

then for each vector p ∈ T of the job processing times there exists a permuta-
tion πk = (s1, Jv, s2, Jw, s3) ∈ Sπ that is a Johnson permutation for problem
F2//Cmax with the vector p ∈ T of job processing times.

Proof. Let polytope T satisfy inequalities (3.17). We consider any fixed
vector p ∈ T of the job processing times. Let in the vector p, jobs Jw and
Jv have the processing times pw1, pw2, pv1 and pv2. From the first inequality
in (3.17), it follows that pw2 ≤ pw1 and therefore, there exists a Johnson
permutation for the vector p of processing times in which job Jw is included
into the set N2. From the second inequality in (3.17), it follows that pv1 ≤
pv2 and therefore, there exists a Johnson permutation for the vector p of
processing times in which job Jv is included into the set N1.

Let πl denote such a Johnson permutation in which inclusions Jv ∈ N1

and Jw ∈ N2 simultaneously hold. Due to Johnson’s rule, job Jv has to
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precede job Jw in permutation πl, i.e., permutation πl may be represented in
the following form π = πl = (s1, Jv, s2, Jw, s3) ∈ Sπ. For this fixed vector p of
the job processing times, permutation πl dominates any other permutation
from set Sπ with respect to the singleton {p}. To complete the proof, we
note that vector p was arbitrarily taken from set T .

�

Lemma 3.2 If the following condition holds:

pU
v1 ≤ pL

w1 and pU
v1 ≤ pL

v2, (3.18)

then for each vector p ∈ T of the job processing times, there exists a per-
mutation πk = (s1, Jv, s2, Jw, s3) ∈ Sπ that is a Johnson permutation for
problem F2//Cmax with the vector p ∈ T of job processing times.

Proof. Let polytope T satisfy inequalities (3.18). We consider any fixed
vector p ∈ T of the job processing times. Assume that in vector p ∈ T ,
job Jv and Jw have the processing times pv1, pv2, pw1 and pw2. From the
second inequality in (3.18), it follows that pv1 ≤ pv2. Therefore, there exists
a Johnson permutation πr for the vector p of processing times in which job
Jv is included into the set N1. In permutation πr, job Jw may be either in
the set N1 or in the set N2. Next, we consider both cases.

Case 1. Let job Jw belong to set N1 in the Johnson permutation πr.
Then from the first inequality in (3.18), it follows that pv1 ≤ pU

v1 ≤
pL

w1 ≤ pw1. Since pv1 ≤ pw1 for jobs Jv and Jw in the set N1, job Jv has to
precede job Jw in the Johnson permutation πr, i.e., permutation πr may be
represented in the form πr = (s1, Jv, s2, Jw, s3) ∈ Sπ. For this fixed vector
p of the processing times, permutation πr dominates any other permutation
from set Sπ with respect to the singleton {p}.

Case 2. Let job Jv belong to set N2 in the Johnson permutation πr.
By an argument similar to the proof of Lemma 3.1, we can show that

job Jw precedes job Jv in the Johnson permutation πr, and so permutation
πr dominates any permutation from Sπ. We conclude that for each vector
p ∈ T of the processing times, in both cases there exists a permutation
πr = π = (s1, Jv, s2, Jw, s3) ∈ Sπ which dominates each permutation from
set Sπ.

�

Lemma 3.3 If the following condition holds:

pU
w2 ≤ pL

w1 and pU
w2 ≤ pL

v2. (3.19)
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then for each vector p ∈ T of the job processing times, there exists a per-
mutation πk = (s1, Jv, s2, Jw, s3) ∈ Sπ that is a Johnson permutation for
problem F2//Cmax with the vector p ∈ T of job processing times.

Proof. It is easy to see that inequalities (3.19) in Lemma 3.3 coincide with
inequalities (3.18) in Lemma 3.2 when interchanging job Jv and job Jw.
Thus, the proof of Lemma 3.3 is analogous to the proof of Lemma 3.2.

�

Note that, if condition (3.17) holds, then job Jv belongs to set N1 and
job Jw belongs to the corresponding set N2 for all possible realizations of
the processing times. If condition (3.18) holds, then job Jv belongs to set
N1 for all possible realizations of the processing times, while job Jw may be
either in set N1 or in set N2 for different realizations of the job processing
times. If condition (3.19) holds, then job Jw belongs to set N2 for all possible
realizations of the processing times, while job Jv may be either in set N1 or
in set N2 for different realizations of the job processing times.

Next, we prove that, if at least one of the conditions (3.17)–(3.19) holds,
then there exists a J-solution Sπ(T ) to problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax

with the fixed order Jv → Jw, i.e., job Jv ∈ J has to be located before job
Jw ∈ J in any permutation πi ∈ Sπ(T ). We shall also prove that, if both
conditions (3.18) and (3.19) do not hold, then there is no J-solution Sπ(T )
with the fixed order Jv → Jw in all permutations πi ∈ Sπ(T ). If in addition,
no analogous condition holds for the opposite order Jw → Jv, then at least
one permutation with job Jv located before job Jw and that with job Jw

located before job Jv must be included in any J-solution Sπ(T ) to problem
F2/pL

ij ≤ pij ≤ pU
ij/Cmax. Summarizing, we prove the following claim.

Theorem 3.3 There exists a J-solution Sπ(T ) to problem F2/pL
ij ≤ pij ≤

pU
ij/Cmax with the fixed order Jv → Jw of jobs Jv ∈ J and Jw ∈ J if and only

if at least one of the conditions (3.18) or (3.19) holds.

Proof. Sufficiency. From Lemmas 3.2 and 3.3, it follows that, if at least
one of the conditions (3.18) or (3.19) holds, then for each vector p ∈ T

of the job processing times, there exists a Johnson permutation πi ∈ Sπ

with the same order Jv → Jw of jobs Jv and Jw. Let S ′ denote the subset
of all such permutations of set Sπ: S ′ ⊆ Sπ . After deleting from set S ′

all the redundant permutations (see Definition 3.1), we obtain a minimal
dominant set of permutations (i.e., a J-solution Sπ(T ) ⊆ S ′) with the fixed
order Jv → Jw to the uncertain problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax.
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Necessity. Let there exist a J-solution Sπ(T ) with the fixed order Jv → Jw

to the uncertain problem F2/pL
ij ≤ pij ≤ pU

ij/Cmax.

Due to Definition 3.1, for the deterministic problem F2//Cmax associated
with any vector p ∈ T of the job processing times, there exists a Johnson
permutation of the form πi = (s1, Jv, s2, Jw, s3) ∈ Sπ (recall that a subse-
quence sj, j ∈ {1, 2, 3}, may be empty). Due to the definition of a Johnson
permutation, condition (3.2) must hold with ik = v and im = w:

min{pv1, pw2} ≤ min{pw1, pv2}. (3.20)

Since inequality (3.20) must hold for any vector p ∈ T , we conclude that
the following inequality holds:

min{pU
v1, p

U
w2} ≤ min{pL

w1, p
L
v2}. (3.21)

Next, we show that inequality (3.21) implies at least one condition (3.18)
or (3.19). To this end, four cases (i) − (iv) have to be analyzed.

(i) pU
v1 ≤ pU

w2, pL
w1 ≤ pL

v2.

In case (i), inequality (3.21) implies pU
v1 = min{pU

v1, p
U
w2} ≤

min{pL
w1, p

L
v2} = pL

w1. Thus, pU
v1 ≤ pL

w1 ≤ pL
v2. We obtain condition (3.18).

(ii) pU
v1 ≤ pU

w2, pL
w1 > pL

v2.

In case (ii), inequality (3.21) implies pU
v1 = min{pU

v1, p
U
w2} ≤

min{pL
w1, p

L
v2} = pL

v2. Thus, pU
v1 ≤ pL

v2 < pL
w1. We obtain condition (3.18).

(iii) pU
v1 > pU

w2, pL
w1 ≤ pL

v2.

In case (iii), inequality (3.21) implies pU
w2 = min{pU

v1, p
U
w2} ≤

min{pL
w1, p

L
v2} = pL

w1. Thus, pU
w2 ≤ pL

w1 ≤ pL
v2. We obtain condition (3.19).

(iv) pU
v1 > pU

w2, pL
w1 > pL

v2.

In case (iv), inequality (3.21) implies pU
w21 = min{pU

v1, p
U
w2} ≤

min{pL
w1, p

L
v2} = pL

v2. Thus, pU
w2 ≤ pL

v2 < pL
w1. We obtain condition (3.19).

Theorem 3.3 has been proven.

�

Arguing similarly as the above sufficiency proof, one can show that
condition (3.17) is sufficient for the existence of a J-solution Sπ(T ) with
the fixed order Jv → Jw of jobs Jv and Jw to the uncertain problem
F2/pL

ij ≤ pij ≤ pU
ij/Cmax.

Note also that condition (3.17) implies at least one condition (3.18) or
(3.19) (while the opposite claim is not true). Indeed, if condition (3.17)
holds, then there may exist one of only three possibilities:

• condition (3.18) holds and condition (3.19) does not hold;
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• condition (3.19) holds and condition (3.18) does not hold;

• both conditions (3.18) and (3.19) hold.

Let J×J denote the Cartesian product of set J . Due to Theorem 3.3, via
testing inequalities (3.18) and (3.19) for each pair of jobs Jv ∈ J and Jw ∈ J ,
one can construct a binary relation A� ⊆ J × J over the set J as follows:
inclusion (Jv, Jw) ∈ A� holds if and only if there exists a J-solution Sπ(T )
to the uncertain problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax such that job Jv ∈ J is

located before job Jw ∈ J , v �= w, in all permutations πk ∈ Sπ(T ). The
binary relation A� defines a digraph (J,A�) with the vertex set J and the
arc set A�. Relation (Jv, Jw) ∈ A� will be also represented as Jv � Jw.
Obviously, it takes O(n2) time to construct the digraph (J,A�).

Let us consider the case when J0 = Ø, i.e., J = J ∗ ∪ J1 ∪ J2. For a
pair of jobs Jv ∈ J1 and Jw ∈ J1, it may happen that there exist both a
J-solution Sπ(T ) ⊂ Sπ with job Jv located before job Jw in all permutations
πk ∈ Sπ(T ) and a J-solution Sπ

∗ (T ) ⊂ Sπ with job Jw located before job Jv in
all permutations πl ∈ Sπ

∗ (T ). In such a case, we can define a binary relation
A≺ ⊂ A� ⊆ J × J using the following agreements: if Jv � Jw and Jw �� Jv,
then Jv ≺ Jw; if Jv � Jw and Jw � Jv with v < w, then Jv ≺ Jw and
Jw �≺ Jv. Since set J0 is empty, we obtain an antireflective, antisymmetric,
and transitive binary relation A≺, i.e., a strict order. A strict order A≺
defines a digraph (J,A≺) with the arc set A≺. Digraph (J,A≺) has neither
a circuit nor a loop. Using Theorem 3.3, one can represent the J-solution
Sπ(T ) in a more condense form via constructing a reduction digraph of the
strict order relation A≺. Let (J,A∗

≺) denote the digraph with the vertex set
J and the arc set A∗

≺ ⊆ A≺, where the arc (Ji, Jw) belongs to set A∗
≺ if and

only if relation Ji ≺ Jw holds for jobs Ji ∈ J and Jw ∈ J , and there is no job
Jj ∈ J such that both relations Ji ≺ Jj and Jj ≺ Jw hold. Digraph (J,A∗

≺)
has neither a transitive arc nor a circuit nor a loop.

Next, we consider the case when J0 �= ∅. In this general case, the binary
relation A� defined over set J is a pseudo-order relation since the binary
relation A� definitely possesses only the transitivity property. The digraph
(J ,A�) defined by the binary relation A� may contain circuits and loops.
However, a loop in the digraph (J ,A�) has no sense while defining a J-
solution Sπ(T ) to the uncertain problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax.

Theorem 3.4 A) If Jk ∈ J0, Ji ∈ J1, and

pL
i1 < pk, (3.22)

then Ji � Jk and Jk �� Ji.
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B) If Jk ∈ J0, Ji ∈ J2, and

pL
i2 < pk, (3.23)

then Jk � Ji and Ji �� Jk.

C) If Jk ∈ J0, Ji ∈ J ∗, inequality (3.22) holds, and inequality (3.23) does
not hold, then Jk � Ji and Ji �� Jk.

D) If Jk ∈ J0, Ji ∈ J∗, inequality (3.23) holds, and inequality (3.22) does
not hold, then Jk � Ji and Ji �� Jk.

Proof. Part A). Let Jk ∈ J0, Ji ∈ J1, and inequality (3.22) hold.

Inclusion Jk ∈ J0 implies pU
k2 ≤ pL

k1. Inclusion Ji ∈ J1 implies pU
i1 ≤ pL

i2.

Thus, condition (3.17) holds with w = k and v = i. Therefore, there exists
a J-solution Sπ(T ) to the uncertain problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax with

the fixed order Ji → Jk of jobs Ji and Jk, i.e., Ji � Jk.

We prove Jk �� Ji by contradiction. Let the opposite Jk � Ji hold,
i.e., assume that there exists a J-solution Sπ

∗ (T ) to the uncertain problem
F2/pL

ij ≤ pij ≤ pU
ij/Cmax with the fixed order Jk → Ji. We consider vector

p′ ∈ T with p′i1 = pL
i1 and p′i2 = pU

i2. The other components p′jm, j �= i, of
vector p′ may take any possible values: pL

jm ≤ p′jm ≤ pU
jm, Mm ∈ M . Recall

that inclusion Jk ∈ J0 implies p′k1 = p′k2 = pk. For vector p′ ∈ T , we obtain

min{p′i1, p′k2} = min{pL
i1, pk} = pL

i1 < min{pk, p
U
i2} = min{p′k1, p

′
i2}. (3.24)

The second equality in (3.24) follows from (3.22). The inequality in (3.24)
follows from (3.22) and inclusion Ji ∈ J1. Thus, we obtain inequality
min{p′i1, p′k2} < min{p′k1, p

′
i2} which may be interpreted as a strong inequality

from (3.2). Due to condition (3.2), in all Johnson permutations constructed
for vector p′ ∈ T of the job processing times, the order of jobs Jk and Ji

has to be as follows: Ji → Jk. Therefore, any J-solution to the uncertain
problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax has to include at least one permutation

πs ∈ Sπ such that job Ji is located before job Jk in permutation πs. This
contradicts to the above assumption that a J-solution Sπ

∗ (T ) with the fixed
order Jk → Ji exists. Thus, Jk �� Ji.

Part B) may be proven similarly as part A).

Part C). Let Jk ∈ J0, Ji ∈ J ∗, inequality (3.22) holds, and inequality
(3.23) does not hold.

Inclusion Jk ∈ J0 implies pU
k2 ≤ pL

k1. Since inequality (3.23) does not
hold, we obtain pL

i2 ≥ pk = pU
k2. Thus, condition (3.19) holds with w = k

and v = i. Due to Theorem 3.3, there exists a J-solution Sπ(T ) to the
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uncertain problem F2/pL
ij ≤ pij ≤ pU

ij/Cmax with the fixed order Ji → Jk of
jobs Ji and Jk, i.e., Ji � Jk.

We prove Jk �� Ji by contradiction. Let the opposite Jk � Ji hold,
i.e., assume that there exists a J-solution Sπ

0 (T ) to the uncertain problem
F2/pL

ij ≤ pij ≤ pU
ij/Cmax with the fixed order Jk → Ji of jobs Ji and Jk. We

consider the same vector p′ ∈ T defined in the above proof of part A). For
vector p′ ∈ T , we can again obtain (3.24), but in this case the inequality in
(3.24) follows from (3.22) and inclusion Ji ∈ J ∗. Arguing in just the same
way as in the proof of part A), we obtain a contradiction to the assumption
that a J-solution Sπ

0 (T ) with the fixed order Jk → Ji exists. Thus, Jk �� Ji.

For the proof of part D), we can argue similarly as the previous part C)
provided that condition (3.19) is replaced by (3.18). This completes the
proof of Theorem 3.4.

�

If inequality pk > max{pL
i1, pL

i2} holds (i.e., both inequalities (3.22) and
(3.23) hold), then similar to case (b–4) of the necessity proof of Theorem
3.1, one can prove that the order of these two jobs cannot be fixed in any
J-solution Sπ(T ) to the uncertain problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax, i.e.,

both relations Ji �� Jk and Jk �� Ji hold.

Theorem 3.5 If Jk ∈ J0, Ji ∈ J1 (Ji ∈ J2), and pL
i1 ≥ pk (pL

i2 ≥ pk,
respectively), then both relations Ji � Jk and Jk � Ji hold.

Proof. Let Jk ∈ J0, Ji ∈ J1, pL
i1 ≥ pk. Then inclusion Jk ∈ J0 implies

pU
k1 = pk = pL

k2. Inclusion Jk ∈ J0 and inequality pL
i1 ≥ pk imply pU

k1 = pk ≤
pL

i1. Thus, condition (3.18) holds with v = i and w = k. Due to Theorem
3.1, relation Ji � Jk must hold. On the other hand, inclusion Ji ∈ J1 implies
pU

i1 ≤ pL
i2. Inclusion Jk ∈ J0 implies pU

k2 = pk = pL
k1. Therefore, condition

(3.17) holds with v = k and w = i. Thus, relation Jk � Ji must hold.

The case when Jk ∈ J0, Ji ∈ J2, and pL
i2 ≥ pk, may be analyzed similarly

provided that condition (3.19) is used instead of condition (3.18).

�

Using Theorems 3.3, 3.4, and 3.5 for the case J0 �= Ø, we can construct
the digraph (J,A�) which may contain circuits. If the conditions of Theorem
3.5 do not hold for any job Ji ∈ J1 (Ji ∈ J2), then we can construct a
digraph (J,A≺) without circuits. The former digraph uniquely defines a
J-solution Sπ(T ) to the uncertain problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax. If

there exists a job Ji ∈ J1 (Ji ∈ J2) such that inequality pL
i1 ≥ pk (inequality
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pL
i2 ≥ pk) holds, then we can construct a family of J-solutions to the problem
F2/pL

ij ≤ pij ≤ pU
ij/Cmax via fixing different positions for job Jk ∈ J0 in the

permutations from a J-solution. Such a family of J-solutions may be used
by a decision-maker for selecting the best permutation to be realized using
additional information obtained after processing some jobs from set J .

It should be noted that, since the cardinality of a J-solution Sπ(T ) may
vary for different uncertain problems F2/pL

ij ≤ pij ≤ pU
ij/Cmax in the range

[1, n!], there is no polynomial algorithm for a direct enumeration of all per-
mutations of set Sπ(T ). However, due to Theorems 3.3, 3.4, and 3.5, one can
construct the digraph (J,A�) or the digraph (J,A≺) in O(n2) time. Digraph
(J,A≺) (digraph (J,A�)) defines a set Sπ(T ) (a family of sets {Sπ

j (T )}) and
may be considered as a condense form of a J-solution (family of J-solutions)
to the uncertain problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax. Of course, the more job

pairs are involved in the binary relation A�, the more redundant permuta-
tions will be deleted from set Sπ while constructing a J-solution Sπ(T ) ⊆ Sπ

to the uncertain problem F2/pL
ij ≤ pij ≤ pU

ij/Cmax.

Computational Results and Resume

It is clear that it is necessary to choose one schedule for a practical re-
alization of the process defined in problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax. That

is why, if no additional information is available to a decision-maker (and if
the set of feasible schedules is restricted by Johnson ones), only the condi-
tion of Theorem 3.1 allows one to obtain (without failure) a single dominant
permutation before the realization of the process (in an off-line fashion).
Such a dominant permutation (if any) is the best one for any possible re-
alization of the job processing times. Next, we answer experimentally the
question of how many randomly generated instances of the uncertain prob-
lem F2/pL

ij ≤ pij ≤ pU
ij/Cmax may be solved exactly due to Theorem 3.1 (in

spite of the uncertainty of the job processing times).

The algorithm was coded in MATLAB and an AMD 3000 MHz pro-
cessor was used for making our experiments. Table 3.2 presents the per-
centage of instances solved exactly due to Theorem 3.1 with small inter-
vals of possible processing times. The lower bound for the job processing
time was randomly generated from a uniform distribution of integers over
the closed interval [1, 1000], and an upper bound was calculated as follows:
pU

ij = pL
ij + L, where L ∈ {1, 2, . . . , 10}. For each combination of L and

n ∈ {5, 10, . . . , 70, 80, 90, 100}, a series of 1000 instances was randomly gen-
erated and tested. The CPU time for testing conditions a) and b) of Theorem
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3.1 was less than 4 s for each series. Table 3.3 presents the percentage of
instances solved exactly due to Theorem 3.1, where the upper bound for the
job processing time was calculated as follows: pU

ij = pL
ij · (1 + l%/100%). As

it follows from Tables 3.2 and 3.3, Theorem 3.1 is practically useful if the
level of uncertainty is low and the number of jobs is small. In particular, our
experiments found no instance satisfying conditions a) and b), if L ·n > 300
or l · n > 200.

Table 3.2: Percentage of instances with pU
ij = pL

ij + L solved due to Theorem 3.1

Number of jobs

L 5 10 15 20 25 30 35 40 45 50 55 60 65 70 80 90 100

1 99.2 95.2 91.2 86.1 79.2 72.8 63.9 58.1 49.2 41.9 34.2 29.5 24 17.5 10.1 6.5 3.5

2 97.2 89.8 77.6 63.5 51 39.6 28.2 16.4 13.3 7.8 3.3 2.9 0.9 0.4 0.1 0 0.1

3 95 80.9 66.4 47.6 32.8 20.6 9.4 6.2 3.2 1.6 0.5 0.1 0 0 0 0 0

4 91.8 78.6 56 39.2 20.3 10.7 4.5 2.1 0.6 0.2 0 0 0 0 0 0 0

5 91 69.4 44.9 28.9 14.6 6 2 0.4 0.2 0 0 0 0 0 0 0 0

6 89.1 65 42.2 22.1 8.2 2.7 0.4 0.4 0.1 0.1 0 0 0 0 0 0 0

7 87.6 61 33.7 13.4 4.6 1.2 0.4 0.1 0 0 0 0 0 0 0 0 0

8 86.8 54.2 27.3 12.7 3.2 0.9 0.2 0 0 0 0 0 0 0 0 0 0

9 86.9 48.3 24.7 7.2 1.9 0.2 0. 0 0 0 0 0 0 0 0 0 0

10 84.8 50.3 19 5.5 2 0.5 0.1 0 0 0 0 0 0 0 0 0 0

If conditions a) and b) do not hold, it is useful to construct the digraph
(J,A�) due to Theorems 3.3, 3.4, and 3.5. Digraph (J,A�) may be used for
constructing a solution to the uncertain problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax.

The above results for solving the uncertain problem F2/pL
ij ≤ pij ≤

pU
ij/Cmax aim to complement general methods dealing with uncertain schedul-

ing environments, e.g., a stochastic method [269], a fuzzy method [299], and
a robust method [189]. The former method is practically useful when the
scheduler has enough prior information to characterize the probability dis-
tributions of the random processing times and there is a large number of
realizations of similar processes. The latter method allows one to determine
the schedule with the best worst-case performance compared to the corre-
sponding optimal schedule over all potential realizations of the job processing
times. In this section, we focus on constructing a minimal set of schedules
that dominates all the others. Due to the obtained results, it is sometimes
possible to find an optimal schedule in spite of uncertain numerical data. In
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Table 3.3: Percentage of instances with pU
ij =pL

ij·(1+ l%/100%) solved due to Theorem 3.1

Number of jobs

l% 5 10 15 20 25 30 35 40 45 50 55 60 65 70 80 90 100

1 94.5 85.1 70 53.5 36.9 24.9 14.7 8.2 4.8 1.9 1.3 0.6 0.3 0 0 0 0

2 91.2 69.3 45.6 24.2 11.8 4.2 1.1 0.6 0.1 0 0 0 0 0 0 0 0

3 87.7 58.4 28.3 10.3 3.8 1.3 0.2 0 0 0 0 0 0 0 0 0 0

4 82.4 47.4 18.8 5.5 0.8 0.1 0 0 0 0 0 0 0 0 0 0 0

5 75.5 37.4 11.3 2.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0

6 72.5 32.4 7.8 1.7 0 0 0 0 0 0 0 0 0 0 0 0 0

7 66.9 25 5.4 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0

8 65.8 19.9 2.1 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0

9 63.4 18 2.4 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0

10 59.2 14.4 2 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0

particular, if the condition of Theorem 3.1 holds, then the scheduler can use
the dominant schedule πi, {πi} = Sπ(T ), which is necessarily optimal for
any possible realization of the job processing times. If there is no possibility
to construct a singleton {πi} = Sπ(T ), we propose to construct a J-solution
Sπ(T ), |Sπ(T )| > 1, to the uncertain problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax and

use it as a more general schedule form. In particular, using a J-solution,
one can look for a robust schedule and reduce time-consuming computations
[187] via treating a minimal set Sπ(T ) of dominant permutations instead
of the whole set Sπ of job permutations. Of course, this reduction of the
computations may be essential only if the cardinality of set Sπ(T ) is sig-
nificantly less than |Sπ| = n!. We suggest that efforts to quantify these
thresholds via a computer simulation is a useful direction for future work.
To this end, it is essential to conduct well-designed computational experi-
ments and analyze their results in an appropriate manner. Such a method is
consistent with the hierarchical approach to scheduling and control adopted
by many researches over the last several decades and corresponds to in-
dustrial practices [24]. In the static phase, when the level of uncertainty
of the input data is high, the scheduler finds a J-solution Sπ(T ) to the
uncertain problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax. In order to find an optimal

schedule, the subset of schedules from a J-solution to the uncertain sub-
problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax obtained after each decision being made

in the dynamic phase has to remain a J-solution for the remaining subset of
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jobs. For future work, it is also useful to develop further the background for
selecting the job to be processed next if there are no sufficient conditions for
an optimal job ordering. For such a decision-making process different meth-
ods have been developed. The aim of future research may be to find other
sufficient conditions for the existence of a single dominant permutation πi.
To this end, one can relax the above agreement for the desired permutation
πi to be a Johnson one. Instead of condition (3.2) for the optimality of
permutation πi ∈ Sπ, one can consider more general conditions proven in
[48, 232, 244, 246]. A larger subset of optimal permutations may provide
more choices to the decision-maker to find an optimal schedule. The condi-
tions proven in this section may be tested in polynomial time. However, for
most generalizations of the two-machine flow shop problem, the existence
of polynomial algorithms is unlikely (e.g., if the deterministic counterpart
is NP-hard). So, for future more general and thus more practical investiga-
tions, it will be reasonable to look for methods of a branch-and-bound type,
and it will also be useful to consider heuristic solutions instead of optimal
ones.

3.2. Schedule Execution for a Flow Shop

This section addresses the issue of how to execute best a schedule in a
two-phase scheduling decision framework by considering an uncertain two-
machine flow shop problem. There are considered two phases in the schedul-
ing process: the off-line phase (the schedule planning phase) and the on-line
phase (the schedule execution phase). The information about the lower and
upper bound for each uncertain processing time is available at the beginning
of the off-line phase while the local information on the realization (the actual
value) of each uncertain processing time is available once the corresponding
operation is completed. In the off-line phase, the scheduler prepares a min-
imal set of dominant schedules, which is derived based on a set of sufficient
conditions for schedule domination that we developed in Section 3.1 and in
this section. This set of dominant schedules enables the scheduler to make
quickly an on-line scheduling decision whenever additional local information
on the realization of an uncertain processing time is available. Our approach
enables the scheduler to execute a schedule best and may end up with exe-
cuting the schedule optimally in many instances according to our extensive
computational experiments which are based on randomly generated data up
to 1000 jobs. The algorithm for testing the set of sufficient conditions of
schedule domination is not only theoretically appealing (i.e., polynomial in
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the number of jobs) but also empirically fast as our extensive computational
experiments indicate.

We shall use the partition J = J0 ∪ J1 ∪ J2 ∪ J ∗ given in Section 3.1
on page 184. First, we consider the case of J0 �= ∅. The jobs Jk of set J0

play a specific role in constructing a J-solution to problem F2/pL
ij ≤ pij ≤

pU
ij/Cmax. If Ji � Jk and Jk � Ji, then there exist J-solutions Sπ

l (T ) and
Sπ

j (T ) such that for each permutation of set Sπ
l (T ), job Jk precedes Ji while

for each permutation of set Sπ
j (T ), job Jk precedes Ji. Consequently, we can

construct a family of J-solutions {Sπ
j (T )} = {Sπ

1 (T ), Sπ
2 (T ), . . . , Sπ

l (T )} to
problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax via fixing job Jk ∈ J0 at the candidate

positions. Instead of using a single solution Sπ(T ) as in the case of J0 =
∅, using a family of solutions {Sπ

j (T )} in the case of J0 �= ∅ offers more
flexibility in the on-line scheduling phase.

Remark 3.4 Let Ji � Jk, Jk �� Ji, Jk � Jw, and Jw �� Jk. In what follows,
we shall consider only a family of solutions {Sπ

j (T )} in which for each set
Sπ

j (T ) of the family {Sπ
j (T )}, each job Jk ∈ J0 is located at some position

between job Ji ∈ J1 ∪ J ∗ and job Jw ∈ J2 ∪ J ∗ for all permutations of set
Sπ

j (T ).

We shall consider only the family of solutions {Sπ
j (T )} defined in Remark

3.4 since we shall take advantage of the local information to schedule the
conflicting jobs that compete for the same machine at the same time. Based
on Remark 3.4, for each job Jk of the set J0 �= ∅, we can define the candidate
area of job Jk for the J-solutions of the family {Sπ

j (T )} as follows. If Jk ∈ J0,
then there exist jobs Ju and Jv such that the following equalities hold:

pL
u1 = max{pL

i1 : pL
i1 < pk, Ji ∈ J1 ∪ J ∗}, (3.25)

pL
v2 = max{pL

i2 : pL
i2 < pk, Ji ∈ J2 ∪ J ∗}. (3.26)

If job Ju is located at the r-th position and job Jv at the q-th position in
a permutation πj ∈ Sπ

j (T ) (r < q − 1), then job Jk may be located at
any position between the r-th and the q-th position. The set of positions
r +1, r +2, . . . , q−1 between job Ju and Jv will be called the candidate area
of job Jk. There are q − r + 1 positions in the candidate area of job Jk. It
is clear that the following claim is correct.

Theorem 3.6 Let Jk ∈ J0, Jl ∈ J0, and inequality pk ≤ pl hold. Then
the candidate area of job Jk in the family of solutions {Sπ

j (T )} to problem
F2/pL

ij ≤ pij ≤ pU
ij/Cmax contains the candidate area of job Jl.
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If J0 �= ∅, then by using Theorem 3.3, one can construct a family of
J-solutions {Sπ

j (T )} to problem F2/pL
ij ≤ pij ≤ pU

ij/Cmax (instead of a single
J-solution). It is interesting to note that each job Jk of set J0 can serve
as a buffer to absorb the uncertainties in the processing time of a job on a
machine. To illustrate this idea, we consider Example 3.3.

Example 3.3 We demonstrate how to execute best a schedule and possibly
construct an actually optimal schedule for the uncertain problem F2/pL

ij ≤
pij ≤ pU

ij/Cmax with the intervals of the job processing times given in Table
3.4. We mean an actually optimal schedule in the sense that even though the
processing times are a priori uncertain, the scheduler ends up with executing
an optimal schedule as the scheduler has already known the realized values
of all uncertain processing times beforehand.

Table 3.4: Intervals of the job processing times for Example 3.3
i 1 2 3 4 5 6 7 8 9 10 11

pL
i1 1 1 2 3 3 3 5 5 5 5 4

pU
i1 1 1 2 3 4 5 5 11 7 8 4

pL
i2 1 2 3 3 5 5 6 10 6 7 3

pU
i2 1 3 3 3 8 8 6 11 7 9 3

There are two phases in the scheduling process: the off-line phase (the
schedule planning phase) and the on-line phase (the schedule execution
phase). The information about the lower and upper bounds for each uncer-
tain processing time is available at the beginning of the off-line phase while
the local information on the realization (the actual value) of each uncertain
processing time is available once the corresponding operation is completed.
In the off-line phase, a family of solutions {Sπ

j (T )} is constructed first, which
is useful in aiding the scheduler to execute best a schedule during the on-line
phase. The subsets of set J in the partition J = J0∪J1∪J2∪J ∗ are as fol-
lows: J0 = {J1, J4}, J ∗ = {J8, J9, J10}, J1 = {J2, J3, J5, J6, J7}, J2 = {J11}.
Using Theorem 3.3, we obtain a partial strict order A≺ over the set J \ J0:

(J2 ≺ J3 ≺ {J5, J6} ≺ J7 ≺ {J8, J9, J10} ≺ J11). (3.27)

The partial sequence of (3.27) means that neither the order of jobs J5 and
J6 is fixable nor the order of jobs J8, J9 and J10 is fixable for any J-solution
Sπ

i (T ) of the family {Sπ
j (T )}. We now demonstrate how to execute best a

schedule and possibly find an optimal schedule from set Sπ
i (T ) of the family

{Sπ
j (T )}. Since the order of some jobs in set Sπ

i (T ) is not fixable, there does
not exist a dominant permutation that remains optimal for all feasible real-
izations of the job processing times. It is interesting that the scheduler may
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possibly find an actually optimal schedule by making a real-time scheduling
decision at each decision-making time-point ti of the completion time of job
Ji on machine M1 as soon as the exact processing times are available for
those operations completed before or at time-point ti > t0 = 0.

At time-point t0 = 0, either job J1 or job J2 may be started on machine M1

in an optimal way due to the above family of solutions {Sπ
j (T )}. (As it will

be clear later, it is better to process job J2 ∈ J1 first.) Figure 3.1 illustrates
the part of the scheduling process, where the candidate set {J1, J2} of jobs
for processing next is indicated at the top.

Hereafter, let c1(i) and c2(i) denote the completion time of job Ji ∈ J
by machine M1 and by machine M2, respectively. We shall consider the
decision-making time-point ti = c1(i) at which job Ji is completed on ma-
chine M1 and the scheduler has to decide which job will be processed next
on machine M1. In particular, at time-point t2 = c1(2) = 1, machine M1

completes the processing of job J2 and machine M2 will start to process this
job. Now, the scheduler has to select a job from set {J1, J3} being processed
next on machine M1. (Again, it will be clear later that it is better to select
job J3 ∈ J1 as the next job.) At time-point t2 = 1, machine M1 starts to
process job J3 for p3,1 = 2 time units.

At time-point t3 = c1(3) = 3, machine M1 completes the processing of job
J3 and the candidate set for processing next on machine M1 is {J1, J4, J5, J6}.
At this time-point t3 = 3, machine M2 still is processing job J2. The relations
pU

5,1 = 4 > pL
3,2 = 3 and pU

6,1 = 5 > pL
3,2 = 3 hold for jobs J5 and J6,

and the selection of job J5 or job J6 for being processed next may cause an
idle time on machine M2. In such a case, the scheduler can select job J1

from set {J1, J4, J5, J6} for being processed immediately after job J2. Such a
selection of job J1 ∈ J0 will allow the scheduler to delay the decision-making
of sequencing jobs J5 and J6 until the time-point t1 = 3 + 1 = 4 and thus to
collect more realized values of the uncertain job processing times.

Let the realization (actual value) p∗2,2 of the processing time p2,2 of job
J2 turn out to be equal to 3 = p∗2,2. (Hereafter, we use the notation p∗ij for
the actual job processing time pij.) Then, at time-point t1 = c1(1) = 4,
machine M2 finishes the processing of job J2, and 4 time units are needed to
complete the processing of both jobs J3 and J1 on machine M2 (3 time units
for processing job J3 and 1 time unit for processing job J1). The following
inequalities hold: pU

5,1 = 4 ≤ 4, pU
6,1 = 5 > 4. For job J5, the relation

pU
5,1 + pU

6,1 = 4 + 5 ≤ pL
5,2 + 4 = 5 + 4 holds. Therefore, jobs J5 and J6

can be optimally processed with job J5 preceding J6 (since such an order
causes no idle time on machine M2). Then, machine M1 will process job J7
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immediately after job J6 (since job J4 ∈ J0 can be used as a buffer to absorb
the uncertainties in the processing times later when necessary).

At time-point t6 = c1(6) = 13, when machine M1 completes the processing
of job J6, the scheduler already knows all job processing times completing
before and at time-point t6 = 13. Let the realized values be as follows:
p∗5,1 = 4, p∗6,1 = 5, p∗5,2 = 5.

At time-point t7 = c1(7) = 18, the scheduler has the choice for the next
job to be processed on machine M1 among the jobs J4, J8, J9 and J10. At
time-point t7, machine M2 already processed job J6 for 5 time units, and the
scheduler has no sufficient information to optimally select a job from the set
{J8, J9, J10} for processing next due to the fact that relations pU

8,1 = 11 >

pL
7,2 = 6, pU

9,1 = 7 > pL
7,2 = 6, pU

10,1 = 8 > pL
7,2 = 6 hold (i.e., any such

selection may cause an idle time on machine M2). Now it is time for the
scheduler to select job J4 ∈ J0 for being processed immediately after job J7

on machine M1. The role of job J4 ∈ J0 seems like a buffer to absorb the
uncertainties of some uncertain job processing times.

At time-point t4 = c1(4) = 18 + 3 = 21, the scheduler has the choice
for processing the next job among the jobs J8, J9 and J10. Assuming that
p∗6,2 = 8, we know that J6 is still under processing at time-point t7 and is
finished just at time-point t4 on machine M2. Hence, we obtain equalities
p∗4,2 + p∗7,2 = 3 + 6 = 9 and therefore, inequalities pU

8,1 = 11 > 9, pU
9,1 =

7 < 9, pU
10,1 = 8 < 9 hold. In the case when the scheduler selects job

J8 to be processed next, there will be an idle time on machine M2. Thus,
the scheduler can select a job from set {J9, J10} to be processed next. Let us
check the following relation for the order of the three jobs (Ji, Ji+1, Ji+2):

pU
i1 + pU

i+1,1 + pU
i+2,1 ≤ 8 + pL

i2 + pL
i+1,2. (3.28)

The results of checking the four orders {(J9, J8, J10), (J9, J10, J8), (J10, J8, J9),
(J10, J9, J8)} are as follows:

pU
9,1 + pU

8,1 + pU
10,1 = 11 + 7 + 8 = 26 > 9 + pL

9,2 + pL
8,2 = 9 + 6 + 10 = 25,

pU
9,1 + pU

10,1 + pU
8,1 = 11 + 7 + 8 = 26 > 9 + pL

9,2 + pL
10,2 = 9 + 6 + 7 = 22,

pU
10,1 + pU

8,1 + pU
9,1 = 11 + 7 + 8 = 26 = 9 + pL

10,2 + pL
8,2 = 9 + 7 + 10 = 26,

pU
10,1 + pU

9,1 + pU
8,1 = 11 + 7 + 8 = 26 > 9 + pL

10,2 + pL
9,2 = 9 + 7 + 6 = 22.

Since relation (3.28) holds for the order (J10, J8, J9), such an order will cause
no idle time on machine M2. Hence, the scheduler can optimally adopt the
order (J10, J8, J9) (since this order together with job J11 being the last one



206 CHAPTER 3. TWO-MACHINE FLOW SHOP AND JOB SHOP

will be optimal for any feasible realization of the processing times of the
remaining jobs {J8, J9, J10, J11}). Thus, we obtain the permutation: πu =
(J2, J3, J1, J5, J6, J7, J4, J10, J8, J9, J11), which is necessarily optimal with the
following partially realized values of the job processing times (i.e., those for
the job set {J1, J2, . . . , J7}):

p∗1,1 = 1, p∗1,2 = 1, p∗2,1 = 1, p∗2,2 = 3, p∗3,1 = 2, p∗3,2 = 3, p∗4,1 = 3, (3.29)

p∗4,2 = 3, p∗5,1 = 4, p∗5,2 = 5, p∗6,1 = 5, p∗6,2 = 8, p∗7,1 = 5, p∗7,2 = 6.

The initial part of this schedule is represented in Figure 3.1. Note that
the remaining part of this schedule cannot be shown exactly since at time-
point t4 = 21, the processing times of jobs J8, J9, J10 and J11 are still
unknown. However, what is important, any feasible values of the remaining
four jobs will not invalidate the optimality of permutation πu. Thus, in spite
of the uncertain job processing times, the scheduler ends up with executing
an actually optimal schedule from the family of sets {Sπ

j (T )}.

M2

M1

J2

J2

J3

J3

J1

J1

J5

J5

J6

J6 J7 J4

. . .

. . .

t0 = 0

t2 = 1

t3 = 3

t1 = 4

t6 = 13 t7 = 18 t4 = 21

{J1, J2}

{J1, J3}

{J1, J4, J5, J6}

{J4, J5, J6} {J4, J7}
{J4, J8, J9, J10}

{J8, J9, J10}

Figure 3.1: Initial part of an optimal schedule with the processing times of jobs
{J1, J2, . . . , J7} given in (3.29)

The above two-phase scheduling process consists of the off-line planning
phase with the family of sets {Sπ

i (T )} being constructed using Theorem 3.3,
and the on-line execution phase with the following decision-making time-
points: t2 = 1, t3 = 3, t1 = 4, t6 = 13, t7 = 18 and t4 = 21. Next, we give
the formal arguments of the above optimal scheduling process.
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Conditions for Schedule Domination

We first recall Theorem 3.1 (given on page 184) presenting necessary and
sufficient conditions for the existence of a permutation πj ∈ Sπ that remains
optimal for all vectors p ∈ T of job processing times. We note that condition
(a) − (b) of Theorem 3.1 is rarely satisfied in real situations (see Tables 3.2
and 3.3 on page 199). Next, we provide sufficient conditions for the existence
of a dominant set of permutations in the following sense.

Definition 3.2 Permutation πu ∈ Sπ dominates permutation πk ∈ Sπ with
respect to T if inequality Cmax(πu, p) ≤ Cmax(πk, p) holds for any vector
p ∈ T of the job processing times. The set of permutations Sπ[T ] ⊆ Sπ is
called dominant with respect to T if for each permutation πk ∈ Sπ, there
exists a permutation πu ∈ Sπ[T ] that dominates permutation πk with respect
to T .

If conditions (a) – (b) of Theorem 3.1 hold, then there exists a singleton
{πj} which is a J-solution Sπ(T ) for problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax. It

is clear that the singleton {πj} = Sπ(T ) is dominant with respect to T (we
say that such a permutation πj is dominant with respect to T ). In general,
the set of permutations Sπ(T ) used in Definition 3.1 (given on page 183) is
dominant with respect to T . It should be noted that Definition 3.2 does not
exploit the notion of a Johnson permutation in contrast to Definition 3.1. In
what follows, we shall relax (if it will be useful) the demand for a dominant
permutation πj to be a Johnson one (see Remark 3.2 given on page 182).

Next, we shall describe and justify sufficient conditions and formal algo-
rithms for constructing a dominant permutation (if it will be possible) for
the uncertain problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax. First, we consider the case

of an empty set J0 and then the case of a non-empty set J0. As far as the
on-line scheduling phase is concerned, two cases are distinguished:

(j) Both the actual values p∗i1 and p∗i2 of the processing times pi1 and pi2

are available at time-point t1 = c1(i) when job Ji is completed by machine
M1;

(jj) The actual value p∗ij of the processing time pij is available at time-
point ti = cj(i) when job Ji is completed by machine Mj.

We note that case (jj) is valid for most practical uncertain scheduling
problems. Case (j) may occur in some real-world scheduling scenarios. One
example of case (j) is that M1 is a diagnostic machine and M2 is a repairing
machine. During the on-line scheduling phase, once a job Ji is completed on
the diagnostic machine M1, the scheduler usually knows the actual values
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(realized values) p∗i1 and p∗i2 of the processing times pi1 and pi2 of job Ji on
both machines M1 and M2. Another example of case (j) is that machine M1

is used for a rough processing of a part Ji ∈ J and machine M2 is used for
its perfect processing.

On-line Scheduling in Case (j)

First, we consider the case of only two conflicting jobs: |Sπ(T )| = 2.
Let J0 = ∅. Since there are only two permutations in a J-solution Sπ(T ),

i.e., Sπ(T ) = {πu, πv}, it is clear that there exist only two non-adjacent
vertices in the digraph (J,A≺) representing the partial strict order defining
the J-solution Sπ(T ) = {πu, πv}. Due to Definition 3.1, permutation πu

(permutation πv) is an optimal Johnson permutation for at least one feasible
vector of the job processing times but surely it is not a Johnson permutation
for all feasible vectors p ∈ T of job processing times (since the condition
of Theorem 3.1 holds neither for permutation πu nor for permutation πv).
W.l.o.g., we can assume that πu = (J1, J2, . . . , Jk−1, Jk, Jk+1, . . . , Jn) and
πv = (J1, J2, . . . , Jk−1, Jk+1, Jk, . . . , Jn), i.e., only the orders of jobs Jk and
Jk+1 are different in these two permutations. In what follows, if there is
no path connecting vertex Jk with vertex Jk+1 in digraph (J,A≺), we say
that jobs Jk and Jk+1 are conflicting. Since the order (J1, J2, . . . , Jk−1) is
the same in both permutations πu and πv defining the J-solution Sπ(T ) =
{πu, πv}, it is justified to process these jobs just in this order. Let the actual
processing of jobs J1, J2, . . . , Jk−1 be started (and completed) in the order
J1 → J2 → . . . → Jk−1 on both machines M1 and M2.

Since jobs Jk and Jk+1 are conflicting, an additional decision has to be
used at time-point tk−1 = c1(k − 1). It is clear that at time-point tk−1, the
actual processing times of the jobs from set J (tk−1, 1) = {J1, J2, . . . , Jk−1}
on machine M1 are already known. Let these actual values of the processing
times turn out to be as follows: p1,1 = p∗1,1, p2,1 = p∗2,1, . . . , pk−1,1 = p∗k−1,1.
In case (j), the following assumption has to be made.

Assumption 1 The actual processing times of the jobs from set J (tk−1, 1)
on machine M2 are available at time-point tk−1 = c1(k−1): p1,2 = p∗1,2, p2,2 =
p∗2,2, . . . , pk−1,2 = p∗k−1,2.

Thus, at time-point tk−1 = c1(k − 1), the following set of feasible vectors
of the processing times

T (tk−1) = {p ∈ T : pij = p∗ij, Ji ∈ J (tk−1, 1), Mj ∈ M} (3.30)

will be utilized instead of set T defined by equality (3.1). Next, we consider
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the following question. When will one of the permutations πu or πv be
optimal for all vectors p ∈ T (tk−1) of the job processing times? To answer
this question, we have to consider all possible orders of the non-adjacent
vertices Jk and Jk+1 in the digraph (J,A≺) representing the J-solution Sπ(T ).
(Recall that digraph (J,A≺) may be constructed in O(n2) time.) At time-
point tk−1, the scheduler has the choice between jobs Jk and Jk+1 (which
are conflicting) for being processed next (immediately after job Jk−1) on
machine M1. Now, the scheduler can test the condition in the following
claim.

Theorem 3.7 If
c2(k − 1) − c1(k − 1) ≥ pU

k1, (3.31)

c2(k − 1) − c1(k − 1) + pL
k2 ≥ pU

k1 + pU
k+1,1, (3.32)

then permutation πu ∈ Sπ(T ) = {πu, πv} is dominant with respect to T (tk−1).

Proof. For permutation πu and any vector p ∈ T (tk−1) of the job processing
times, we can calculate the earliest starting time s2(k + 2) of job Jk+2 on
machine M2 as follows: s2(k+2) = max{c1(k+2), c2(k+1)}. As we consider
only semiactive schedules, machine M1 processes all the jobs without any
idle time, so we obtain

c1(k + 2) =
k+2∑
i=1

pi1 = c1(k − 1) + pk1 + pk+1,1 + pk+2,1.

For machine M2, we obtain c2(k + 1) = pk+1,2 + max{c1(k − 1) + pk1 +
pk+1,1, pk,2 + max{c1(k − 1) + pk1, c2(k − 1)}}. Inequality (3.31) implies
equality max{c1(k−1)+pk1, c2(k−1)} = c2(k−1) for any vector p ∈ T (tk−1)
of the job processing times. Therefore, we obtain

c2(k + 1) = pk+1,2 + max{c1(k − 1) + pk1 + pk+1,1, pk,2 + c2(k − 1)}. (3.33)

Equality (3.33) means that machine M2 has no idle time while processing
jobs Jk−1 and Jk. Inequality (3.32) implies equality max{c1(k − 1) + pk1 +
pk+1,1, pk,2 + c2(k − 1)} = pk,2 + c2(k − 1). Therefore, equality c2(k + 1) =
pk+1,2 + pk,2 + c2(k− 1) holds. This means that machine M2 has no idle time
while processing jobs Jk and Jk+1.

We obtain s2(k + 2) = max{c1(k − 1) + pk1 + pk+1,1 + pk+2,1, pk+1,2 +
pk,2 + c2(k − 1)}. Due to Assumption 1, the values c1(k − 1) and c2(k − 1)
are available at time-point c1(k − 1). As machine M1 has no idle time while
processing jobs from set {J1, J2, . . . , Jk+2}, it is impossible to reduce the
value c1(k − 1) + pk1 + pk+1,1 + pk+2,1. Analogously, as machine M2 has no
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idle time while processing jobs from set {Jk−1, Jk, Jk+1}, it is impossible to
reduce the value pk+1,2+pk,2+c2(k−1) by an alternative order of the jobs Jk

and Jk+1. Therefore, permutation πu dominates permutation πv with respect
to T (tk−1) (regardless of the exact value s2(k + 2)). Since Sπ(T ) = {πu, πv},
permutation πu is dominant with respect to T (tk−1).

�

Thus, if conditions (3.31) and (3.32) of Theorem 3.7 hold, then the order
Jk → Jk+1 of jobs Jk and Jk+1 is the optimal order of these two jobs in
the remaining part of an optimal permutation. Note that in Example 3.3,
Theorem 3.7 was implicitly used for sequencing the order of jobs J5 and J6

at time-point t1 = 4.

Theorem 3.8 If c2(k− 1)− c1(k− 1) ≥ pU
k1 + pU

k+1,1, then each permutation
from set Sπ(T ) = {πu, πv} is dominant with respect to T (tk−1).

Proof. From condition c2(k − 1)− c1(k − 1) ≥ pU
k1 + pU

k+1,1, we obtain that
both inequalities c2(k − 1) − c1(k − 1) ≥ pU

k1 and c2(k − 1) − c1(k − 1) +
pL

k2 ≥ pU
k1 + pU

k+1,1 hold. Thus, conditions (3.31) and (3.32) of Theorem 3.7
hold for permutation πu ∈ Sπ(T ). Hence, permutation πu is dominant with
respect to T (tk−1). On the other hand, condition c2(k − 1) − c1(k − 1) ≥
pU

k1 + pU
k+1,1 implies that both inequalities c2(k − 1)− c1(k − 1) ≥ pU

k+1,1 and
c2(k−1)−c1(k−1)+pL

k+1,2 ≥ pU
k1+pU

k+1,1 hold, i.e., the appropriate condition
of Theorem 3.7 holds for permutation πv ∈ Sπ(T ) with an alternative order
of jobs Jk and Jk+1. Hence, permutation πv is dominant with respect to
T (tk−1) as well. This completes the proof.

�

If the condition of Theorem 3.8 holds, then the order of jobs Jk and
Jk+1 may be arbitrary in the remaining part of an optimal permutation.
Similarly, one can prove the following sufficient conditions for the domination
of permutation πu with respect to T (tk−1). We omit the proof since it is
similar to that of Theorem 3.7.

Theorem 3.9 If

c2(k − 1) − c1(k − 1) < pL
k1, (3.34)

pU
k+1,1 ≤ pL

k2, (3.35)

pL
k+1,1 + pL

k+2,2 ≥ pU
k2 + pU

k+1,1, (3.36)

then permutation πu ∈ Sπ(T ) = {πu, πv} is dominant with respect to T (tk−1).
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Thus, if at least one of the conditions of Theorems 3.7 – 3.9 holds, then
the scheduler may fix the optimal order of jobs Jk and Jk+1 regardless of the
fact that the actual values of the processing times of the jobs Jk, Jk+1, . . . ,
Jn are still unavailable. In [237], five other sufficient conditions for the
domination of permutation πu ∈ Sπ(T ) = {πu, πv} have been proven.

Next, we show how to generalize Theorems 3.7 – 3.9 for the case when
three jobs are conflicting at time-point ti > 0: |Sπ(T )| = 6. Let the jobs
from set {Jk, Jk+1, Jk+2} ⊂ J be conflicting at time-point tk−1 > 0. So,
there are six (3! = 6) permutations in the J-solution Sπ(T ). We can test
the following conditions similar to those of Theorems 3.7 – 3.9 and find a
dominant permutation with respect to T (tk−1).

Theorem 3.10 Let the strict order relation A≺ over set J = J ∗ ∪ J1 ∪ J2

be as follows: (J1 ≺ . . . ≺ Jk−1 ≺ {Jk, Jk+1, Jk+2} ≺ Jk+3 ≺ . . . ≺ Jn). If
c2(k − 1) − c1(k − 1) > pU

k1, c2(k − 1) − c1(k − 1) + pL
k2 > pU

k1 + pU
k+1,1 and

c2(k − 1)− c1(k − 1) + pL
k2 + pL

k+1,2 > pU
k1 + pU

k+1,1 + pU
k+2,1, then permutation

(J1, . . . , Jk, Jk+1, Jk+2, . . . , Jn) is dominant with respect to T (tk−1).

Proof. Arguing similarly as in the proof of Theorem 3.7, we conclude
that machine M1 has no idle time while processing the jobs from set
{J1, J2, . . . , Jk+3}. Thus, it is impossible to reduce the value c1(k + 3) ob-
tained for permutation πw = (J1, . . . , Jk, Jk+1, Jk+2, . . . , Jn). Analogously,
machine M2 has no idle time while processing the jobs {Jk−1, Jk, Jk+1, Jk+2}
in the order defined by permutation πw. Thus, it is impossible to reduce the
value c2(k+2) defined for permutation πw by an alternative order of the jobs
Jk, Jk+1 and Jk+2. Therefore, if the condition of Theorem 3.10 holds, then
permutation πw ∈ Sπ(T ) is dominant with respect to T (tk−1) (regardless of
the unknown value s2(k + 3) = max{c1(k + 3), c2(k + 2)}).

�

If the condition of Theorem 3.10 holds, then in the remaining part of an
optimal permutation, the order of the jobs Jk, Jk+1 and Jk+2 is as follows:
Jk → Jk+1 → Jk+2. We can test the six conditions analogous to those of
Theorem 3.10 but for different orders of three conflicting jobs. In Example
3.3, Theorem 3.10 was implicitly used for sequencing the jobs J8, J9 and J10

at time-point t4 = 21.
Similarly to the proof of Theorem 3.8, we can prove sufficient conditions

for the existence of six dominant permutations as follows.

Theorem 3.11 Let the strict order relation A≺ over set J = J ∗ ∪ J1 ∪ J2

be as follows: (J1 ≺ . . . ≺ Jk−1 ≺ {Jk, Jk+1, Jk+2} ≺ Jk+3 ≺ . . . ≺ Jn). If
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c2(k−1)− c1(k−1) > pU
k1 +pU

k+1,1 +pU
k+2,1, then each of the six permutations

from set Sπ(T ) is dominant with respect to T (tk−1).

If the condition of Theorem 3.11 holds, then the order of the three jobs
Jk, Jk+1 and Jk+2 may be arbitrary in the remaining part of an optimal
permutation. Theorem 3.9 may be also generalized, and we can obtain
fourteen sufficient conditions for the existence of a dominant permutation
when |Sπ(T )| = 6. These conditions have been proven in [237]. Next, we
present one of them.

Theorem 3.12 Let the strict order relation A≺ over set J = J ∗ ∪ J1 ∪ J2

be as follows: (J1 ≺ . . . ≺ Jk−1 ≺ {Jk, Jk+1, Jk+2} ≺ Jk+3 ≺ . . . ≺ Jn).
If c2(k − 1) − c1(k − 1) < pL

k1, pL
k2 ≥ pU

k+1,1, pL
k2 + pL

k+1,2 ≥ pU
k+1,1 +

pU
k+2,1 and pL

k+1,1 + pL
k+2,1 + pL

k+3,1 ≥ pU
k2 + pU

k+1,2 + pU
k+2,2, then permutation

{J1, . . . , Jk, Jk+1, Jk+2, . . . , Jn} is dominant with respect to T (tk−1).

Thus, if at least one of the sufficient conditions of Theorems 3.10 – 3.12
holds, then the order of the jobs Jk, Jk+1 and Jk+2 must be Jk → Jk+1 → Jk+2

in the remaining part of an optimal permutation. We can also test the above
conditions for the five other possible orders of the conflicting jobs Jk, Jk+1

and Jk+2.
Next, we consider the general case of a J-solution Sπ(T ). It is clear that

Theorems 3.7 – 3.9 (Theorems 3.10 – 3.12, respectively) may be used if
more than two (six) permutations are in the set Sπ(T ) provided that, at
each time-point of the schedule execution, no more than two (three) jobs
from set J are conflicting. We demonstrate this on the following example
which is appropriate for the use of Theorems 3.7 – 3.9.

Example 3.4 Let |Sπ(T )| = 8 and six jobs from set J = J ∗ ∪ J1 ∪ J2

be conflicting in a pairwise manner, e.g., the pair of jobs Jk and Jk+1 are
conflicting, the pair of jobs Jl and Jl+1, and the pair of jobs Jm and Jm+1.
Then we can use Theorems 3.7 – 3.9 for each pair of jobs that are conflicting.
W.l.o.g. we assume that the partial strict order A≺ over set J = J ∗∪J1∪J2

is as follows: (J1 ≺ . . . ≺ Jk−1 ≺ {Jk, Jk+1} ≺ Jk+2 ≺ . . . ≺ Jl−1 ≺
{Jl, Jl+1} ≺ Jl+2 ≺ . . . ≺ Jm−1 ≺ {Jm, Jm+1} ≺ Jm+2 ≺ . . . ≺ Jn).

First, we process the jobs {J1, . . . , Jk−1} in the optimal order J1 → . . .

→ Jk−1. At time-point tk−1 = c1(k − 1), we test Theorems 3.7 – 3.9 for the
pair of jobs {Jk, Jk+1} that are conflicting. If at least one of the conditions of
Theorems 3.7 – 3.9 holds for the order Jk → Jk+1, then we process the jobs
{Jk, . . . , Jl−1} in the order Jk → . . . → Jl−1. At time-point tl−1 = c1(l − 1),
we test Theorems 3.7 – 3.9 for the pair of conflict jobs {Jl, Jl+1}. If at least
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one of the conditions of Theorems 3.7 – 3.9 holds for the order Jl → Jl+1,
then we process the jobs {Jl, . . . , Jm−1} in the order Jl → . . . → Jm−1. At
time-point tm−1 = c1(m− 1), we test Theorems 3.7 – 3.9 for the pair of jobs
{Jm, Jm+1} that are conflicting. If at least one of the conditions of Theorems
3.7 – 3.9 holds for the order Jm → Jm+1, then we process the jobs {Jm, . . . ,
Jn} in the order Jm → . . . → Jn.

Therefore, if the condition of at least one of Theorems 3.7 –
3.9 holds for the pairs of jobs {Jk, Jk+1}, {Jl, Jl+1}, and {Jm,
Jm+1}, then we obtain a dominant permutation πg = (J1, . . . , Jk−1, Jk,

Jk+1, Jk+2, . . . , Jl−1, Jl, Jl+1, Jl+2, . . . , Jm−1, Jm, Jm+1, Jm+2, . . . , Jn) with re-
spect to T (tm−1) (this permutation will be optimal for the actual job pro-
cessing times). Otherwise, if no condition of Theorem 3.7 – 3.9 holds for
a pair of jobs {Jr, Jr+1}, r ∈ {k, l, m}, (say r = m), then we obtain a two-
element dominant set of permutations {πg, πh}, where πh = (J1, . . . , Jk−1,

Jk, Jk+1, Jk+2, . . . , Jl−1, Jl, Jl+1, Jl+2, . . . , Jm−1, Jm+1, Jm, Jm+2, . . . , Jn) with-
out a proof that one of the permutations πh or πg dominates the other one.

Furthermore, we can generalize the above sufficient conditions for the
case when an arbitrary number of jobs are conflicting at the same on-line
decision-making time-points. Let the set of r jobs be conflicting at time-
point tk = c1(k) ≥ 0. W.l.o.g. we assume that the jobs from the set {Jk1

,

Jk2
, . . . , Jkr

} ⊂ J = J ∗ ∪ J1 ∪ J2 are conflicting. Then we need to test r!
possible orders of conflicting jobs. A generalization of Theorems 3.7 and
3.10 looks as follows.

Theorem 3.13 Let the strict order A≺ over the set J = J ∗ ∪ J1 ∪ J2 be
as follows: (J1 ≺ . . . ≺ Jk ≺ {Jk1

, Jk2
, . . . , Jkr

} ≺ Jk+1 ≺ . . . ≺ Jn). If
inequality

s+1∑
i=1

pL
ki1 ≤

s∑
j=0

pU
kj2

holds for each s = 0, 1, . . . , r, where pU
k02 = c2(k) − c1(k), then permutation

{J1, . . . , Jk, Jk1
, Jk2

, . . . , Jkr
, Jk+1, . . . , Jn} is dominant with respect to T (tk).

A generalization of Theorems 3.9 and 3.12 looks as follows.

Theorem 3.14 Let the strict order J≺ over the set J = J ∗ ∪ J1 ∪ J2 be
as follows: (J1 ≺ . . . ≺ Jk ≺ {Jk1

, Jk2
, . . . , Jkr

} ≺ Jk+1 ≺ . . . ≺ Jn). If the
condition

s∑
i=m

pL
ki1 >

s−1∑
j=m−1

pU
kj2, m = 1, 2, . . . , s,
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m∑
i=s+1

pU
ki1 ≤

m−1∑
j=s

pL
kj2, m = s + 1, s + 2, . . . , r,

r+1∑
i=s+1

pL
ki1 ≥

r∑
j=s

pU
kj2

holds, where pU
k02 = c2(k)− c1(k), then permutation {J1, . . . , Jk, Jk1

, Jk2
, . . . ,

Jkr
, Jk+1, . . . , Jn} is dominant with respect to T (tk).

On-line Scheduling in Case (jj)

Let us consider the case (jj). Now, the actual value p∗j2 of processing
time pj2 of job Jj ∈ J (tl−1, 2) = {J1, J2, . . . , Jl−1} is available at time-point
tk−1 = c1(k − 1) > c2(l − 1), i.e., pj2 = p∗j2, while the actual value of
processing time pk2 of job Jk ∈ {Jl, Jl+1, . . . , Jn} is unavailable at time-point
tk−1 = c1(k − 1) < c2(l). Thus, at time-point tk−1 = c1(k − 1), the following
set of feasible vectors

T (tk−1, l) = {p ∈ T : pi1 = p∗i1, pj2 = p∗j2, Ji ∈ J (tk−1, 1), Jj ∈ J (tl−1, 2)}

of job processing times will be used instead of set T (tk−1) defined in (3.30).

Since Assumption 1 is not valid in case (jj), now we are forced to ex-
ploit the lower bounds pL

l2, pL
l2, . . . , p

L
k−1,2 instead of the actual values p∗l2,

p∗l2, . . . , p
∗
k−1,2 since the latter are unavailable at time-point tk−1 = c1(k− 1).

As a result, we can calculate the lower bound cL
2 (k − 1) for the actual value

c2(k − 1) in the following way (see Figure 3.2):

cL
2 (k − 1) = c2(l − 1) + max{pL

l2, c1(k − 1) − c2(l − 1)} +
k−1∑
j=l

pL
j2.

M2

M1

J1

J1

J2

J2

. . .

. . . Jk−1

Jl−1 p∗l2≥pL
l2

. . . p∗k−1,2≥pL
k−1,2

. . .

. . .

c2(l − 1)

t = c1(k − 1)

Figure 3.2: Initial part of an optimal schedule for the jobs of set {J1, J2, . . . , Jk−1}

The analog of Theorem 3.7 is as follows.
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Theorem 3.15 If cL
2 (k−1)−c1(k−1) ≥ pU

k1 and cL
2 (k−1)−c1(k−1)+pL

k2 ≥
pU

k1+pU
k+1,1, then permutation πu ∈ S∗(T ) = {πu, πv} is dominant with respect

to T (k, l).

We can calculate the following upper bound cU
2 (k−1) for the actual value

c2(k − 1):

cU
2 (k − 1) = c2(l − 1) +

k−1∑
j=l

pU
j2.

Thus, the sufficient condition (3.34) – (3.36) from Theorem 3.9 can be re-
formulated as follows.

Theorem 3.16 If cU
2 (k − 1) − c1(k − 1) < pL

k1, pU
k+1,1 ≤ pL

k2 and pL
k+1,1 +

pL
k+2,2 ≥ pU

k2 + pU
k+1,1, then permutation πu ∈ S∗(T ) = {πu, πv} is dominant

with respect to T (k, l).

Theorems 3.10 – 3.14 can be reformulated for case (jj) in a similar way.

Dominant Permutation in Off-Line Scheduling

We show that in the off-line scheduling phase, claims similar to Theorems
3.7 – 3.16 can also be applied along with Theorem 3.1 (given on page 184).
Recall that Theorem 3.1 provides a necessary and sufficient condition for the
existence of a Johnson permutation that is dominant with respect to T . Due
to a relaxation in the requirement that the permutation πu is a Johnson one,
we can obtain another sufficient condition for the existence of a dominant
permutation. To this end, it is necessary to substitute the exact difference
c2(k − 1) − c1(k − 1) (which is unavailable before time-point t0 = 0) by its
lower bound. It is clear that for the off-line scheduling phase, there is no
difference between case (j) and case (jj).

Let the strict order A≺ defining the J-solution Sπ(T ) look as follows:

(J1 ≺ . . . ≺ Jk−1 ≺ {Jk, Jk+1} ≺ . . .). (3.37)

Then jobs Jk and Jk+1 can be started on machine M1 at time-point tk−1 =
c1(k − 1), and machine M2 is available to process one of the jobs Jk or Jk+1

from time-point c2(k − 1). If at time-point t ≤ t0 = 0, the scheduler can
calculate a lower bound Δk−1 for the exact difference c2(k − 1) − c1(k − 1),
then before beginning the execution of a schedule, the scheduler can test
the conditions of Theorems 3.7 – 3.16 using the value Δk−1 instead of the
difference c2(k − 1) − c1(k − 1) unavailable at time-point t.

Next, we show how to calculate a tight lower bound Δk−1. If inclusion
Ji ∈ J1 holds for i = 1, 2, . . . , k−1, then for each index i ∈ {1, 2, . . . , k−1},
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inequality pU
i1 ≤ pL

i2 must hold and so pi2 − pi1 ≥ pL
i2 − pU

i1 ≥ 0. Thus,
the following inequalities give a tight lower bound Δk−1 for the difference
c2(k − 1) − c1(k − 1):

c2(k − 1) − c1(k − 1) ≥ p11 +
k−1∑
i=1

pi2 −
k−1∑
i=1

pi1 ≥ pL
11 +

k−1∑
i=1

(pL
i2 − pU

i1) = Δk−1.

(3.38)

In the opposite case (when Ji /∈ J1), a lower bound Δk−1 for the difference
c2(k − 1) − c1(k − 1) may be calculated recursively as follows. If |J1| = m,
we obtain

Δm =
m∑

i=1
(pL

i2 − pU
i1) + pL

11

due to the last equality in (3.38) with k−1 = m. Furthermore, for each index
l ∈ {m + 1, m + 1, . . . , k − 1}, one can use the following recursive formula:
Δl = max{0, Δl−1 − pU

l,1} + pL
l,2. As a result, we obtain the following claim

similar to Theorem 3.7.

Theorem 3.17 If Δk−1 ≥ pU
k1 and Δk−1 + pL

k2 ≥ pU
k1 + pU

k+1,1, then permuta-
tion πu ∈ S∗(T ) = {πu, πv} is dominant with respect to T .

Furthermore, all the theorems presented in the previous part of this sec-
tion can be reformulated for the case of off-line scheduling provided that the
exact difference c2(k−1)−c1(k−1) is substituted by the lower bound Δk−1.
Note that Theorems 3.7 – 3.17 may be only used if k > 1 in the partial
strict order (3.37). Let k = 1 and jobs J1 and J2 be conflicting, i.e., the
partial strict order (3.37) is as follows: ({J1, J2} ≺ J3 ≺ . . .). We shall try
to sequence two conflicting jobs in an optimal way before time-point t0 = 0.
Let us consider the case when machine M2 has an idle time before process-
ing job J3. In this case, machine M2 can process job J3 from the time-point
when machine M1 completes the processing of this job (i.e., from time-point
t3 = c1(3)). It is easy to prove the following sufficient condition.

Theorem 3.18 If pL
3,1 ≥ pU

2,2 +max{0, pU
1,2−pL

2,1}, then the order of jobs J1

and J2 in an optimal permutation is J1 → J2.

Obviously, c2(2) − c1(2) ≤ pU
2,2 + max{0, pU

1,2 − pL
2,1}. In the latter in-

equality, the difference pU
1,2 − pL

2,1 is equal to the maximal addition for the
case when machine M2 cannot finish job J1 before machine M1 has fin-
ished job J2. Hence, we obtain inequality c1(3) > c2(2), and machine M2

has an idle time before processing job J3. Therefore, in the opposite case
(when the optimal order of jobs J1 and J2 cannot be defined by Theorem



3.2. SCHEDULE EXECUTION FOR A FLOW SHOP 217

3.18), we cannot decrease the makespan. Of course, if pL
3,1 > pU

2,2 + pU
1,2,

then both permutations πu = (J1, J2, J3, . . .) and πv = (J2, J1, J3, . . .) are
dominant and the optimal order of jobs J1 and J2 may be arbitrary. More
precisely, if pL

3,1 > max{pU
1,2 + pU

2,2 − min{pL
1,1, p

L
1,2}, max{pU

1,2, p
U
2,2}}, then

both permutations πu and πv are dominant. In other words, if pL
3,1 >

max{0, pU
1,2 − pL

2,1, pU
2,2 − pL

1,1} + max{pU
1,2, p

U
2,2}, then both permutations

πu and πv are dominant (an arbitrary order of jobs J1 and J2 is optimal).
It is easy to see that the above theorems can be generalized to the case

when more than two jobs are conflicting at time-point t0 = 0. Next, we
demonstrate such a generalization with two examples of possible claims. In
particular, for three conflicting jobs, we obtain the following claim.

Theorem 3.19 Let the strict order A≺ look as follows: ({J1, J2, J3} ≺ J4 ≺
. . .). If pL

4,1 ≥ pU
3,2 + max{0, pU

2,2 − pL
3,1 + max{0, pU

1,2 − pL
2,1}}, then the order

of jobs J1, J2 and J3 in an optimal permutation is J1 → J2 → J3.

Let δm be defined recursively as follows: δm = max{0, pU
m,2 − pL

m+1,1 +
δm−1}, where δ1 = max{0, pU

1,2−pL
2,1}. Using this notation, we can generalize

Theorems 3.18 and 3.19 to the case of r conflicting jobs at time-point t0 = 0.

Theorem 3.20 Let the strict order A≺ look as follows: ({J1, J2, . . . , Jr} ≺
Jr+1 ≺ . . .). If pL

r+1,1 ≥ pU
r,2 + δr−1, then the order of jobs J1, J2, . . . , Jr in

an optimal permutation is J1 → J2 → . . . → Jr.

Algorithms and Computational Results

Our computational study of the two-phase scheduling was performed on
a large number of randomly generated problems F2/pL

ij ≤ pij ≤ pU
ij/Cmax.

The following algorithms were coded in C: Algorithm J-SOL for the off-line
scheduling problem and Algorithm ON-LINE(J0 =∅) (Algorithm ON-LINE,
respectively) for the on-line scheduling problem provided that set J0 is empty
(non-empty).

Algorithm J-SOL

Input: Lower and upper bounds pL
ij and pU

ij for the processing

times pij of jobs Ji ∈ J on machines Mj ∈ M .
Output: a J-solution Sπ(T ) to problem F2/pL

ij ≤ pij ≤ pU
ij/Cmax;

a binary relation A� defining a J-solution Sπ(T ),
if |Sπ(T )| > 1.
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Step 1: Test conditions a) − b) of Theorem 3.1.
Step 2: IF conditions a) − b) hold GOTO step 8.
Step 3: Using Theorem 3.3 construct the digraph (J ′,A�)

with the vertex set J ′ = J \ J0.
Step 4: Construct the binary relation A� by adding set J0

to digraph (J ′,A�).
Step 5: Test the conditions of Theorems 3.17 – 3.20.
Step 6: IF there are no conflicting jobs GOTO step 8.
Step 7: STOP
Step 8: STOP: a dominant permutation with respect to T .

In Algorithm ON-LINE(J0 = ∅), integer k, k ≤ n, denotes the number
of decision-making time-points ti = c1(i), Ji ∈ J, in the on-line scheduling
phase. The integer m, m ≤ k, denotes the number of decision-making time-
points for which the optimal orders of the conflicting jobs were found using
the sufficient conditions from Theorems 3.7 – 3.17.

Algorithm ON-LINE(J0 =∅)
Input: Lower and upper bounds pL

ij and pU
ij for the processing

times pij of the jobs Ji ∈ J on the machines Mj ∈ M ;
a J-solution Sπ(T ), |Sπ(T )| > 1, to problem
F2/pL

ij ≤ pij ≤ pU
ij/Cmax defined by the strict order A≺.

Output: Either a dominant permutation πu with respect to T (i),
or a permutation πu ∈ Sπ(T ) without its optimality proof.

Step 1: Set k = 0, m = 0.
Step 2: IF the first jobs in the strict order A≺ are conflicting THEN

BEGIN
check the condition of Theorem 3.20 for all
orders of conflicting jobs
IF the condition of Theorem 3.20 holds
for at least one order of conflicting jobs
THEN k := k + 1, m := m + 1,
choose an optimal order of the conflicting jobs ELSE
k := k + 1, choose an arbitrary order of the conflicting
jobs and process the conflicting jobs in the chosen order.
END

Step 3: UNTIL the last job in the actual schedule is finished.
Step 4: Process the linear part of the partial strict order A≺.
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Step 5: Check the conditions of Theorems 3.13 – 3.14
for all orders of conflicting jobs.
IF there are two conflicting jobs
THEN check the conditions of Theorem 3.9.

Step 6: IF at least one sufficient condition of Theorems 3.7 – 3.16
holds for at least one order of conflicting jobs
THEN k := k + 1, m := m + 1, choose an
optimal order of the conflicting jobs ELSE k := k + 1,
choose an arbitrary order of the conflicting jobs.

Step 7: Process the conflicting jobs in the chosen order.
Step 8: RETURN
Step 9: IF k = m THEN GOTO step 14.
Step 10: Calculate the length Cmax of the schedule that was

constructed via steps 1–9 and the length C∗
max of the optimal

schedule constructed for the actual processing times.
Step 11: IF Cmax = C∗

max THEN GOTO step 13.
Step 12: STOP: The constructed schedule is not optimal

for the actual processing times.
Step 13: STOP: The optimality of the actual permutation is defined

after the schedule execution.
Step 14: STOP: The optimality of the actual permutation is proven

before the schedule execution.

If J0 �= ∅, then Algorithm ON-LINE has to be used instead of Algorithm
ON-LINE(J0 = ∅) at the on-line scheduling phase. The former differs from
the latter by the following part which has to be used instead of the above
steps 5–7. Moreover, in Algorithm ON-LINE(J0 =∅), the set Sπ(T ) will be
substituted by Sπ(T ). Let Nj denote the subset of set J0 of the jobs that
can be processed at time-point tj = c1(j).

Part of Algorithm ON-LINE

Step 5: Check the conditions of Theorems 3.13 – 3.14
for all orders of conflicting jobs.
IF there are only two conflicting jobs at time point ti
THEN check the condition of Theorem 3.9.

Step 5a: IF no sufficient condition holds
THEN calculate the corresponding subset Nj.

Step 5b: UNTIL Nj = ∅ OR at least one sufficient condition
from Theorems 3.7 – 3.16 holds for at least
one order of conflicting jobs.
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Step 5c: Process job Ji ∈ Nj with the largest pi and
delete job Ji from set Nj.

Step 6: IF at least one of the sufficient conditions holds
for at least one order of the conflicting jobs
THEN k := k + 1, m := m + 1,
choose an optimal order of the conflicting jobs ELSE
k := k + 1, choose an arbitrary order of the conflicting jobs.

Step 7: Process the conflicting jobs in the chosen order.
Step 7a: RETURN

For the experiments, we used a Celeron 1200 MHz processor with 384 MB
main memory. We made 100 tests in each series, i.e., for each combination of
n and L, where L defines the percentage of the relative error of the input data
(job processing times) known before scheduling. The lower bound pL

ij and
the upper bound pU

ij for the job processing times are uniformly distributed
in the range [10, 1000] in such a way that the following equality holds:

L = ((pU
ij − pL

ij) : (pU
ij + pL

ij)/2) · 100.

The bounds pL
ij and pU

ij and the actual processing times pij were deci-
mal fractions with two digits after the decimal point. The generator from
[351] has been used for (pseudo)randomly generating instances of problem
F2/pL

ij ≤ pij ≤ pU
ij/Cmax. It is easy to see that all sufficient conditions proven

in this section may be tested in polynomial time in the number n of jobs.
Moreover, to minimize the running time of the above three algorithms, these
sufficient conditions were tested in an increasing order of their complexity
up to the first positive answer (if any) to the following question. Does a
dominant permutation exist at time-point ti = c1(i)?

In the experiments, the CPU-time was rather small. Even for n = 1000
jobs, Algorithm J-SOL, Algorithm ON-LINE(J0 = ∅) and Algorithm ON-
LINE take less than 0.05 seconds for solving one instance of problem
F2/pL

ij ≤ pij ≤ pU
ij/Cmax. Therefore, we do not present the CPU-time in

Tables 3.5 – 3.9. Note that the results presented in Tables 3.5 – 3.9 have
been only obtained for the case (jj) of on-line scheduling, i.e., Assumption
1 was not used and so the actual value of processing time pij became only
known at time point ti = cj(i) when job Ji was completed by machine Mj.

Tables 3.5 – 3.7 present the percentage of small problem instances which
were solved exactly or approximately in the off-line phase (by Algorithm J-
SOL) and in the on-line phase (by Algorithm ON-LINE(J0 =∅) or Algorithm
ON-LINE) in spite of the uncertain numerical input data. Column 1 (column
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Table 3.5: Percentage of solved instances with an empty set J0
Number of Percentage Off-line On-line Optimal Max error Average

n L decision of proved optimal optimal without of Cmax error of

(%) points decisions (%) (%) proof (%) (%) Cmax (%)

1 19 73.68 82 13 3 6.230213 0.092163

2 39 69.23 65 24 7 14.894381 0.302439

3 54 64.81 52 31 15 7.330572 0.129230

4 71 73.24 41 43 10 11.425118 0.186663

10 5 71 71.83 42 39 14 18.172153 0.332733

6 93 70.97 27 49 18 12.438417 0.275810

7 100 74.00 29 47 15 17.770338 0.274215

8 121 66.94 19 51 21 24.294342 0.379896

9 125 56.80 10 44 32 16.657515 0.952808

10 130 67.69 16 50 24 18.044373 0.673897

1 71 85.92 47 43 9 1.857141 0.018571

2 126 91.27 17 72 9 14.779399 0.163159

3 155 87.74 14 70 15 0.022465 0.000225

4 211 90.05 4 76 18 7.927369 0.079337

20 5 238 84.87 1 70 22 10.647840 0.370658

6 237 81.43 1 65 25 7.414827 0.277665

7 288 84.03 0 66 28 7.479012 0.114603

8 250 78.80 0 64 32 12.671661 0.314745

9 294 82.31 0 60 25 10.750363 0.537575

10 303 81.85 0 59 28 8.804494 0.366674

1 134 97.76 26 71 3 0.000000 0.000000

2 241 89.63 10 71 18 0.004085 0.000041

3 319 93.73 0 83 13 3.760090 0.067121

4 347 95.10 0 86 13 1.603097 0.016031

30 5 413 94.43 0 80 19 11.283378 0.112834

6 390 88.46 0 69 23 6.422380 0.222811

7 448 90.18 0 70 27 10.415929 0.198046

8 450 90.67 0 69 26 0.192515 0.002738

9 440 87.73 0 64 25 15.253723 0.399358

10 446 89.01 0 67 26 11.338615 0.119900

1 236 96.19 4 88 8 0.000000 0.000000

2 421 94.54 0 84 14 0.269543 0.002735

40 3 484 96.69 0 88 11 9.348538 0.093485

4 559 93.74 0 72 23 6.632380 0.101148

5 581 95.87 0 83 16 1.854262 0.018543

10 526 90.68 0 68 30 7.492048 0.074967

50 5 764 94.24 0 74 23 4.768900 0.047914

10 616 89.29 0 60 31 3.341783 0.125370

60 5 889 93.70 0 63 32 8.621157 0.136614

10 704 92.33 0 64 29 8.556119 0.250279

70 5 954 96.02 0 76 21 1.219268 0.012251

10 716 92.18 0 63 31 14.920141 0.230028

80 5 1086 95.67 0 68 32 0.000000 0.000000

10 784 91.20 0 63 30 6.311226 0.078879

90 5 1201 95.50 0 66 29 3.027027 0.048897

10 776 90.08 0 51 37 15.321626 0.302109

100 5 1259 96.43 0 74 25 0.001865 0.000019

10 750 89.73 0 50 37 5.903523 0.169706

2) presents the number of jobs n, 10 ≤ n ≤ 100 (the relative error of the
input data L, 1 ≤ L ≤ 10, in percentage).

Column 3 presents the number of sets of conflicting jobs in the strict order
A≺ for Algorithm ON-LINE(J0 =∅) with J0 = ∅ (in the binary relation A�
for Algorithm ON-LINE with J0 �= ∅) for which the decisions were made
in the decision-making time-points ti = c1(i). (In the above description
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of Algorithm ON-LINE(J0 = ∅) and Algorithm ON-LINE, this number is
denoted as k.) The percentage of the correct decisions made due to Theorem
3.1 and Theorems 3.17 – 3.20 in the off-line scheduling phase and the correct
decisions made due to Theorems 3.7 – 3.16 in the on-line scheduling phase
are given in column 4. This number is equal to m/k · 100%, where m and k
are those used in Algorithms ON-LINE(J0 =∅) and ON-LINE.

Table 3.6: Percentage of solved instances with 10% of jobs from set J0
Number of Percentage Off-line On-line Optimal Max error Average

n L decision of proved optimal optimal without of Cmax error of

(%) points decisions (%) (%) proof (%) (%) Cmax (%)

1 18 72.22 79 18 2 17.966948 0.179669

2 26 61.54 65 25 1 21.889175 1.026670

3 49 69.39 49 37 8 12.544724 0.411497

4 50 68.00 49 35 7 17.959299 0.656619

10 5 54 55.56 49 30 10 14.644439 0.911094

6 73 64.38 26 49 14 14.280224 0.763463

7 82 57.32 20 47 18 23.059456 1.461247

8 92 59.78 21 46 17 16.038074 1.009285

9 96 57.29 20 45 15 17.468323 1.431748

10 114 56.14 10 49 19 19.623438 1.667662

1 52 88.46 49 46 4 5.821766 0.058218

2 99 92.93 18 75 3 6.804946 0.165536

3 150 86.67 5 78 11 7.669424 0.257041

4 154 85.71 5 77 6 8.306249 0.544108

20 5 190 85.26 6 71 12 15.721927 0.588305

6 202 89.60 0 83 6 8.690571 0.590736

7 233 86.70 1 75 13 9.809823 0.518078

8 269 81.78 0 71 16 19.979408 0.823335

9 247 79.76 0 64 10 10.719061 1.378448

10 286 83.92 0 68 14 11.104570 1.122154

1 133 93.98 14 80 5 3.743102 0.037431

2 214 92.06 7 81 7 9.082943 0.171559

3 275 93.82 2 84 11 6.714648 0.129161

4 328 91.46 1 76 12 10.427673 0.408122

30 5 346 92.20 0 78 10 4.925068 0.523251

6 340 88.53 0 68 15 13.092766 0.667315

7 365 89.59 0 71 12 20.051733 0.891334

8 424 90.80 0 71 10 13.626771 0.935853

9 388 88.14 0 70 12 16.552177 0.836974

10 416 88.70 0 68 19 9.795372 0.620623

1 202 94.06 5 83 10 4.489825 0.085888

2 354 94.35 0 85 13 6.027034 0.093683

40 3 428 95.33 0 87 8 4.454952 0.138229

4 475 93.26 0 77 9 14.140268 0.689480

5 513 96.69 0 88 6 17.602324 0.317764

10 519 90.17 0 62 15 6.950419 0.735055

50 5 652 96.63 0 83 11 3.451158 0.161636

10 580 89.83 0 58 12 6.377758 0.672041

60 5 739 95.81 0 75 12 3.175847 0.337660

10 634 91.01 0 62 7 9.123387 0.838601

70 5 933 95.71 0 73 11 2.618088 0.303773

10 729 93.14 0 66 13 8.430060 0.540960

80 5 992 94.76 0 72 8 9.327187 0.501414

10 735 90.88 0 62 6 8.642805 0.703802

90 5 1113 96.14 0 76 10 11.927623 0.440951

10 761 93.04 0 66 9 14.317971 0.661120

100 5 1083 95.57 0 68 7 4.340650 0.430289

10 829 93.97 0 64 4 3.391186 0.517160
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The percentage of problem instances which were optimally solved in the
off-line scheduling phase is given in column 5. For such instances, Algorithm
J-SOL terminates in step 8. The percentage of problem instances which
were optimally solved in the on-line scheduling phase (and the optimality of
the adopted permutation became only known after the schedule execution)
is given in column 6. For such instances, Algorithm ON-LINE(J0 = ∅)
(Algorithm ON-LINE) terminates in step 14. Note that both columns 5 and
6 define the percentage of problem instances for which optimal permutations
were defined before execution of the whole schedule, i.e., each decision in the
on-line phase (resolution of conflicting jobs) was made correctly due to one
of the sufficient conditions proven in this section.

Column 7 presents the percentage of problem instances which were opti-
mally solved occasionally (without a preliminary proof of permutation opti-
mality). Namely, the value Cmax obtained for the actual schedule turns out
to be equal to the optimal value C∗

max calculated for an optimal schedule with
the actual job processing times. (Note that the value C∗

max can be calculated
after completing the last job from set J when all actual job processing times
p∗ij, Ji ∈ J, Mj ∈ M, and all actual job completion times become known).
For such instances, Algorithm ON-LINE(J0 =∅) (Algorithm ON-LINE) ter-
minates in step 13. Subtracting the sum of the numbers given in columns
5, 6 and 7 from 100% gives the percentage of instances for which optimal
permutations were not found both in the off-line scheduling phase and in the
on-line scheduling phase. For such instances, Algorithm ON-LINE (J0 =∅)
and Algorithm ON-LINE terminate in step 12. The maximal (average) rela-
tive error of the makespan [(Cmax−C∗

max)/C∗
max]·100% obtained for the actual

schedule constructed by Algorithm J-SOL and Algorithm ON-LINE(J0 =∅)
(Algorithm ON-LINE) is given in column 8 (column 9).

Table 3.5 presents computational results for the case J0 = ∅ obtained by
Algorithm J-SOL and Algorithm ON-LINE(J0 = ∅). Table 3.6 (Table 3.7)
presents computational results for instances with 10% (30%) of the jobs from
set J0 obtained by Algorithm ON-LINE(J0 =∅) and Algorithm ON-LINE.

Table 3.8 (Table 3.9) presents the percentage of large instances (200 ≤
n ≤ 1000) solved exactly or approximately in the off-line phase by Algorithm
J-SOL and in the on-line phase by Algorithm ON-LINE(J0 =∅) for J0 = ∅
(by Algorithm ON-LINE for J0 �= ∅). In Tables 3.8 and 3.9, we use the same
columns as in Tables 3.5, 3.6 and 3.7 except column 5 since no large instance
with n > 100 has been optimally solved in the off-line phase of scheduling.

The computational results seems to be rather promising, especially for
the on-line scheduling phase. Tables 3.5, 3.6 and 3.7 show that off-line
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Table 3.7: Percentage of solved instances with 30% of jobs from set J0
Number of Percentage Off-line On-line Optimal Max error Average

n L decision of proved optimal optimal without of Cmax error of

(%) points decisions (%) (%) proof (%) (%) Cmax (%)

1 9 66.67 85 12 0 12.769878 0.191195

2 14 78.57 70 27 0 13.634037 0.347974

3 31 61.29 59 31 2 13.529054 0.735699

4 40 32.50 44 37 5 23.480253 1.282487

10 5 43 37.21 42 35 6 21.291142 1.924775

6 47 53.19 36 42 8 17.709812 1.613568

7 62 48.39 27 44 7 18.857832 2.174505

8 54 46.30 38 35 5 26.330475 2.890409

9 71 42.25 24 40 9 26.084694 2.628773

10 67 50.75 26 47 5 21.843046 2.253550

1 26 80.77 54 41 2 9.495034 0.189950

2 66 72.73 25 59 6 9.860765 0.496118

3 92 78.26 19 65 7 8.274606 0.526225

4 126 79.37 8 73 10 8.872502 0.651189

20 5 123 82.11 4 76 6 9.250347 0.918365

6 145 83.45 1 77 5 8.582347 1.017275

7 172 74.42 1 67 9 13.947658 1.272475

8 169 78.11 0 72 8 22.539068 1.723347

9 203 78.33 0 73 12 10.772242 1.085768

10 190 81.05 0 73 5 11.410321 1.304585

1 74 97.30 26 72 1 5.184722 0.051847

2 132 92.42 6 84 4 5.993108 0.310904

3 195 92.31 1 87 8 5.672687 0.189419

4 223 89.24 0 78 10 7.023677 0.547064

30 5 260 91.54 0 81 3 7.348124 0.853035

6 274 87.96 0 75 5 8.557904 0.987270

7 281 92.53 0 83 8 13.237219 0.531717

8 310 87.42 0 71 10 6.351249 0.769261

9 320 81.88 0 67 10 14.983966 1.227586

10 330 85.45 0 62 14 15.381570 1.045122

1 133 93.23 7 86 2 4.371631 0.119839

2 209 91.87 0 84 11 4.267471 0.200966

40 3 264 93.94 0 87 8 6.235053 0.216928

4 324 91.36 0 81 8 4.509482 0.434682

5 389 93.83 0 84 5 4.814591 0.373192

10 413 83.29 0 51 7 12.213601 1.728035

50 5 490 93.06 0 78 9 3.951199 0.374512

10 461 87.42 0 65 5 20.524624 1.057270

60 5 569 95.61 0 79 5 7.773736 0.510159

10 554 91.34 0 66 6 10.940594 0.846808

70 5 715 95.66 0 77 4 3.125759 0.413271

10 650 94.00 0 73 3 2.815311 0.485601

80 5 806 97.15 0 81 8 9.777588 0.338340

10 654 91.44 0 61 5 5.004590 0.742792

90 5 821 96.22 0 79 4 4.352552 0.338179

10 771 92.74 0 64 3 3.976014 0.647212

100 5 984 96.24 0 73 6 2.246622 0.350034

10 714 92.86 0 63 7 3.588353 0.444596

scheduling allowed us to find optimal schedules only for small numbers of
jobs and small errors of the input data, e.g., for n = 40 and L = 1% dominant
permutations have been obtained only for 4% of the randomly generated
instances. For n > 40, there were no such instances at all. Fortunately, on-
line scheduling allowed us to find optimal schedules (with optimality proofs
before the schedule execution) for most instances with n ≤ 100 (Tables 3.5
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Table 3.8: Percentage of solved instances with an empty set J0
Number of Percentage On-line Optimal Max error Average

n L decision of proved optimal without of Cmax error of

(%) points decisions (%) proof (%) (%) Cmax (%)

5 1665 96.04 66 28 0.000819 0.000032

200 10 909 88.67 42 45 1.687293 0.019191

15 563 77.09 12 60 1.810943 0.054092

20 424 64.62 0 66 5.189355 0.219553

5 1617 96.23 65 29 0.403977 0.004053

300 10 891 85.52 25 59 13.129663 0.131382

15 548 69.16 1 65 2.639358 0.096203

20 419 56.09 0 59 5.012075 0.096354

5 1605 93.21 47 45 0.000692 0.000014

400 10 840 80.48 10 62 3.807984 0.064929

15 484 65.70 0 68 1.623536 0.025619

20 361 48.20 0 55 2.821229 0.079312

5 1834 95.58 57 31 0.000462 0.000024

500 10 840 79.29 4 73 11.960889 0.123434

15 468 63.03 0 58 5.103044 0.069323

20 309 33.98 0 44 1.205535 0.025511

5 1659 93.31 45 45 2.989783 0.054760

600 10 783 77.01 1 60 1.114273 0.026779

15 417 57.31 0 55 0.212790 0.003442

20 273 28.21 0 54 0.607854 0.011057

5 1766 94.11 48 35 1.544116 0.024961

700 10 706 77.48 1 61 1.575914 0.028462

15 392 51.79 0 55 1.496273 0.027993

20 244 24.59 0 30 1.170049 0.020081

5 1665 92.19 45 39 1.034108 0.011902

800 10 691 75.69 0 59 3.810499 0.050601

15 333 40.24 0 42 2.311629 0.088997

20 209 20.10 0 36 0.263040 0.002976

5 1599 90.43 35 46 6.364723 0.075417

900 10 628 67.83 0 54 4.828169 0.068645

15 323 42.41 0 40 0.438542 0.005272

20 193 11.92 0 27 2.273839 0.067102

5 1621 92.23 32 49 0.000402 0.000020

1000 10 593 66.78 1 57 0.000558 0.000062

15 297 33.33 0 42 3.157275 0.031717

20 171 14.04 0 27 0.889870 0.023861

– 3.7) and for many instances with 200 ≤ n ≤ 1000 (Tables 3.8 and 3.9).

The following computational results are even more impressive. The aver-
age relative error of the makespan [(Cmax − C∗

max)/C∗
max] · 100% obtained for

all actual schedules is less than 2.9% for all randomly generated instances
with n = 10 jobs (column 9 in Tables 3.5 – 3.7). The average relative error
of the makespan obtained for all actual schedules is less than 1.67% for all
randomly generated instances with n jobs with 20 ≤ n ≤ 1000 (column
9 in Tables 3.5 – 3.7, column 8 in Tables 3.8 and 3.9). These results are
obtained since the percentage of the correct decisions made in the on-line
scheduling phase is rather large (column 4). Thus, the sufficient conditions
for the existence of a dominant permutation given in Theorems 3.8 – 3.20
may be very effective for on-line scheduling.

It should be also noted that the number of decision-making time-points
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Table 3.9: Percentage of solved instances with 30% of jobs from set J0
Number of Percentage On-line Optimal Max error Average

n L decision of proved optimal without of Cmax error of

(%) points decisions (%) proof (%) (%) Cmax (%)

5 1307 95.87 68 7 1.493803 0.228527

200 10 836 92.94 59 10 4.797616 0.268801

15 592 81.25 23 14 3.531275 0.550724

20 424 69.58 1 32 8.917567 0.603160

5 1636 96.45 67 1 6.174240 0.230672

300 10 880 89.20 40 11 2.548966 0.272686

15 578 77.34 5 27 0.684393 0.327328

20 448 66.74 0 23 2.098592 0.402790

5 1612 96.09 60 4 4.655282 0.200383

400 10 873 87.06 28 13 2.560096 0.274370

15 550 76.18 3 28 3.529257 0.306747

20 411 61.07 0 21 4.233299 0.330161

5 1742 95.24 58 2 1.803466 0.155213

500 10 797 84.32 17 27 5.349672 0.271104

15 526 70.53 0 26 4.218193 0.215071

20 384 63.28 0 24 3.550418 0.235060

5 1710 95.50 60 5 1.594194 0.115055

600 10 861 85.25 13 20 1.047556 0.172209

15 479 68.68 0 32 1.667378 0.192229

20 335 55.22 0 23 2.664976 0.199377

5 1787 96.59 62 3 0.283844 0.085372

700 10 821 82.58 8 25 0.974754 0.136061

15 458 68.12 0 21 3.935263 0.207185

20 294 46.26 0 30 1.589900 0.154975

5 1789 95.03 52 8 0.251936 0.081683

800 10 832 83.17 5 24 0.247568 0.125456

15 443 64.79 0 22 0.766673 0.121888

20 293 49.49 0 15 1.834536 0.151659

5 1737 95.28 57 7 0.934157 0.074773

900 10 744 77.42 2 30 0.522401 0.117334

15 397 59.19 0 28 1.861207 0.141729

20 263 49.43 0 20 3.329657 0.142571

5 1724 95.01 53 7 1.111841 0.072543

1000 10 728 80.91 2 28 0.266260 0.098637

15 404 61.39 0 27 2.376391 0.107110

20 229 43.23 0 21 1.266256 0.124885

ti = c1(i) when the order of conflicting jobs has to be decided is rather large
for some instances with n ≥ 50 (column 3). However, these decisions made
in Algorithm ON-LINE(J0 =∅) (Algorithm ON-LINE) are very fast: There
were no randomly generated instance which takes a running time more than
0.05 seconds for a processor with 1200 MHz.

3.3. Job Shop with Interval Processing Times

In this section, we address the two-machine job shop problem for the case
when it is hard to obtain exact probability distributions for the random pro-
cessing times, and when assuming a specific probability distribution is not
realistic. Usually, the schedules obtained after assuming a certain proba-
bility distribution may be not close to an optimal schedule. It has been
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observed that, although the exact probability distribution of the job pro-
cessing times may not be known in advance (before scheduling), upper and
lower bounds for the job processing times are easy to obtain in many practi-
cal cases. We show that the information on the bounds of the job processing
times is important and should be utilized in finding a solution to the schedul-
ing problem with interval processing times. In Section 3.1, necessary and
sufficient conditions are given when a transposition of two jobs may be used
to minimize the makespan for the uncertain flow shop problem with two
machines. In this section, we show how to use this result for solving the
uncertain two-machine job shop problem. We consider the following non-
preemptive job shop problem with interval processing times. Two machines
M = {M1, M2} have to process n jobs J with different two-stage routes.
Machine repetition in a route is not allowed. Let J(12) ⊆ J denote the sub-
set of jobs with the route (M1, M2), i.e., job Ji ∈ J(12) has to be processed
on machine M1 and then on machine M2. Let J(21) ⊆ J denote the subset
of jobs with the opposite route (M2, M1), and J(k) ⊆ J denote the subset
of jobs that have to be processed only on machine Mk, k ∈ {1, 2}. Thus,
we have J = J(1) ∪ J(2) ∪ J(12) ∪ J(21). We denote qk = |J(k)|, where
k ∈ {1, 2, 12, 21}. In contrast to the deterministic job shop problem, it is
assumed that the processing time pij of job Ji on machine Mj is not fixed
before scheduling. In the realization of the process, pij may take any real
value between a lower bound pL

ij and an upper bound pU
ij being given before

scheduling. The probability distribution of the random processing time is
unknown. In such a case, there may not exist a unique schedule that remains
optimal for all possible realizations of the job processing times. Therefore,
we consider a set of schedules that dominate all feasible schedules. We con-
sider the criterion Cmax, i.e., the minimization of the schedule length.

Let T J ⊆ Rq
+ define the given set of feasible vectors of the job processing

times. For the case of an uncertain job shop problem, it is useful to consider
T J as the Cartesian product of four sets: T J = T12×T1×T2×T21, where Tw

is the set of feasible vectors defining the processing times of the jobs from set
J(k), k ∈ {1, 2, 12, 21}. In what follows, inclusion p ∈ T J means that vector
p has the dimension q = q12 + q1 + q2 + q21 and the set of its components
consists of the following four ordered subsets {pij : Ji ∈ J(12), j ∈ {1, 2}},
{pij : Ji ∈ J(1), j = 1}, {pij : Ji ∈ J(2), j = 2} and {pij : Ji ∈ J(21), j ∈
{1, 2}}. We also assume that the jobs from set J are numbered with re-
spect to the above order of these four subsets of the components of vector
p. Thus, vector p ∈ T J may be represented as follows: p = (p1,1, p1,2, . . . ,

pq12,1, pq12,2; pq12+1,1, pq12+2,1, . . . , pq12+q1,1; pq12+q1+1,2, pq12+q1+2,2, . . . , pq12+q1+q2,2;
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pq12+q1+q2+1,1, pq12+q1+q2+1,2, . . . , pq,1, pq,2) or in a more short way: p =
(p(12); p(1); p(2); p(21)), where p(12) ∈ T12, p(1) ∈ T1, p(2) ∈ T2 and
p(21) ∈ T21. Using the three-field notation, this uncertain job shop problem
is denoted as J 2/pL

ij ≤pij ≤pU
ij,ni≤2/Cmax. If equality pL

ij = pU
ij holds for each

job Ji ∈ J and machine Mj ∈ M , then problem J 2/pL
ij ≤pij ≤pU

ij,ni≤2/Cmax

turns into a deterministic job shop problem J 2/ni≤2/Cmax that is polyno-
mially solvable due to the following theorem proven by Jackson [168].

Theorem 3.21 For problem J 2/ni≤2/Cmax, a semiactive schedule for pro-
cessing the jobs J = J(1) ∪ J(2) ∪ J(12) ∪ J(21) has the minimal length,
if machine M1 processes the jobs in the order (J(12), J(1), J(21)), machine
M2 in the order (J(21), J(2), J(12)) provided that the jobs J(12) are ordered
for processing on both machines using the condition

min{pik1, pik+12} ≤ min{pik+11, pik2}, k = 1, 2, . . . , q12 − 1, (3.39)

and the jobs J(21) are ordered for processing on both machines using the
condition

min{pik2, pik+11} ≤ min{pik+12, pik1}, k = 1, 2, . . . , q21 − 1, (3.40)

jobs J(1) and jobs J(2) may be arbitrarily ordered for processing.

It is easy to see that, due to Theorem 3.21, the jobs J(12) can be op-
timally ordered via Johnson’s algorithm similarly as in a flow shop prob-
lem F2//Cmax since condition (3.39) coincides with condition (3.2) (see Sec-
tion 3.1, page 181) provided that J = J(12) and T = T12. The jobs J(21)
can be optimally ordered via Johnson’s algorithm in a flow shop problem
F2//Cmax with the opposite route (M2, M1) of the jobs since condition (3.40)
may be obtained from condition (3.2) after interchanging machine M1 with
machine M2 and setting J = J(21) and T = T21. Thus, an optimal schedule
for problem J 2/ni≤2/Cmax may be defined by the pair of permutations π′

and π′′ (we call it Jackson pair of permutations), where π′ = (π
(12)
i , π(1)

u , π
(21)
j )

is a permutation of the jobs on machine M1, and π′′ = (π
(21)
j , π(2)

v , π
(12)
i ) is

a permutation of the jobs on machine M1. Job Jr belongs to permutation
π

(w)
k if and only if Jr ∈ J(w) with w ∈ {1, 2, 12, 21}. To be more precise,

permutation π′ of the jobs J(12)∪J(1)∪J(21) on machine M1, and permu-
tation π′′ of the jobs J(21)∪J(2)∪J(12) on machine M2 may be defined as
follows.

The jobs within permutation π
(12)
i (permutation π

(21)
j , respectively) have

to be ordered by the SPT (LPT) rule on machine M1 (on machine M2). Rule



3.3. JOB SHOP WITH INTERVAL PROCESSING TIMES 229

SPT (shortest processing time) means that the jobs have to be sorted in a
non-decreasing order of the processing times. Rule LPT (longest processing
time) means that the jobs have to be sorted in a non-increasing order of
the processing times. Since the order of the jobs in permutation π(1)

u and in
permutation π(2)

v may be arbitrary, we can fix these permutations. Let the
jobs in permutations π(1)

u and π(2)
v be sorted with respect to the job numbers:

π(1)
u = (Jq12+1, Jq12+2, . . . , Jq12+q1

), π(2)
v = (Jq12+q1+1, Jq12+q1+2, . . . , Jq12+q1+q2

).

We denote the set of all permutations of the jobs J(12) as

Sπ
12 = {π(12)

1 , π
(12)
2 , . . . , π

(12)
q12! },

and the set of all permutations of the jobs J(21) as

Sπ
21 = {π(21)

1 , π
(21)
2 , . . . , π

(21)
q21! }.

Let 〈Sπ
12, S

π
21〉 be a subset of the Cartesian product (Sπ

12, π
(1)
u , Sπ

21) ×
(Sπ

21, π
(2)
v , Sπ

12) such that the elements of set 〈Sπ
12, S

π
21〉 are ordered pairs

of the two permutations π′ and π′′, where π′ = (π
(12)
i , π(1)

u , π
(21)
j ) and

π′′ = (π
(21)
j , π(2)

v , π
(12)
i ), 1 ≤ i ≤ q12!, 1 ≤ j ≤ q21!. Since both permu-

tations π(1)
u and π(2)

v are fixed, and index i (index j) is the same in each
permutation from the pair π′, π′′, we obtain |〈Sπ

12, S
π
21〉| = q12!q21! pairs of

permutations. We use the following definition of a J-solution to problem
J 2/pL

ij ≤pij ≤pU
ij,ni≤2/Cmax.

Definition 3.3 The set of pairs of permutations 〈Sπ
12(T12), S

π
21(T21)〉 ⊆

〈Sπ
12, S

π
21〉 is called a J-solution to problem J 2/pL

ij ≤ pij ≤ pU
ij,ni ≤ 2/Cmax,

if for each vector p ∈ T J , the set 〈Sπ
12(T12), S

π
21(T21)〉 contains at least one

optimal Jackson pair of permutations for problem J 2/ni ≤ 2/Cmax with the
vector p of job processing times. If any proper subset of the J-solution
〈Sπ

12(T12), S
π
21(T21)〉 is not a J-solution to problem J 2/pL

ij ≤ pij ≤ pU
ij,ni ≤

2/Cmax, then 〈Sπ
12(T12), S

π
21(T21)〉 is called a minimal J-solution.

Next, we show that the results for the flow shop problem obtained in
Section 3.1 may be used for solving the job shop problem with interval
processing times. In particular, we prove the following lemma.

Lemma 3.4 Let Sπ
12(T12) be a J-solution to problem F2/pL

ij ≤pij ≤pU
ij/Cmax

with the set of jobs J = J(12) and the processing times defined by the set of
vectors T = T12. Then 〈Sπ

12(T12), S
π
21〉 is a J-solution to problem J 2/pL

ij ≤
pij ≤pU

ij, ni≤2/Cmax with the set of jobs J = J(1)∪J(2)∪J(12)∪J(21) and
the processing times defined by the set of vectors T J = T12 × T1 × T2 × T21.
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Proof. By contradiction, we assume that there exists a vector p = (p(12);
p(1); p(2); p(21)) ∈ T J of job processing times, for which no optimal
Jackson pair of permutations for problem J 2/ni≤2/Cmax with the vector p
of job processing times belongs to set 〈Sπ

12(T12), S
π
21〉.

Due to Definition 3.3 and taking into account that set Sπ
21 contains all

permutations of jobs J(21), a permutation pair from set 〈Sπ
12(T12), S

π
21〉 may

be not a J-solution to problem J 2/pL
ij ≤ pij ≤ pU

ij, ni ≤ 2/Cmax with the set
of jobs J = J(1) ∪ J(2) ∪ J(12) ∪ J(21) and the processing times defined
by the set of vectors T J = T12 × T1 × T2 × T21 only if set Sπ

12(T12) does
not include a Johnson permutation to problem F2//Cmax with the job set
J = J(12) and the vector p(12) ∈ T = T12 of job processing times. Thus,
due to Definition 3.1, set Sπ

12(T12) is not a J-solution to problem F2/pL
ij ≤

pij ≤pU
ij/Cmax with the set of jobs J = J(12) and the set T = T12 of feasible

vectors of the job processing times.
We obtain a contradiction to the condition of Lemma 3.4. Hence, our as-

sumption was wrong. In fact, for each vector p ∈ T J , set 〈Sπ
12(T12), S

π
21〉 con-

tains an optimal Jackson pair of permutations for problem J 2/ni≤2/Cmax

with the vector p of job processing times. Consequently, set 〈Sπ
12(T12), S

π
21〉

is a J-solution to problem J 2/pL
ij ≤pij ≤pU

ij, ni≤2/Cmax with the set of jobs
J = J(1)∪ J(2)∪ J(12)∪ J(21) and the processing times defined by the set
of vectors T J = T12 × T1 × T2 × T21.

�

Similarly we can prove the following claim.

Lemma 3.5 Let Sπ
21(T21) be a J-solution to problem F2/pL

ij ≤pij ≤pU
ij/Cmax

with the set of jobs J = J(21) and the processing times defined by the set of
vectors T = T21. Then 〈Sπ

12, S
π
21(T21)〉 is a J-solution to problem J 2/pL

ij ≤
pij ≤pU

ij, ni≤2/Cmax with the set of jobs J = J(1)∪J(2)∪J(12)∪J(21) and
the processing times defined by the set of vectors T J = T12 × T1 × T2 × T21.

Using Lemma 3.4 and Lemma 3.5, we prove the following claim.

Theorem 3.22 If Sπ
12(T12) is a J-solution to the flow shop problem F2/pL

ij ≤
pij ≤pU

ij/Cmax with the set of jobs J(12) and the processing times defined by
the set of vectors T = T12, and Sπ

21(T21) is a J-solution to the flow shop
problem F2/pL

ij ≤pij ≤pU
ij/Cmax with the set of jobs J(21) and the processing

times defined by the set of vectors T = T21, then 〈Sπ
12(T12), S

π
21(T21)〉 is a

J-solution to problem J 2/pL
ij ≤ pij ≤ pU

ij, ni ≤ 2/Cmax with the set of jobs
J = J(1) ∪ J(2) ∪ J(12) ∪ J(21) and the processing times defined by the set
of vectors T J = T12 × T1 × T2 × T21.
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Proof. By contradiction, we assume that there exists a vector p = (p(12);
p(1); p(2); p(21)) ∈ T J of job processing times, for which no optimal
Jackson pair of permutations for problem J 2/ni≤2/Cmax with the vector p
of processing times belongs to set 〈Sπ

12(T12), S
π
21(T21)〉.

Due to Definition 3.3, set 〈Sπ
12(T12), S

π
21(T21)〉 is not a J-solution for prob-

lem J 2/pL
ij ≤ pij ≤ pU

ij, ni ≤ 2/Cmax with the set of jobs J = J(1) ∪
J(2) ∪ J(12) ∪ J(21) and the processing times defined by the set of vectors
T J = T12 × T1 × T2 × T21 either if set Sπ

12(T12) does not include a John-
son permutation for problem F2//Cmax with job set J(12), route (M1, M2)
and processing times p(12)) or if set Sπ

21(T21) does not include a Johnson
permutation for problem F2//Cmax with job set J(21), route (M2, M1) and
processing times p(21)). We denote the former case as case (a), and the
latter case as case (b). In case (a), set 〈Sπ

12(T ), Sπ
21〉 cannot be a J-solution

to problem F2/pL
ij ≤ pij ≤ pU

ij/Cmax with the set of jobs J = J(12) and the
set T = T12 of feasible vectors of job processing times. However, this is not
possible due to Lemma 3.4 (since the condition of Lemma 3.4 holds). Thus,
we obtain a contradiction. Hence, in case (a), our assumption was wrong.

Using Lemma 3.5 and arguing similarly, we can obtain a contradiction in
case (b) as well.

�

Due to Theorem 3.22, solving problem J 2/pL
ij ≤ pij ≤ pU

ij, ni ≤ 2/Cmax is
reduced to solving two problems F2/pL

ij ≤ pij ≤ pU
ij/Cmax. To illustrate this,

we consider the following two examples of an uncertain job shop problem.

Example 3.5 Let the bounds for the job processing times of problem
J 2/pL

ij ≤ pij ≤ pU
ij, ni ≤ 2/Cmax be given in Table 3.10. These bounds define

the set T J of feasible vectors of the job processing times. The set of jobs J
consists of four subsets J(12) = {J1, J2, J3}, J(1) = {J4}, J(2) = {J5} and
J(21) = {J6, J7, J8}. It is easy to see that Theorem 3.21 used for problem

Table 3.10: Lower and upper bounds for the job processing times in Example 3.5

i 1 2 3 4 5 6 7 8
ai1 2 3 7 2 - 4 5 7
bi1 4 4 8 3 - 5 6 8
ai2 5 5 7 - 3 1 2 7
bi2 6 6 8 - 5 3 3 8

F2/pL
ij ≤ pij ≤ pU

ij/Cmax with the job set J(12) implies the following binary
relation A� (see page 195 in Section 3.1) on the job set J(12) = {J1, J2, J3}:



232 CHAPTER 3. TWO-MACHINE FLOW SHOP AND JOB SHOP

J1 � J3 and J2 � J3. Therefore, instead of considering 3! = 6 permutations
of the jobs J(12), it is sufficient to consider two permutations: (J1, J2, J3)
and (J2, J1, J3).

Next, we consider a flow shop problem F2/pL
ij ≤ pij ≤ pU

ij/Cmax with the
job set J(21) = {J6, J7, J8} and the route (M2, M1). Due to Theorem 3.21,
we find the binary relation A� on the job set J(21): J6 � J8 and J7 � J8.
Therefore, instead of considering 3! = 6 permutations of these three jobs, it
is sufficient to consider two permutations: (J6, J7, J8) and (J7, J6, J8).

Due to Theorem 3.22, for the job shop problem J 2/pL
ij ≤ pij ≤ pU

ij, ni ≤
2/Cmax with the job set J = J(12) ∪ J(1) ∪ J(2) ∪ J(21) = {J1, J2, . . . , J8}
and the intervals of the processing times given in Table 3.10, we obtain a
J-solution which consists of the following four pairs of permutations:

π′
1 = (J1, J2, J3, J4, J6, J7, J8), π

′′
1 = (J6, J7, J8, J5, J1, J2, J3);

π′
2 = (J1, J2, J3, J4, J7, J6, J8), π

′′
2 = (J7, J6, J8, J5, J1, J2, J3);

π′
3 = (J2, J1, J3, J4, J6, J7, J8), π

′′
3 = (J6, J7, J8, J5, J2, J1, J3);

π′
4 = (J2, J1, J3, J4, J7, J6, J8), π

′′
4 = (J7, J6, J8, J5, J2, J1, J3).

Thus, instead of considering q12! · q21! = 3! · 3! = 36 permutations, it
is sufficient to consider four pairs of permutations which certainly includes
an optimal Jackson pair of permutations for each vector p ∈ T J of the job
processing times.

Example 3.6 Let us define a minimal J-solution to problem J 2/pL
ij ≤pij ≤

pU
ij, ni≤2/Cmax for processing the set of jobs J = J(12)∪J(1)∪J(2)∪J(21) =
{J1, J2, . . . , J14}, where the jobs J1, J2, . . . , J5 from set J(12) have the route
(M1, M2). Job J6 ∈ J(1) and job J7 ∈ J(1) have the route (M1). Jobs
J8 ∈ J(2) and J9 ∈ J(2) have the route (M2). Jobs J10, J11, . . . , J14 from
set J(21) have the route (M2, M1). The intervals of feasible job processing
times are given in Table 3.11. First, we consider the uncertain flow shop

Table 3.11: Lower and upper bounds for the job processing times in Example 3.6

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
ai1 5 2 8 7 10 4 2 - - 2 7 8 10 2
bi1 7 4 11 10 13 5 3 - - 3 8 9 11 4
ai2 8 6 7 7 5 - - 4 5 5 3 4 9 6
bi2 10 9 10 9 7 - - 6 7 7 5 5 12 6

problem F2/pL
ij ≤ pij ≤ pU

ij/Cmax with the job set J(12) = {J1, J2, J3, J4, J5}
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and the route (M1, M2). Due to Theorem 3.21, we find the following binary
relation A� on the job set J(12): J2 � J1, J1 � J3, J1 � J4, J3 � J5,
J4 � J5. Therefore, instead of considering 5! = 120 permutations of these
five jobs, it is sufficient to consider two permutations: (J2, J1, J3, J4, J5) and
(J2, J1, J4, J3, J5).

Next, we consider the uncertain flow shop problem F2/pL
ij ≤pij ≤pU

ij/Cmax

with the job set J(21) = {J10, J11, J12, J13, J14} and the route (M2, M1). Due
to Theorem 3.21, we find the following binary relation A� on the job set
J(21): J11 � J13, J12 � J13, J13 � J10, J13 � J14. Therefore, instead
of considering 5! = 120 permutations of these five jobs, it is sufficient
to consider four permutations: (J11, J12, J13, J10, J14), (J11, J12, J13, J14, J10),
(J12, J11, J13, J10, J14) and (J12, J11, J13, J14, J10).

Using Theorem 3.22, we obtain that a minimal J-solution to problem
J 2/pL

ij ≤ pij ≤ pU
ij, ni ≤ 2/Cmax with the set of jobs J = {J1, J2, . . . , J14}

includes the following pairs of permutations (the sequences for processing
the jobs of set J1 and the jobs of set J2 are fixed with respect to the job
numbers):

π′
1 = (J2, J1, J3, J4, J5, J6, J7, J11, J12, J13, J10, J14),

π′′
1 = (J11, J12, J13, J10, J14, J8, J9, J2, J1, J3, J4, J5);

π′
2 = (J2, J1, J3, J4, J5, J6, J7, J11, J12, J13, J14, J10),

π′′
2 = (J11, J12, J13, J14, J10, J8, J9, J2, J1, J3, J4, J5);

π′
3 = (J2, J1, J3, J4, J5, J6, J7, J12, J11, J13, J10, J14),

π′′
3 = (J12, J11, J13, J10, J14, J8, J9, J2, J1, J3, J4, J5);

π′
4 = (J2, J1, J3, J4, J5, J6, J7, J12, J11, J13, J14, J10),

π′′
4 = (J12, J11, J13, J14, J10, J8, J9, J2, J1, J3, J4, J5);

π′
5 = (J2, J1, J4, J3, J5, J6, J7, J11, J12, J13, J10, J14),

π′′
5 = (J11, J12, J13, J10, J14, J8, J9, J2, J1, J4, J3, J5);

π′
6 = (J2, J1, J4, J3, J5, J6, J7, J11, J12, J13, J14, J10),

π′′
6 = (J11, J12, J13, J14, J10, J8, J9, J2, J1, J4, J3, J5);

π′
7 = (J2, J1, J4, J3, J5, J6, J7, J12, J11, J13, J10, J14),

π′′
7 = (J12, J11, J13, J10, J14, J8, J9, J2, J1, J4, J3, J5);

π′
8 = (J2, J1, J4, J3, J5, J6, J7, J12, J11, J13, J14, J10),

π′′
8 = (J12, J11, J13, J14, J10, J8, J9, J2, J1, J4, J3, J5).

A digraph (without transitive arcs), defining the above minimal J-solution
to problem J 2/pL

ij ≤pij ≤pU
ij, ni≤2/Cmax is presented in Figure 3.3.
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Figure 3.3: Digraph representing the binary relations A� for Example 3.6

3.4. Flow Shop with Limited Machine Availability

This section deals with the problem of minimizing the makespan in the
two-machine flow shop with w non-availability intervals given on machines
M1 and M2. First, we show that this problem is binary NP-hard even if there
is only one non-availability interval (w = 1) either on machine M1 or on
machine M2. If there are no non-availability intervals on any machine (w =
0), the two-machine flow shop problem with the makespan criterion may be
solved in O(n log2 n) time using Johnson’s algorithm given on page 181. We
derive sufficient conditions for the optimality of a Johnson permutation in
the case of the w ≥ 1 given non-availability intervals. The instrument we
use is a stability analysis which answers the question how stable an optimal
schedule is if there are independent changes in the processing times of the
jobs. The influence of possible variations of the processing times on the
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optimality of a schedule was investigated in Chapter 1, where the stability
radius of an optimal schedule was studied for a general shop with m ≥ 2
machines. In contrast to the stability analysis developed in Chapter 1, the
variation of the processing time studied in this section may have only one
direction, since the non-availability intervals of a machine may increase the
interval used for processing a job but they cannot decrease this interval.
Therefore, we have to modify the definition of the stability radius for the
purposes of this section.

We assume that all w non-availability intervals are known offline (be-
fore scheduling). To indicate this, we shall use the notation NCoff. Any
job Ji ∈ J = {J1, J2, . . . , Jn} that cannot be completed before the non-
availability interval of machine Mk ∈ M = {M1, M2} processes this job can
be continued just after machine Mk will be available again. To indicate this,
we use the notation pmtn since the latter assumption is close to the allowance
of operation preemptions. Thus, in this and the next sections, it is allowed
to violate Condition 4 (see Introduction, page 12). Using the three-field no-
tation, the problem under consideration is denoted as F2,NCoff/pmtn/Cmax.

In this section, we use the following notations, where j ∈ {1, 2} denotes
the machine index and i ∈ {1, 2, . . . , n} denotes the job index: wj denotes
the number of non-availability intervals on machine Mj; Nkj denotes the kth

non-availability interval on machine Mj; s(Nkj) denotes the starting point
of the kth non-availability interval; f(Nkj) denotes the endpoint of the kth

non-availability interval; h(Nkj) denotes length of the kth non-availability
interval provided that h(Nkj) = f(Nkj) − s(Nkj).

It is assumed that w non-availability intervals are known before schedul-
ing. Machine Mj ∈ {M1, M2} is not available for processing jobs of set
J from the starting point s(Nkj) until the endpoint f(Nkj) = s(Nkj) +
h(Nkj), k ∈ {1, 2, . . . , wj}. The operation Qij started before point s(Nkj)
but not finished until point s(Nkj) is suspended during the time interval of
length h(Nkj) starting from point s(Nkj), then the processing of operation
Qij is resumed from time f(Nkj) = s(Nkj)+h(Nkj). Let sj (cj, respectively)
denote the earliest (latest) possible starting time of a job on machine Mj in
a semiactive schedule. Let sij(πk) (cij(πk)) denote the starting (completion)
time of operation Qij in the semiactive schedule defined by a permutation
πk of the n jobs from set J .

Since the minimization of Cmax(πk) = max{cij(πk) : Ji ∈ J, j ∈ {1, 2}} is
a regular criterion, we consider only semiactive schedules. Each semiactive
schedule is uniquely defined by a permutation of the n jobs on each machine.
For the two-machine flow shop problem, it is sufficient to consider the same
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permutation πk = (Jk1
, Jk2

, . . . , Jkn
) of the jobs on each of the two machines,

since the set of such schedules is dominant for minimizing the makespan.

NP-hardness of Problem F2,NCoff/pmtn, w = 1/Cmax

Next, we prove that problem F2,NCoff/pmtn/Cmax is binary NP-hard
even if there exists only one non-availability interval (w = 1) either on
machine M1 or on machine M2.

Theorem 3.23 If w1 = 1 and w2 = 0, then problem F2,NCoff/pmtn/Cmax

is binary NP-hard.

Proof. We prove the theorem by transforming polynomially the NP-hard
Partition problem [125] into problem F2,NCoff/pmtn/Cmax with w1 = 1 and
w2 = 0. The Partition problem can be described as follows.

Given a finite set N 0 = {1, 2, . . . , n0} of indices and positive integers
e1, e2, . . . , en0

which sum up to 2E =
∑

i∈N0 ei, does there exist a partition of
set N 0 into two subsets N 0

1 and N 0
2 (i.e., N 0 = N 0

1 ∪N 0
2 , N 0

1 ∩N 0
2 = ∅) such

that
∑

i∈N0
1
ei =

∑
i∈N0

2
ei = E?

Let emax = max{ei | i ∈ N 0}. We can assume that

emax < E + 1. (3.41)

Indeed, if emax ≥ E+1, then the Partition problem definitely has no solution.
Given an instance of the Partition problem, we generate a set of data for

the instance of problem F2,NCoff/pmtn/Cmax as follows. Let pi1 = ei and
pi2 = ei(E + 1) for each i ∈ N 0. In addition, let w1 = 1, w2 = 0, n = n0 + 1,
pn1 = 0, pn2 = emax, s(N1,1) = E, and f(N1,1) = E2 + E.

Does there exist a schedule for the above instance of problem
F2,NCoff/pmtn/Cmax with a makespan of no more than 2E2 + 2E + emax?

Sufficiency. Let there exist a solution N 0 = N 0
1 ∪ N 0

2 , N 0
1 ∩ N 0

2 = ∅, of
the above instance of the Partition problem:

∑
i∈N0

1
ei =

∑
i∈N0

2
ei = E. Then

we can construct a desired schedule as follows. First schedule job Jn, then
the jobs Ji with i ∈ N 0

1 in an arbitrary order, and finally the jobs Jj with
j ∈ N 0

2 in an arbitrary order as well. This schedule is represented in Figure
3.4. Let N ′ be any subset of set N 0

1 and let Jk be the last job of the ordered
subset N ′. Due to equality pi2 = pi1(E + 1), we obtain∑

i∈N ′
pi1 ≤ emax +

∑
i∈N ′

pi1 − pk1 ≤ pn2 + (E + 1)(
∑

i∈N ′
pi1 − pk1)

= pn2 +
∑

i∈N ′
(E + 1)pi1 − (E + 1)pk1 = pn2 +

∑
i∈N ′

pi2 − pk2.
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Furthermore, the last job in the ordered set N 0
1 finishes at time emax + (E +

1)E on machine M2. Hence, there is no idle time on machine M2 from time
t0 = 0 up to time emax + (E + 1)E = E2 + E + emax.

Similar arguments can be applied to show that there is no idle time
on machine M2 for processing the set of jobs {Ji | i ∈ N 0

2}. Hence, the
makespan of this schedule is equal to emax + (E + 1)E + (E + 1)E = 2E2 +
2E + emax. Sufficiency has been proven.

M2

M1

Jn

Ji, i ∈ N0
2Ji, i ∈ N0

1 N1,1

E E2 + E 2E2 + 2E

Ji, i ∈ N0
1 Ji, i ∈ N0

2

0 emax E2 + E + emax 2E2 + 2E + emax

Figure 3.4: Optimal schedule for problem F2,NCoff/pmtn, w = 1/Cmax

Necessity. Suppose that there exists a schedule with the makespan 2E2 +
2E + emax for the above instance of problem F2,NCoff/pmtn/Cmax.

Since
∑

i∈J pi2 = 2E2 + 2E + emax, there is no idle time in this schedule
for machine M2. Hence, job Jn must be processed first in this schedule.

Aiming for contradiction, we suppose that there exists no solution for the
above instance of the Partition problem. Then there is no subset of jobs
J that can have a finishing time on machine M1 at time point s(N1,1) =
E. Moreover, since all the numbers ei are integers, for any subset of jobs
{Ji | i ∈ N ′ ⊆ N 0} that finish before time point E on machine M1, we
obtain ∑

i∈N ′
pi1 ≤ E − 1.

Therefore, equalities pi2 = pi1(E + 1), i ∈ N ′ ⊆ N 0, imply∑
i∈N ′

pi2 = (E + 1)
∑

i∈N ′
pi1 ≤ (E + 1)(E − 1) = E2 − 1.

Due to inequality (3.41), we obtain

emax +
∑

i∈N ′
pi2 ≤ emax + E2 − 1 < E2 + E = f(N1,1).
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Therefore, there must exist an idle time on machine M2. This contradic-
tion completes the necessity proof.

Thus, we constructed a polynomial transformation of the binary NP-hard
Partition problem to problem F2,NCoff/pmtn/Cmax with w1 = 1 and w2 = 0.
Therefore, the latter problem is binary NP-hard as well.

�

The following claim can be proven similarly.

Theorem 3.24 If w1 = 0 and w2 = 1, then problem F2,NCoff/pmtn/Cmax

is binary NP-hard.

Motivation and Example

Let πi ∈ Sπ be a Johnson permutation of the n jobs of set J , i.e., permu-
tation πi satisfies condition (3.2) given on page 181. Such a permutation is
optimal for the makespan criterion when all machines are continuously avail-
able (w = 0) during the planning horizon (see Section 3.1). For the purposes
of this and the next sections, we can assume that the Johnson permutation
πi is constructed by Johnson’s algorithm given on page 181 (see Remark
3.1 on page 182). We shall study the question whether this permutation
remains optimal for the case of w ≥ 1 non-availability intervals of each of
the two machines known offline. In a concrete schedule, enlargements of
time intervals used for processing jobs may be caused by non-availability
intervals of machines. The main idea realized in this section is to consider
the non-availability interval on a machine as an additional part of the job
processing time. In order to take into account such an increase of the total
time interval used for processing a job, we compute the stability polytope
and the stability radius ρj of a Johnson permutation which is the minimum
of the maximal possible enlargements rij of the jobs Ji ∈ J on machine
Mj ∈ {M1, M2} such that the Johnson permutation is not changed. Such a
stability radius ρj can be computed in O(n) time.

We compute also the enlargement polytope and the enlargement radius
δj of the processing times of the operations on machine Mj which denotes
the maximum of the possible enlargements dij of the time intervals used for
processing job Ji on machine Mj caused by non-availability intervals. It is
shown that a Johnson permutation πk ∈ Sπ = {π1, π2, . . . , πn!} for problem
F2//Cmax remains optimal for problem F2,NCoff/pmtn/Cmax if inequality
dij ≤ rij holds for each i ∈ {1, 2, . . . , n} and each j ∈ {1, 2}. The enlarge-
ment polytopes and the radii δj can be computed in O(w2 + n log2 n) time.
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Further, we present sufficient conditions for the stability of any optimal
permutation πl ∈ Sπ. At the end of this section, the results obtained for a
stability analysis are demonstrated on a huge number of randomly generated
two-machine flow shop problems with 5 ≤ n ≤ 10000 and 1 ≤ w ≤ 1000.

In [177], it has been shown that a semiactive schedule defined by a John-
son permutation is optimal for the case when all machines are continuously
available throughout the planning horizon, i.e., when w = 0 (see Section
3.1). Moreover, preemptions of operations cannot decrease the objective
function value Cmax, and so the instance of problem F2//Cmax and the in-
stance of problem F2/pmtn/Cmax with the same input data have the same
optimal schedule defined by a Johnson permutation. The following example
is used to illustrate the calculations.

Example 3.7 We consider a three-job two-machine flow shop problem
with w = 9 non-availability intervals on the two machines defined in Ta-
ble 3.12. Table 3.13 presents the given processing times pij of the jobs
Ji ∈ J = {J1, J2, J3} on the machines Mj ∈ M = {M1, M2}. Next, we

Table 3.12: Non-availability intervals of the machines in Example 3.7

Machine M1 Machine M2

s(N1,1) = 2 f(N1,1) = 3 s(N1,2) = 1 f(N1,2) = 4
s(N2,1) = 11 f(N2,1) = 13 s(N2,2) = 9 f(N2,2) = 10
s(N3,1) = 16 f(N3,1) = 17 s(N3,2) = 14 f(N3,2) = 15
s(N4,1) = 19 f(N4,1) = 20 s(N4,2) = 21 f(N4,2) = 22
s(N5,1) = 24 f(N5,1) = 26

w1 = 5 w2 = 4

Table 3.13: Job processing times for Example 3.7

Machine M1 Machine M2

p1,1 = 3 p1,2 = 5
p2,1 = 4 p2,2 = 1
p3,1 = 7 p3,2 = 2

show how to compute the values rij, ρj, sj, cj, dij and δj for the jobs Ji ∈ J
and the machines Mj ∈ {M1, M2}. For this example, it will be shown that
the schedule with the jobs following the Johnson permutation πk = (1, 3, 2)
applied to the situation when the machines are not continuously available
remains optimal.
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Let πk be a Johnson permutation (which is optimal when both machines
are continuously available during the planning horizon, i.e., for problem
F2//Cmax). Our aim is to answer the question whether this permutation
remains optimal for problem F2,NCoff/pmtn/Cmax as well, i.e., when w ≥
1 non-availability intervals are given before scheduling and the operation
processing times are the same as in problem F2//Cmax. A non-availability
interval Nkj on machine Mj may be interpreted as an additional part of the
processing time of the operation Qij the processing of which on machine
Mj is preempted due to interval Nkj. Indeed, machine Mj cannot process
any job during the interval Nkj and job Ji has to wait until the endpoint of
interval Nkj. In a concrete schedule, an enlargement equal to h(Nkj) of the
completion time of job Ji is caused by the non-availability interval Nkj.

Next, we show how to compute the stability radius ρj for machine Mj

which is the minimum of all maximal possible enlargements rij of the pro-
cessing times of the jobs Ji ∈ J on machine Mj such that the Johnson
permutation is not changed. Then we show how to compute the enlarge-
ment radius δj of the processing times of the operations on machine Mj

which is the maximum of all maximal possible enlargements dij of the jobs
Ji ∈ J on machine Mj caused by the non-availability intervals on machine
Mj. The Johnson permutation πk remains optimal if dij ≤ rij for all jobs
Ji ∈ J and machines Mj ∈ M .

Stability Polytopes for a Johnson Permutation

The general definition of the stability radius of an optimal schedule was
given in Chapter 1. Here we need simplified versions of the stability radius
since non-availability intervals can increase the time interval used for pro-
cessing the operation but they cannot decrease this interval. Moreover, the
stability radius considered in Chapter 1 defines the maximal independent
simultaneous variations of the processing times such that the given sched-
ule (digraph Gs) remains optimal. In Definition 3.4 which follows, we do
not take care directly about the optimality of a permutation but we are con-
cerned with the property of the given permutation to be a Johnson one after
increasing the processing times of all or a portion of the jobs. It should be
noted that the optimality of a permutation of n jobs does not imply that
this permutation is a Johnson one even for problem F2//Cmax with w = 0
(see Remark 3.2 on page 182).

Definition 3.4 The stability radius ρj of a Johnson permutation πs (con-
structed by Johnson’s algorithm) on machine Mj is defined as the minimum
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value among all maximal possible enlargements rij of the operations Qij,
Ji ∈ J, on machine Mj ∈ {M1, M2} such that permutation πs necessarily re-
mains a Johnson permutation for the modified processing times. The closed
polytopes Pj = {x = (x1,j, x2,j, . . . , xnj) : pij ≤ xij ≤ pij +rij, Ji ∈ J}, Mj ∈
{M1, M2}, in the space Rn

+ of non-negative n-dimensional real vectors are
called stability polytopes of a Johnson permutation.

A stability polytope Pj defines all possible enlargements of the processing
times of the operations Qij on machine Mj such that the given permutation
πs of the jobs J remains a Johnson permutation. As a result, permutation
πs is optimal for problem F2//Cmax with the modified processing times.
Note that in this section, we investigate the stability properties of a fixed
permutation πs from the set of all permutations Sπ = {π1, π2, . . . , πn!} of the
n jobs J . That is why for simplicity, we do not indicate the permutation
πs or the index s in the notations ρj, Pj etc. Next, we prove the following
lemma.

Lemma 3.6 The stability radii ρj and the stability polytopes Pj, j ∈ {1, 2},
can be computed in O(n) time.

Proof. Let πs be a Johnson permutation constructed by Johnson’s al-
gorithm. W.l.o.g. we assume that πs = (J1, J2, . . . , Jn). Let the first k

jobs belong to set N1 and the remaining n − k jobs belong to set N2, i.e.,
N1 = {J1, J2, . . . , Jk} and N2 = {Jk+1, Jk+2, . . . , Jn}. (For the definition
of the sets N1 and N2, see Johnson’s algorithm given on page 181 in Sec-
tion 3.1.) To compute the numbers rij, we distinguish two cases: Ji ∈ N1

or Ji ∈ N2. In the case when Ji ∈ N1, inequality pi1 ≤ pi2 holds, and the
maximal possible enlargements ri1 are the minimum of the two values a(i1)

and b(i1), where a(i1) = pi2 − pi1 represents the maximum amount of the
processing time one can add to value pi1 such that job Ji will remain in set
N1 due to Johnson’s algorithm. The value

b(i1) =

⎧⎨⎩ pi+1,1 − pi1, i = 1, 2, . . . , k − 1,
∞, i = k,

represents the maximum amount of the processing time (or infinity if i =
k) one can add to value pi1 such that the SPT (shortest processing time)
ordering within set N1 is still preserved.

Similar arguments are valid for the case Ji ∈ N2, i.e., when inequality
pi1 ≥ pi2 holds. Every computation of an enlargement rij can be done
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in a constant time, and the stability polytopes Pj and the stability radii
ρj, j ∈ {1, 2}, can be computed in O(n) time.

�

Example 3.7 (continued). In Table 3.14, the results of the calculation of
the values rij and ρj are shown for Example 3.7. If no processing time on

Table 3.14: Stability radii ρj , Mj ∈ {M1, M2}, for Example 3.7

Machine M1 Machine M2

p1,1 = 3 r1,1 = min{2,∞} = 2 p1,2 = 5 r1,2 = ∞
p2,1 = 4 r2,1 = ∞ p2,2 = 1 r2,2 = min{3, 1} = 1
p3,1 = 7 r3,1 = ∞ p3,2 = 2 r3,2 = min{5,∞} = 5

ρ1 = 2 ρ2 = 1

machine M1 is enlarged by more than two units and if no processing time
on machine M2 is enlarged by more than one unit, then permutation πk =
(1, 3, 2) remains a Johnson permutation for the non-availability intervals
given in Table 3.12.

Enlargement Polytopes

If wj = 0, operation Qij of job Ji on machine Mj may be processed with-
out preemptions and so the length of the interval for scheduling operation
Qij is equal to pij. However, if wj ≥ 1, the scheduling time (i.e., the differ-
ence between the completion time and the starting time) of operation Qij

may be increased by the lengths of some non-availability intervals. Next,
we determine the maximal possible enlargements of the scheduling times of
the operations Qij on machine Mj ∈ {M1, M2} caused by non-availability
intervals independently of a concrete schedule under consideration.

Definition 3.5 The enlargement radius δj of the operations on machine Mj

is defined as the maximum of the possible enlargements dij of the schedul-
ing times of operations Qij, Ji ∈ J, caused by non-availability intervals on
machine Mj. The closed polytopes Δj = {x = (x1j, x2j, . . . , xnj) : pij ≤
xij ≤ pij + dij, Ji ∈ J}, Mj ∈ {M1, M2}, in the space Rn

+ are called the
enlargement polytopes.

The enlargement radius gives the maximum amount by which the com-
pletion time of an operation on a machine may be delayed by one or more
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consecutive non-availability intervals which may be included in the schedul-
ing interval for processing the operation. We prove the following lemma.

Lemma 3.7 The enlargement radii δj and the enlargement polytopes
Δj, Mj ∈ {M1, M2}, can be computed in O(w2 + n log2 n) time.

Proof. For machine M1, we do the following. If operation Qi1 starts or
is resumed immediately after a non-availability interval on machine M1, we
have to add the length of this non-availability interval to the scheduling
time of operation Qi1. We compute the maximal sum Di of the lengths of i
consecutive non-availability intervals of machine M1 for i = 1, 2, . . . , w1:

Di =
w1+1−i
max
a=1

⎧⎨⎩
a+i−1∑
k=a

h(Nk1)

⎫⎬⎭ .

Using the given non-availability intervals, we can determine the availability
intervals of machine Mj ∈ {M1, M2}.

Let Akj denote the kth availability interval, i.e., the kth maximal interval
when machine Mj is available to process a job. Let s(Akj), f(Akj) and
h(Akj) be the starting point, the endpoint and the length of the interval Akj,
respectively. W.l.o.g. we assume that s(N1,1) > 0. Indeed, if s(N1,1) = 0,
we can change the earliest possible starting time s1 = 0 on machine Mj

by s1 = f(N1,1) and an optimal permutation remains the same. Thus, we
obtain s(A1,1) = 0, f(A1,1) = s(N1,1) and h(A1,1) = f(A1,1) − s(A1,1) > 0.

For k = 2, 3, . . . , w1, we obtain s(Ak1) = f(Nk−1,1), f(Ak1) = s(Nk1) and
h(Ak1) = f(Ak1) − s(Ak1) > 0.

We set E0 = 0 and compute the sum Ei of the lengths of i consecutive
availability intervals Ak1 of machine M1 for i = 1, 2, . . . , w1 + 1:

Ei =
w1+1−i
min
a=1

⎧⎨⎩
a+i−1∑
k=a

h(Ak1)

⎫⎬⎭ .

These computations need O(w2) time. Using the numbers Dk and Ek

for k = 1, 2, . . . , w1, we can calculate the maximal possible enlargement of
the scheduling time for processing the operation Qi1 of job Ji on machine
M1. Indeed, to process operation Qi1, at most k consecutive availability
intervals of machine M1 have to be used if Ek−1 ≤ pi1 < Ek. These k avail-
ability intervals are alternated with k non-availability intervals of machine
M1. Therefore, the scheduling time for processing operation Qi1 may be
increased by at most Dk. Hence, the scheduling time for processing each
operation Qi1 on machine M1 with Ek−1 ≤ pi1 < Ek may have the maximal
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enlargement caused by non-availability intervals with a total length equal to
Dk. Similar arguments are valid for machine M2.

Thus, the calculation of the enlargement of each job from set J takes
O(w + n log2 n) time, so we need O(w2 + n log2 n) time for the calculation
of the enlargement radii δj and the enlargement polytope Δj, j ∈ {1, 2}.

�

Example 3.7 (continued). In Table 3.15, the enlargement radii for ma-
chines M1 and M2 are presented for Example 3.7. Thus, any scheduling
time of an operation on machine M1 (machine M2) cannot be enlarged by
more than three units (by more than two units, respectively) if one sticks
non-availability intervals with jobs J . Similarly, any scheduling time on
machine M2 cannot be enlarged by more than two units.

Table 3.15: Enlargement radii δj , Mj ∈ {M1, M2}, for Example 3.7

Machine M1 Machine M2

p1,1 = 3 d1,1 = 2 p1,2 = 5 d1,2 = 2
p2,1 = 4 d2,1 = 3 p2,2 = 1 d2,2 = 1
p3,1 = 7 d3,1 = 3 p3,2 = 2 d3,2 = 1

δ1 = 3 δ2 = 2

Using Lemma 3.6 and Lemma 3.7, we prove the following theorem.

Theorem 3.25 A Johnson permutation πs defined for problem F2//Cmax

remains optimal for problem F2,NCoff/pmtn/Cmax with the same processing
times if

dij ≤ rij, i ∈ {1, 2, . . . , n}, j ∈ {1, 2}. (3.42)

Testing condition (3.42) takes O(w2 + n log2 n) time.

Proof. We prove this claim by contradiction. Let there exist a permutation
πk ∈ Sπ of the n jobs J such that

Cmax(πk) < Cmax(πs) (3.43)

for problem F2,NCoff/pmtn/Cmax mentioned in Theorem 3.25. We define a
modification (we call it Problem 1) of the above problem F2//Cmax which
has the following processing times p

′
ij of the operations Qij:

p
′
ij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
h(Nkj)+cij(πk)−sij(πk), if there exists an Nkj

with f(Nkj) = sij(πk),
cij(πk) − sij(πk) otherwise.
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Due to Definition 3.5, we have p
′
ij ≤ pij + dij. Due to Definition 3.4

and inequalities (3.42), permutation πs remains a Johnson permutation for
Problem 1. As far as w = 0 for Problem 1, the Johnson permutation πs is
optimal. Therefore, Cmax(πs) ≤ Cmax(πk) which contradicts to (3.43).

The complexity of the calculation of the values rij and dij given in
Lemma 3.6 and Lemma 3.7 defines the complexity of testing inequalities
(3.42).

�

Next, we present more simple sufficient conditions for the optimality of
a permutation using the information about the location of some operations
Qij and non-availability intervals Nkj in the concrete schedule.

Sufficient Conditions for the Stability of an Optimal Permutation

Let πv = (Ji1, Ji2, . . . , Jin) be an optimal permutation for problem
F2//Cmax, s(πv) be the schedule for problem F2,NCoff/pmtn/Cmax defined
by the permutation πv, and cikj(s(πv)) denotes the completion time of op-
eration Qikj in the schedule s(πv) for problem F2,NCoff/pmtn/Cmax with
1 ≤ k ≤ n.

Theorem 3.26 Permutation πv which is optimal for problem F2//Cmax re-
mains optimal for problem F2,NCoff/pmtn/Cmax with the same processing
times if there exists a time point t = cik1(s(πv)), 1 ≤ k ≤ n, for schedule
s(πv) such that

(i) the shortest k operations on machine M1 and the non-availability in-
tervals of machine M1 completely fill the time interval [0, t],

(ii) the shortest n + 1 − k operations on machine M2 and the non-
availability intervals of machine M2 completely fill the time interval
[t, cin2(s(πv))].

Proof. Since in schedule s(πv), there are no idle times on machine M1

in the interval [0, t] and on machine M2 in the interval [t, cin2(s(πv))],
any transposition of jobs within the set {i1, i2, . . . , ik} cannot decrease
the value Cmax(s(πv)). Similar arguments are valid for any transposition
of jobs within the set {ik, ik+1, . . . , in}. Let s be any semiactive sched-
ule constructed for problem F2,NCoff/pmtn/Cmax under consideration. In
any semiactive schedule, machine M1 has no idle time which belongs to
availability intervals within the interval [1, cin1(s)]. Thus, the operations
Qt1, k + 1 ≤ t ≤ n, and the non-availability intervals of machine M1 com-
pletely fill the interval [t, cin1(s(πv))]. From condition (ii), it follows that
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for schedule s(πv), only the interval [0, t] may include an idle time of ma-
chine M2 which belongs to availability intervals. Let l(s(πv)) denote the
total length of such idle times. If l(s(πv)) = 0, then schedule s(πv) is opti-
mal for problem F2,NCoff/pmtn/Cmax. If l(s(πv)) > 0, then decreasing the
value Cmax(s(πv)) = cin2(s(πv)) is equivalent to decreasing the total length
l(s(πv)) of idle times.

To finish the proof, we have to consider each semiactive schedule s ob-
tained from schedule s(πv) after a transposition of job Jil, 1 ≤ l ≤ k, and
job Jim, k + 1 ≤ m ≤ n. From condition (i), it follows that machine M1

cannot completely process more than k operations within the interval [0, t],
and machine M2 cannot completely process more than k − 1 operations
within the interval [0, t]. Consequently, from condition (ii), it follows that
the total idle time of machine M2 which belongs to availability intervals
within the interval [0, t] in schedule s cannot be less than l(s(πv)), and thus
Cmax(s(πv)) ≤ Cmax(s).

�

Note that in the above proof of Theorem 3.26, we do not use that πv is
a Johnson permutation for problem F2//Cmax indicated in Theorem 3.26.
Indeed, if conditions (i) and (ii) are valid for any permutation πv which
is optimal for problem F2//Cmax (but πv may not satisfy condition (3.2)
given on page 181), then permutation πv remains optimal for problem
F2,NCoff/pmtn/Cmax as well. The following corollaries are also valid for
any permutation πv which is optimal for problem F2//Cmax.

Corollary 3.2 If machine M2 is filled in the interval [cin1(s(πv)), cin2(s(πv))]
only with the shortest operation on machine M2 and non-availability inter-
vals, then schedule s(πv) is optimal for problem F2,NCoff/pmtn/Cmax.

Corollary 3.3 If pi11 = min{pik1 | 1 ≤ k ≤ n} and machine M2 has no idle
time in the interval [ci11(s(πv)), cin2(s(πv))], then schedule s(πv) is optimal
for problem F2,NCoff/pmtn/Cmax.

For the proof of Corollary 3.2 (Corollary 3.3), it is sufficient to note that
conditions (i) and (ii) from Theorem 3.26 necessarily hold for k = n (for
k = 1, respectively). Again, it is not assumed that permutation πv used in
Corollary 3.2 and in Corollary 3.3 satisfies condition (3.2), however, these
corollaries are often realized just for a Johnson permutation. It is easy to see
that testing Corollary 3.2 takes O(w2) time, while testing Corollary 3.3 takes
O(w2 + n) time. In order to reduce the number of non-availability intervals
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that have to be considered for testing Theorem 3.25 and Theorem 3.26, one
can use the following lemma.

Lemma 3.8 The earliest possible starting times sj and the latest possible
completion times cj of any job from set J on machine Mj, j ∈ {1, 2}, in
a semiactive schedule constructed for problem F2,NCoff/pmtn/Cmax can be
computed in O(w + n) time.

Proof. On machine M1, the earliest starting time of a job is equal to

s1 = max

⎧⎨⎩ f(N1,1), if s(N1,1) = 0,
0 otherwise.

The latest completion time of a job from set J on machine M1 is equal to
c1 = p1 + h + g with p1 =

∑
pi,1 and h =

∑k
i=1 h(Ni,1) with s(Nk,1) < p1

for the maximal k. Let g initially be 0, and k be taken from the former
computation. The value g is increased by h(Nk+1,1) and k is increased by 1
as long as s(Nk+1,1) < p1 + h + g. The computation of p1 takes O(n) time,
and the computation of h and g takes O(w) time. Hence, we need O(w +n)
time to compute the latest completion time of a job from set J on machine
M1.

Let pmin(1) be the smallest processing time of an operation on machine
M1. On machine M2, the earliest possible starting time of any job is the
completion time of the first operation (which is assumed to be the shortest
one) on machine M1. Let d = pmin(1) + c. The values c and k are initially
equal to 0. The value c is increased by h(Nk+1,1) and k is increased by 1 as
long as s(Nk+1,1) < pmin(1) + c. Then we have

s2 = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f(Nis), if there is a non-availability interval

Ni,2 with si2 ≤ d and ci2 ≥ d,
d otherwise.

The above computation takes O(w + n) time. Let pmax(2) be the largest
processing time of an operation on machine M2. The latest possible com-
pletion time of any job on machine M2 is estimated by the upper bound
c2 = c1 +

∑
pi2 + d. The value k is the maximum index with s(Nk2) ≤ c1.

The value d is initially equal to max{f(Nk2)−c1, 0}. The value d is increased
by h(Nk+1,2) and k is increased by 1 as long as s(Nk+1,2) < c1 +

∑
pi2 + d.

This computation takes O(w + n) time.

�
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Example 3.7 (continued). Table 3.14 and Table 3.15 show the results for
the computation of the stability and enlargement radii for machine M1 and
machine M2. One can see that due to Theorem 3.25, a Johnson permutation
(1, 3, 2) remains optimal for the non-availability case under consideration
since dij ≤ rij for all Ji ∈ J and j ∈ {1, 2}. In addition, Corollary 3.2 and
Theorem 3.26 are valid for this example of problem F2,NCoff/pmtn/Cmax.

In Example 3.7 and in the computational experiments, non-negative in-
teger numbers are used as processing times and the lengths of the non-
availability intervals. However, it is obvious that all the above results are
valid for non-negative real input data as well.

Computational Experiments

A stability analysis was performed on a huge number of randomly gen-
erated problems F2,NCoff/pmtn/Cmax. For each instance with w ≥ 1, we
constructed at least one Johnson permutation for the corresponding flow
shop problem F2//Cmax with the same processing times but without non-
availability intervals (w = 0), and answered the question: Is this permu-
tation optimal for the original problem F2,NCoff/pmtn/Cmax with w ≥ 1
given non-availability intervals? To this end, we tested the sufficient condi-
tions proven in this section. To minimize the running time of the algorithm,
these conditions were tested in an increasing order of their complexity up to
the first positive answer (if any) to the above question. More formally, the
following algorithm has been realized.

Algorithm for F2,NCoff/pmtn/Cmax

Input: Processing times of the jobs J and
non-availability intervals of the machines M .

Output: An optimal schedule for problem F2,NCoff/pmtn/Cmax or
a feasible schedule if algorithm terminates in Step 6.

Step 1: Construct a Johnson permutation π for problem F2//Cmax.
Step 2: IF π satisfies Corollary 3.2 THEN GOTO Step 7.
Step 3: IF π satisfies Corollary 3.3 THEN GOTO Step 7.
Step 4: Construct λ = min{λ∗, 2k} Johnson permutations

π1, π2, . . . , πλ.
Step 5: FOR i = 1, 2, . . . , λ DO

BEGIN
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Set π := πi.
IF π satisfies Corollary 3.2 THEN GOTO Step 7.
IF π satisfies Corollary 3.3 THEN GOTO Step 7.
IF π satisfies Theorem 3.26 THEN GOTO Step 7.
IF π satisfies Theorem 3.25 THEN GOTO Step 7.

END
Step 6: Optimality of permutations πi, i = 1, 2, . . . , λ, for problem

F2,NCoff/pmtn/Cmax is not proven STOP.
Step 7: Permutation π is optimal for problem

F2,NCoff/pmtn/Cmax STOP.

Steps 4 and 5 in the above algorithm are realized since there may be more
than one Johnson permutation constructed by Johnson’s algorithm. Indeed,
if there are k equalities pij = pkj for different jobs Ji ∈ J and Jk ∈ J , then
there may be 2k possible Johnson permutations. So, there were tested up
to min{λ∗, 2k} Johnson permutations for each instance. In the experiments,
we set λ∗ = 1024.

Table 3.16: Percentage of solved instances with w1 > 0 and w2 > 0

Number Number of non-availability intervals
of jobs 1 2 3 4 5 6 7 8 9 10

5 74.2% 72.1% 72.3% 72.7% 72.3% 73.4% 74.1% 74.6% 75.1% 76.2%
10 87.5% 85.0% 84.6% 83.8% 83.5% 83.4% 83.5% 83.1% 84.4% 83.5%
15 91.1% 90.7% 90.0% 89.9% 89.6% 89.0% 88.7% 87.9% 88.5% 88.5%
20 93.4% 93.2% 92.5% 92.3% 92.1% 91.9% 91.7% 91.3% 90.8% 91.3%
25 94.5% 94.1% 94.3% 93.6% 93.3% 93.7% 93.8% 93.0% 93.2% 92.4%
30 95.1% 94.9% 95.0% 95.1% 94.7% 94.5% 93.9% 94.2% 94.0% 94.4%
35 95.5% 95.7% 95.5% 95.9% 95.4% 95.3% 95.5% 95.4% 95.1% 94.9%
40 96.0% 96.2% 96.1% 96.3% 96.1% 96.1% 95.9% 95.8% 95.5% 95.6%
45 96.6% 96.9% 96.6% 96.4% 96.2% 96.5% 96.3% 96.2% 96.1% 96.1%
50 97.2% 97.0% 96.8% 96.6% 96.7% 96.7% 96.9% 96.6% 96.9% 96.4%
55 97.2% 97.2% 97.2% 97.5% 96.8% 97.1% 97.2% 97.1% 96.8% 96.8%
60 97.7% 97.4% 97.6% 97.2% 97.3% 97.3% 97.2% 97.1% 97.2% 97.1%
65 97.6% 97.4% 97.7% 97.7% 97.3% 97.3% 97.3% 97.2% 97.3% 97.4%
70 97.8% 97.5% 97.9% 98.0% 97.5% 97.9% 97.7% 97.2% 97.8% 97.5%
75 97.7% 98.1% 97.9% 98.2% 97.8% 97.7% 97.8% 97.6% 97.8% 97.9%
80 98.1% 98.0% 98.1% 97.9% 98.1% 98.2% 98.0% 97.9% 97.6% 97.9%
85 98.1% 98.3% 98.2% 98.2% 98.3% 98.0% 98.2% 98.1% 98.0% 98.0%
90 98.5% 98.5% 98.3% 98.2% 98.3% 97.9% 98.1% 98.3% 98.2% 98.0%
95 98.3% 98.3% 98.4% 98.2% 98.1% 98.3% 98.2% 98.3% 98.2% 98.2%
100 98.5% 98.5% 98.5% 98.5% 98.4% 98.4% 98.3% 98.3% 98.2% 98.3%

For each combination of n and w, Tables 3.16 – 3.25 present the percent-
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age of instances in the series for which the calculation based on the above
algorithm found a Johnson permutation which remains optimal in spite of
the w given non-availability intervals.

The above algorithm was coded in C++. For the computational experi-
ments, we used an AMD 1200 MHz processor with 1024 MB main memory.
For the small and moderate instances similar to those considered in [195],
we made 10000 tests in each series, i.e., for each combination of n and w.
These results are presented in Table 3.16 – Table 3.20. For the large in-
stances presented in Tables 3.21 – 3.25, we made 1000 tests in each series.

Lemma 3.8 was used during the generation of random instances: The non-
availability intervals were chosen in such a way that every non-availability
interval was counted. This means that, if c1 and c2 are the completion
times of the last job on machine M1 and M2 (in the schedule with non-
availability intervals), then every non-availability interval was located either
in the segment [0, c1] for machine M1 or in the segment [0, c2] for machine
M2.

Problems of Small and Moderate Sizes

We tested problems similar to those considered in [195], i.e., with

• 5, 10, 15, . . . , 100 jobs with integer processing times uniformly dis-
tributed in the range [1, 1000] and with

• 1, 2, 3, . . . , 10 non-availability intervals (on both machines) with integer
lengths uniformly distributed in the range [1, 1000].

In [195], a branch-and-bound algorithm was developed and used for con-
structing optimal schedules for problem F2,NCoff/pmtn/Cmax. Due to the
limit t of the running time used for each instance (the limit t was equal
to 1000 seconds), not all instances were optimally solved within this limit
t. For similar instances, we answer (by experiments) the question of how
often a Johnson permutation (constructed for problem F2//Cmax) remains
optimal in spite of non-availability intervals on the machines (i.e., for prob-
lem F2,NCoff/pmtn/Cmax). We tested only the sufficient conditions and our
algorithm does not guarantee to find an optimal schedule for some problems
F2,NCoff/pmtn/Cmax. However, our experiments have shown that such in-
stances arise rather seldom for most randomly generated problems. We
considered 10000 instances in each series of small problems (in [195], 10
instances were tested in each series).
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Table 3.17: Percentage of solved instances with w = w2

Number Number of non-availability intervals
of jobs 1 2 3 4 5 6 7 8 9 10

5 76.7% 75.0% 74.5% 75.2% 76.6% 77.3% 77.9% 77.6% 79.6% 80.3%
10 87.9% 86.4% 85.2% 84.4% 83.1% 83.7% 85.0% 84.5% 85.4% 85.6%
15 91.7% 91.1% 90.4% 88.9% 89.5% 88.9% 89.2% 88.9% 89.2% 88.9%
20 93.6% 92.6% 92.9% 92.2% 92.5% 91.5% 91.7% 91.0% 90.4% 90.5%
25 94.5% 94.5% 94.3% 93.5% 93.7% 92.9% 92.6% 93.2% 92.7% 92.6%
30 95.3% 95.0% 94.6% 94.5% 94.0% 94.1% 94.4% 94.0% 94.0% 93.7%
35 96.0% 95.8% 95.9% 95.7% 95.3% 95.4% 94.8% 94.5% 94.7% 94.8%
40 96.3% 96.4% 95.9% 95.8% 95.8% 96.2% 95.5% 96.0% 95.8% 95.4%
45 96.5% 96.8% 96.5% 96.5% 96.0% 96.4% 96.2% 96.0% 95.7% 96.0%
50 97.2% 96.8% 96.8% 96.7% 96.6% 96.8% 96.8% 96.5% 96.4% 96.0%
55 97.1% 97.4% 97.3% 97.2% 97.0% 96.9% 96.5% 96.8% 96.6% 96.8%
60 97.4% 97.4% 97.5% 97.5% 96.9% 97.1% 97.0% 96.9% 97.0% 96.8%
65 97.5% 97.7% 97.5% 97.5% 97.4% 97.3% 97.2% 97.4% 97.5% 96.8%
70 98.0% 98.0% 97.9% 97.7% 98.0% 97.7% 97.6% 97.4% 97.8% 97.5%
75 98.1% 98.0% 97.8% 97.7% 97.7% 97.8% 97.8% 97.8% 97.8% 97.9%
80 98.2% 98.2% 98.2% 98.0% 98.1% 97.9% 97.9% 97.8% 97.6% 97.6%
85 98.1% 98.3% 98.2% 98.2% 98.0% 97.8% 98.1% 98.1% 97.9% 98.1%
90 98.4% 98.2% 98.3% 98.1% 98.3% 98.2% 98.0% 98.1% 98.2% 98.0%
95 98.6% 98.4% 98.3% 98.4% 98.1% 98.2% 98.3% 98.2% 98.0% 97.8%
100 98.3% 98.3% 98.7% 98.5% 98.4% 98.2% 98.2% 98.2% 98.3% 98.2%

Tables 3.16 – 3.20 present the percentage of problem instances which were
(optimally) solved due to the stability analysis via the algorithm described
on page 248. We do not present the running times for series of small and
moderate instances, since the running times were very close for different
instances and very small: Among all instances in the series presented in
Tables 3.16, 3.17 and 3.18, the maximum running time for an instance was
0.000125 seconds, and among the series presented in Tables 3.19 and 3.20,
it was 0.000731 seconds.

Table 3.16 presents small problems. We can compare Table 3.16 with
Table 1 in [195]. The percentage of solved instances in our experiments was
less for n = 5, n = 10 and n = 15, but almost the same for 15 ≤ n ≤ 100.
Moreover, the branch-and-bound algorithm used essentially more running
time (1000 seconds were not sufficient to solve some small instances).

Due to an NP-hardness proof and experiments, in [195], it was shown
that instances in which the values pi2 were a double of the values pi1 (i.e.,
pi2 = 2pi1) were much harder than instances with processing times uniformly
generated for both machines. Our computations confirmed this property for
a small problem size (compare Table 3.16 with Table 3.19, and Table 3.18
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Table 3.18: Percentage of solved instances with w = w1

Number Number of non-availability intervals
of jobs 1 2 3 4 5 6 7 8 9 10

5 71.4% 67.4% 67.0% 69.0% 69.6% 71.0% 72.5% 73.7% 73.8% 76.4%
10 86.2% 83.3% 82.2% 80.9% 81.2% 81.0% 81.2% 82.6% 81.6% 82.2%
15 91.2% 89.7% 89.5% 88.1% 87.7% 87.6% 87.1% 87.1% 88.0% 88.1%
20 93.0% 92.9% 92.0% 91.7% 90.6% 90.7% 90.5% 90.0% 90.5% 90.2%
25 94.1% 93.8% 93.8% 93.1% 92.8% 92.8% 92.5% 92.2% 92.4% 92.1%
30 95.1% 94.9% 94.2% 95.2% 94.7% 94.1% 94.2% 93.8% 93.9% 93.5%
35 96.1% 95.8% 95.5% 95.3% 94.9% 94.4% 95.1% 94.7% 94.3% 94.3%
40 96.5% 96.1% 95.8% 95.8% 95.9% 95.5% 95.2% 95.6% 95.1% 95.2%
45 97.0% 96.6% 96.4% 96.5% 96.1% 96.2% 95.7% 95.9% 95.9% 95.9%
50 96.9% 96.6% 96.4% 96.7% 96.9% 96.7% 96.5% 96.5% 96.5% 96.2%
55 97.4% 97.2% 96.7% 96.9% 96.9% 97.1% 97.0% 97.0% 96.8% 96.6%
60 97.5% 97.7% 97.2% 97.0% 97.3% 97.0% 97.1% 96.8% 97.1% 97.0%
65 97.9% 97.5% 97.5% 97.6% 97.6% 97.3% 97.4% 97.3% 97.2% 97.2%
70 97.5% 97.7% 98.0% 97.9% 97.8% 97.5% 97.6% 97.1% 97.5% 97.8%
75 97.9% 98.0% 97.9% 97.8% 97.7% 97.8% 97.8% 97.6% 97.5% 97.7%
80 98.2% 98.4% 98.0% 98.0% 98.0% 97.6% 97.8% 97.5% 97.8% 97.7%
85 98.2% 98.2% 98.3% 97.8% 98.0% 98.1% 98.1% 97.7% 97.9% 97.8%
90 98.3% 98.1% 98.4% 98.0% 98.2% 98.3% 98.2% 98.0% 98.2% 97.7%
95 98.5% 98.4% 98.4% 98.2% 98.3% 98.3% 98.1% 97.9% 98.3% 98.1%
100 98.4% 98.3% 98.3% 98.4% 98.5% 98.4% 98.4% 98.2% 98.1% 98.3%

with Table 3.20). From comparing Table 3.19 with Table 3 in [195], it follows
that our approach has a close percentage of solved problems (since the limit
t was used for the branch-and-bound algorithm) and essentially outperforms
the branch-and-bound algorithm in the running time.

Along with the class of problems when non-availability intervals are on
both machines: w1 > 0 and w2 > 0, we tested the classes of problems when
either w1 = 0 or w2 = 0. Theoretically, the case with w1 = 0 seems to
be harder than the case with w2 = 0 since the non-availability interval on
machine M1 may cause an idle time on machine M2. So, we tested the above
two cases (see Table 3.17 for w = w1, and Table 3.18 for w = w2). From
Tables 3.17 and 3.18, it follows that there are computational differences
between the cases w = w1 and w = w2 (problems with w = w1 are often
harder than problems with w = w2), however, these differences are not so
significant.

The hardest problems for our stability analysis were obtained due to the
union of the above two difficulties. Table 3.20 presents the computational
results for the problems with both equalities w = w1 and pi2 = 2pi1. The
worst results were obtained for series with a small number of jobs (n = 5, n =
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Table 3.19: Percentage of solved instances with pi2 = 2pi1, w1 > 0 and w2 > 0

Number Number of non-availability intervals
of jobs 1 2 3 4 5 6 7 8 9 10

5 64.5% 50.6% 44.4% 42.1% 40.0% 38.2% 37.7% 37.8% 36.5% 36.0%
10 66.6% 54.2% 47.4% 42.5% 40.3% 36.8% 35.6% 34.6% 33.9% 33.1%
15 68.0% 55.0% 49.2% 45.0% 42.2% 39.1% 37.5% 35.9% 35.6% 34.1%
20 69.4% 56.7% 50.8% 46.7% 43.9% 41.6% 39.9% 38.6% 36.6% 35.2%
25 68.4% 58.2% 52.2% 47.8% 45.8% 42.2% 40.2% 39.0% 37.4% 37.5%
30 68.8% 58.5% 52.7% 48.9% 45.4% 44.2% 42.4% 40.9% 39.8% 38.0%
35 68.6% 58.7% 53.4% 50.0% 46.2% 44.9% 43.0% 41.7% 40.3% 39.4%
40 69.7% 58.2% 52.6% 49.1% 47.2% 45.1% 43.0% 41.1% 41.8% 39.6%
45 69.9% 59.2% 53.2% 50.0% 47.6% 44.9% 43.7% 42.3% 41.2% 41.1%
50 70.3% 60.1% 54.5% 49.5% 47.6% 47.0% 44.5% 44.8% 43.3% 41.0%
55 68.9% 59.1% 54.1% 50.5% 48.0% 46.5% 46.8% 43.6% 42.1% 42.1%
60 70.0% 59.5% 53.8% 50.6% 49.2% 47.4% 46.0% 43.8% 43.7% 42.2%
65 70.4% 60.0% 53.7% 51.5% 49.1% 47.7% 46.5% 44.8% 43.4% 42.7%
70 70.1% 60.4% 54.7% 50.9% 49.5% 48.2% 47.7% 45.5% 43.6% 42.6%
75 68.8% 60.7% 54.9% 51.5% 49.5% 48.4% 46.1% 45.5% 44.3% 43.7%
80 70.0% 60.3% 54.2% 51.5% 50.3% 48.3% 47.0% 45.0% 44.4% 44.6%
85 70.8% 60.5% 55.1% 52.1% 50.4% 48.2% 46.6% 45.5% 44.7% 45.0%
90 70.2% 60.8% 55.4% 52.3% 50.9% 48.0% 47.2% 46.7% 45.5% 43.9%
95 71.2% 60.0% 55.5% 52.5% 51.0% 47.7% 47.5% 46.5% 45.9% 44.6%
100 70.4% 60.8% 57.2% 53.1% 50.8% 48.6% 47.1% 46.9% 45.9% 45.7%

10, n = 15 and n = 20) and a large number of non-availability intervals (see
right-upper corner of Table 3.20). Thus, the sufficient conditions derived
in this section are disappointing for the problems with pi2 = 2pi1 and w =
w1 > n. Such a class of problems needs to be studied in more detail.

Note that the easiest problems for a stability analysis based on the above
computational scheme were obtained for the union of equality w = w2 and
equality pi2 = 2pi1: All the 10,000,000 instances of such problems were
optimally solved in our experiments.

Problems of Large Size and Resume

Due to the small running times, we were able to investigate much
larger instances than those considered in [195]. We tested problems
F2,NCoff/pmtn/Cmax) with

• 1000, 2000, . . . , 10000 jobs with integer processing times uniformly dis-
tributed in the range [1, 1000] and with

• 10, 100, 500, 1000 non-availability intervals with integer lengths uni-
formly distributed in the range [1, 1000] on both machines.
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Table 3.20: Percentage of solved instances with pi2 = 2pi1 and w = w1

Number Number of non-availability intervals
of jobs 1 2 3 4 5 6 7 8 9 10

5 27.4% 16.2% 9.5% 5.0% 3.0% 1.4% 0.7% 0.5% 0.2% 0.1%
10 33.0% 26.1% 20.8% 15.3% 11.4% 7.5% 5.3% 3.0% 1.9% 0.8%
15 35.0% 31.6% 27.8% 23.3% 19.6% 16.1% 13.8% 10.7% 8.2% 6.1%
20 36.2% 34.0% 29.9% 27.1% 26.6% 23.0% 20.3% 17.6% 15.2% 13.3%
25 36.9% 35.4% 32.5% 30.3% 28.2% 25.9% 24.2% 21.9% 19.6% 17.9%
30 38.4% 35.8% 33.7% 32.9% 30.2% 29.0% 26.6% 25.6% 23.8% 22.6%
35 38.4% 35.9% 35.6% 32.9% 31.9% 30.7% 30.0% 27.1% 26.2% 24.8%
40 38.9% 37.5% 35.6% 33.9% 33.0% 31.8% 30.7% 29.7% 28.7% 26.8%
45 38.9% 38.0% 36.1% 36.1% 34.0% 32.9% 32.9% 30.5% 29.9% 27.5%
50 39.5% 38.4% 36.5% 36.3% 35.1% 34.4% 33.1% 31.8% 30.7% 30.1%
55 39.5% 38.7% 37.5% 36.8% 36.0% 34.7% 33.8% 33.2% 33.1% 30.7%
60 40.7% 38.6% 37.9% 37.3% 36.8% 34.8% 33.8% 34.1% 32.8% 31.7%
65 40.7% 39.6% 38.8% 37.4% 36.9% 36.6% 35.7% 34.2% 33.3% 32.6%
70 39.8% 40.6% 39.2% 38.0% 37.7% 36.5% 36.3% 34.4% 34.6% 33.7%
75 41.2% 39.7% 39.3% 38.0% 38.4% 36.7% 36.6% 35.6% 35.0% 34.2%
80 40.6% 39.9% 40.4% 39.2% 38.7% 37.5% 36.6% 36.1% 36.1% 35.9%
85 41.5% 40.1% 40.2% 39.4% 38.0% 38.7% 37.4% 36.6% 35.5% 34.6%
90 41.2% 39.6% 40.4% 39.5% 39.4% 38.4% 37.2% 37.4% 37.1% 37.0%
95 41.6% 40.6% 40.2% 40.2% 38.9% 38.8% 37.9% 38.3% 35.8% 36.6%
100 41.3% 40.6% 40.0% 39.3% 39.3% 39.3% 38.2% 38.5% 37.8% 36.5%

Table 3.21: Average running time and percentage of solved instances with w1 > 0 and
w2 > 0

Number Number of non-availability intervals
of jobs 10 100 500 1000

1000 99.9% (0.008 s) 100% (0.008 s) 99.9% (0.010 s) 99.8% (0.027 s)
2000 100% (0.029 s) 100% (0.029 s) 100% (0.031 s) 100% (0.037 s)
3000 100% (0.065 s) 100% (0.065 s) 99.8% (0.101 s) 100% (0.073 s)
4000 100% (0.116 s) 100% (0.116 s) 100% (0.118 s) 100% (0.123 s)
5000 100% (0.180 s) 100% (0.180 s) 100% (0.182 s) 100% (0.188 s)
6000 100% (0.259 s) 100% (0.259 s) 100% (0.261 s) 100% (0.266 s)
7000 100% (0.352 s) 100% (0.352 s) 100% (0.354 s) 100% (0.359 s)
8000 100% (0.459 s) 100% (0.459 s) 100% (0.461 s) 100% (0.466 s)
9000 100% (0.580 s) 100% (0.580 s) 100% (0.582 s) 100% (0.588 s)
10000 100% (0.715 s) 100% (0.716 s) 100% (0.717 s) 100% (0.723 s)

The computational results for the latter problems are given in Table 3.21
which is analogue to Table 3.16.

Tables 3.21 – 3.25 give the percentage of (optimally) solved instances due
to a stability analysis based on the above computational scheme and the
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Table 3.22: Average running time and percentage of solved instances with w = w2

Number Number of non-availability intervals
of jobs 10 100 500 1000

1000 100% (0.008 s) 99.9% (0.008 s) 99.3% (0.020 s) 99.8% (0.073 s)
2000 100% (0.029 s) 100% (0.029 s) 100% (0.032 s) 100% (0.041 s)
3000 99.9% (0.067 s) 100% (0.066 s) 100% (0.068 s) 100% (0.077 s)
4000 100% (0.116 s) 100% (0.116 s) 100% (0.119 s) 100% (0.127 s)
5000 100% (0.180 s) 99.9% (0.187 s) 100% (0.183 s) 100% (0.191 s)
6000 100% (0.259 s) 100% (0.259 s) 100% (0.262 s) 100% (0.270 s)
7000 100% (0.352 s) 100% (0.352 s) 100% (0.354 s) 100% (0.363 s)
8000 100% (0.459 s) 100% (0.459 s) 100% (0.461 s) 100% (0.470 s)
9000 100% (0.580 s) 100% (0.580 s) 100% (0.583 s) 100% (0.591 s)
10000 100% (0.716 s) 100% (0.716 s) 100% (0.719 s) 100% (0.727 s)

Table 3.23: Average running time and percentage of solved instances with w = w1

Number Number of non-availability intervals
of jobs 10 100 500 1000

1000 99.8% (0.008 s) 99.9% (0.008 s) 99.7% (0.017 s) 100% (0.019 s)
2000 99.9% (0.030 s) 99.8% (0.031 s) 99.8% (0.041 s) 100% (0.041 s)
3000 99.9% (0.070 s) 100% (0.065 s) 100% (0.068 s) 100% (0.077 s)
4000 100% (0.116 s) 100% (0.116 s) 100% (0.118 s) 100% (0.127 s)
5000 100% (0.180 s) 100% (0.180 s) 100% (0.183 s) 100% (0.191 s)
6000 100% (0.259 s) 100% (0.259 s) 100% (0.262 s) 100% (0.270 s)
7000 100% (0.351 s) 100% (0.352 s) 100% (0.354 s) 100% (0.363 s)
8000 100% (0.459 s) 100% (0.459 s) 100% (0.461 s) 100% (0.470 s)
9000 100% (0.580 s) 100% (0.580 s) 100% (0.583 s) 100% (0.591 s)
10000 100% (0.715 s) 100% (0.716 s) 100% (0.719 s) 100% (0.727 s)

average running time in seconds for each series of instances (in parentheses).
Comparing Table 3.16 with Table 3.21 shows that increasing simultaneously
both numbers n and w increases the number of solved instances. The same
issue follows from comparing Table 3.17 with Table 3.4, Table 3.18 with
Table 3.4, Table 3.19 with Table 3.24, and Table 3.20 with Table 3.25.

Of course, the running time increases with increasing the product nw.
Fortunately, the running time for the stability analysis of the algorithm given
on page 248 remains rather small even for large problem sizes. Moreover,
we can conclude that the order of the considered cases (classes) of problems
with respect to an increase of their complexity in our experiments was as
follows:

[(pi2 = 2pi1)&(w = w2)] → [(w1 > 0)&(w2 > 0)] → [(w = w2)] → [(w = w1)]
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→ [(pi2 = 2pi1)&(w1 > 0)&(w2 > 0)] → [(pi2 = 2pi1)&(w = w1)].

Table 3.24: Average running time and percentage of solved instances with pi2 = 2pi1,
w1 > 0 and w2 > 0

Number Number of non-availability intervals
of jobs 10 100 500 1000

1000 80.5% (0.032 s) 75.9% (0.036 s) 60.3% (0.175 s) 48.9% (1.329 s)
2000 95.4% (0.074 s) 92.3% (0.084 s) 85.1% (0.155 s) 73.5% (0.802 s)
3000 99.2% (0.137 s) 97.6% (0.147 s) 90.4% (0.233 s) 85.4% (0.602 s)
4000 99.3% (0.238 s) 98.9% (0.245 s) 93.4% (0.338 s) 88.0% (0.696 s)
5000 99.9% (0.359 s) 99.5% (0.368 s) 96.2% (0.454 s) 91.7% (0.752 s)
6000 100% (0.514 s) 99.6% (0.526 s) 95.6% (0.664 s) 91.3% (0.984 s)
7000 99.9% (0.703 s) 99.3% (0.728 s) 96.6% (0.853 s) 92.1% (1.221 s)
8000 100% (0.912 s) 99.6% (0.934 s) 97.1% (1.081 s) 93.4% (1.444 s)
9000 99.9% (1.168 s) 99.3% (1.210 s) 98.3% (1.286 s) 93.9% (1.740 s)
10000 100% (1.447 s) 99.7% (1.472 s) 97.4% (1.678 s) 93.0% (2.209 s)

Table 3.25: Average running time and percentage of solved instances with pi2 = 2pi1 and
w = w1

Number Number of non-availability intervals
of jobs 10 100 500 1000

1000 79.4% (0.032 s) 69.6% (0.042 s) 37.4% (0.457 s) 0.3% (4.968 s)
2000 95.0% (0.075 s) 89.7% (0.093 s) 69.5% (0.352 s) 46.6% (2.856 s)
3000 99.1% (0.136 s) 96.2% (0.158 s) 83.5% (0.360 s) 66.1% (2.054 s)
4000 99.4% (0.237 s) 98.6% (0.248 s) 86.5% (0.498 s) 72.8% (1.937 s)
5000 99.7% (0.363 s) 98.3% (0.393 s) 89.0% (0.661 s) 79.6% (1.797 s)
6000 99.8% (0.520 s) 97.8% (0.581 s) 90.8% (0.854 s) 83.2% (1.858 s)
7000 99.9% (0.703 s) 98.1% (0.778 s) 92.7% (1.049 s) 83.0% (2.246 s)
8000 99.8% (0.923 s) 99.3% (0.950 s) 92.8% (1.350 s) 87.8% (2.181 s)
9000 100% (1.161 s) 99.1% (1.224 s) 93.5% (1.653 s) 89.0% (2.469 s)
10000 99.9% (1.455 s) 99.1% (1.524 s) 94.5% (1.956 s) 89.3% (2.899 s)

The hardest class of large problems was that with pi2 = 2pi1 and w =
w1, and the easiest class of large problems was that with pi2 = 2pi1 and
w = w2. All problems from the latter class were optimally solved (the table
for this class is omitted). Note that the above order of problem classes
had exceptions in our experiments, and it was more expressive for small
problems. Within a problem class, the complexity of the instances usually
increased with decreasing the difference n − w.
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In this section, sufficient conditions were proven for a Johnson permuta-
tion to be optimal in the case of given non-availability intervals on machines
M1 and M2 in the two-machine flow shop problem. Due to Theorem 3.25
and Lemmas 3.6 and 3.7, these conditions may be tested in polynomial time
in the number n of jobs and the number w of non-availability intervals. In
Chapter 2, the notion of the relative stability radius was used for a job shop
problem. Such a relative stability radius may be used instead of the stability
polytope defined in this section. It should be noted that the stability anal-
ysis may be used also for other scheduling problems with limited machine
availability if an optimal schedule for the corresponding pure setting of the
problem (i.e., when all machines are continuously available during the whole
planning horizon) may be constructed by applying a priority rule to the jobs
such as SPT, LPT (longest processing time) and so on. The above computa-
tional results show that our stability analysis is efficient for small problems
(n ≤ 100 and w ≤ 10) and especially for large problems (1000 ≤ n ≤ 10000
and 10 ≤ w ≤ 1000). For most classes of the randomly generated prob-
lems, only a few instances were not optimally solved within a few seconds
of running time. The only exception are problems in which the processing
times on machine M1 are a double of the processing times on machine M2,
the number of jobs is less than the number of non-availability intervals, and
machine M2 is continuously available during the planning horizon. For such
a type of problems F2,NCoff/pmtn/Cmax, other sufficient conditions have to
be derived. One can use the above results for some type of on-line scheduling
problems when there is no prior information about the exact location of the
non-availability intervals on the time axis but the values dij or the values
δj, Ji ∈ J, j = {1, 2}, are known before scheduling. In the next section, we
show how to extend the results of this section to a two-machine job shop
problem.

3.5. Job Shop with Limited Machine Availability

This section deals with the problem of minimizing the length of a sched-
ule (makespan) for processing n jobs on two machines with w given non-
availability intervals. The processing of each job has no more than two stages
(i.e., there are at most two operations per job), and the routes through the
machines may differ from job to job (it is a job shop). If there is no non-
availability interval (w = 0), this problem may be polynomially solved using
a Jackson pair of job permutations (see Section 3.3), otherwise it is binary
NP-hard even if there is only one non-availability interval (w = 1), and all
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jobs have the same machine route, i.e., for a flow shop which is a special case
of a job shop (see Section 3.4). The latter problem becomes unary NP-hard
if the number of non-availability intervals may be arbitrarily large. In prac-
tice, the limited machine availability may be caused, e.g., by unfinished jobs
from the previous schedule, machine breakdowns and machine maintenance,
appearance of an unexpected job with high priority or with a close due date.

Next, we find some sufficient conditions when a Jackson pair of permu-
tations remains optimal for the two-machine job shop problem with w > 1
given non-availability intervals. Extensive computational studies show the
effectiveness (in the number of problems solved) and the efficiency (in com-
putational time) of these sufficient conditions for randomly generated in-
stances with n ≤ 10000 jobs and w ≤ 1000 non-availability intervals.

Definitions and Notations

Let a set of jobs J = {J1, J2, . . . , Jn} have to be processed in a job shop
with the machine set M = {M1, M2}. Each machine Mj ∈ M can process
any job Ji ∈ J no more than once. Let J(12) ⊆ J be the set of jobs with the
machine route (M1, M2) (job Ji ∈ J(12) has to be processed first on machine
M1 ∈ M and then on machine M2 ∈ M). Let J(21) ⊆ J be the set of jobs
with the opposite machine route (M2, M1), and J(k) ⊆ J be the set of jobs
which have to be processed on only one machine Mk ∈ M . Thus, we have
J = J(1)∪J(2)∪J(12)∪J(21), and we set nl = |Jl|, where l ∈ {1, 2, 12, 21}.

Let Qir denote the operation of job Ji ∈ J on machine Mir ∈ M at stage
r ∈ {1, 2} of the machine route (Mi1, Mi2), if Ji ∈ J(12) ∪ J(21), or of the
machine route (Mi1), if Ji ∈ J(1) ∪ J(2) and r = 1. The processing time
piir of operation Qir of job Ji ∈ J on machine Mir ∈ M is known before
scheduling. All the n jobs are available at time t = 0. The criterion Cmax

under consideration is the minimization of the schedule length (makespan):
Cmax = maxs Cmax(s) = maxs{max{Ci(s)|Ji ∈ J}}, where Ci(s) denotes the
completion time of job Ji ∈ J in schedule s.

It is assumed that all w non-availability intervals are known offline (before
scheduling) and the processing of a job is resumable. In other words, if the
processing of operation Qir is preempted at the beginning of the unavailable
interval of machine Mir ∈ M , then it can be resumed at the end of this
interval without increasing its processing time piir given before scheduling.
(Of course, the total processing interval used for operation Qir will be in-
creased due to the unavailable interval of machine Mir .) To indicate this, we
use the notation pmtn since the latter assumption is close to the allowance
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of operation preemption. Using the three-field notation, the problem under
consideration is denoted as J 2,NCoff/pmtn/Cmax.

Let (π′, π′′) be a Jackson pair of permutations (see Section 3.3) of the jobs
of set J (here π′ is a permutation of the jobs J(12)∪J(21)∪J(1) on machine
M1, and π′′ is a permutation of the jobs J(12)∪J(21)∪J(2) on machine M2)
which is optimal when all machines are continuously available (w = 0) during
the planning horizon (see Theorem 3.21 on page 228). The main aim of this
section is to study the question whether this pair of permutations remains
optimal for the case of w ≥ 1 non-availability intervals known offline. To
this end, we use an approach similar to that proposed in Section 3.4 for the
case of a flow shop problem with limited machine availability.

First, we present some properties of an optimal schedule and remind
some useful results for problem F2,NCoff/pmtn/Cmax proven in Section 3.4.
Then we prove sufficient conditions for the optimality of a Jackson pair of
permutations in the case of w > 1 given intervals of machine non-availability.
The end of this section contains some computational results for a stability
analysis of a Jackson pair of permutations.

We use the notations similar to those used in Section 3.4. Machine
Mj ∈ M is not available for processing any job from set J from the starting
point s(Nkj) until the endpoint f(Nkj) = s(Nkj)+h(Nkj), k ∈ {1, 2, . . . , wj}.
The operation Qiir started before the time point s(Nkj) with j = ir but not
finished until the time point s(Nkj) is suspended during a time period of
length h(Nkj) starting from time point s(Nkj). Then the processing of oper-
ation Qiir is resumed from time point f(Nkj). Since the minimization of the
completion time is a regular criterion, we can consider only semiactive sched-
ules (see Definition 1.1 on page 22). Each semiactive schedule is uniquely
defined by a permutation of the jobs on machine M1 and one of the jobs
on machine M2. For a semiactive schedule s, let c1(s) and c2(s) denote the
completion time of all jobs on machine M1 and on machine M2, respectively.
The completion time of schedule s (and so the length or the makespan of
schedule s) may be defined as follows: Cmax(s) = max{c1(s), c2(s)}. We use
the following definition of the main machine in schedule s.

Definition 3.6 Machine Mj ∈ M is called the main machine in schedule s

if under this schedule, the following equality holds: Cmax(s) = cj(s).

If equality w = 0 holds, then problem J 2,NCoff/pmtn/Cmax turns into
a classical job shop problem J 2/pmtn/Cmax with two machines which is
polynomially solvable. Note that the use of operation preemptions cannot
decrease the length of an optimal schedule. Thus, if w = 0, it is sufficient



260 CHAPTER 3. TWO-MACHINE FLOW SHOP AND JOB SHOP

to construct an optimal schedule for problem J 2//Cmax which is defined by
the two permutations (sequences) (π′, π′′), where π′ is the sequence of the
jobs J(1)∪J(12)∪J(21) on machine M1, and π′′ is the sequence of the jobs
J(2) ∪ J(12) ∪ J(21) on machine M2 (see Theorem 3.21 on page 228).

We use the notation s(π′, π′′) for the semiactive schedule (uniquely)
defined by a permutation π′ of the jobs on machine M1 and by a per-
mutation π′′ of the jobs on machine M2. If schedule s(π′, π′′) is opti-
mal for problem J 2//Cmax (for problem J 2,NCoff/pmtn/Cmax), then the
pair of permutations (π′, π′′) is called optimal for problem J 2//Cmax (for
problem J 2,NCoff/pmtn/Cmax, respectively). Note that here the pair
of permutations (π′, π′′) is the same for both problems J 2//Cmax and
J 2,NCoff/pmtn/Cmax, while the schedules s(π′, π′′) usually are different (in
spite of the same notation s(π′, π′′) used).

In schedule s(π′, π′′) which is optimal for problem J 2//Cmax, the jobs of
set J(12) ⊂ J (of set J(21) ⊂ J) are processed with respect to a Johnson
permutation (see condition (3.2) on page 181 in Section 3.1). Therefore,
it is sufficient to look for a solution to problem J 2//Cmax using a set of
pairs of permutations: (π′ = (π12, π1, π21), π

′′ = (π21, π2, π12)), where the
permutations π12 and π21 are defined by Johnson’s algorithm given on page
181. Hereafter, job Ji belongs to permutation πl if and only if Ji ∈ J(l),
l ∈ {1, 2, 12, 21}. Moreover, the processing order of the jobs of set J(1) (set
J(2)) may be arbitrary in such an optimal schedule, therefore, we fix both
sequences π1 and π2 (e.g., in lexicographical order of the jobs numbers). If in
sequences π12 and π21 the jobs are ordered due to Johnson’s algorithm, then
we say that this is a Jackson pair (π′, π′′) of permutations of (n12 +n21 +n1)
jobs and of (n12 +n21 +n2) jobs, respectively (see Theorem 3.21 on page 228
in Section 3.3).

Since preemption of an operation in an optimal semiactive schedule s
cannot decrease the value Cmax(s) of the objective function, an optimal
schedule defined by a Jackson pair of permutations for an instance of prob-
lem J 2//Cmax remains an optimal schedule for the instance of problem
J 2/pmtn/Cmax with the same input data.

Properties of an Optimal Schedule

Let (π′, π′′) be a Jackson pair of permutations (which is optimal when
both machines are continuously available during the planning horizon, i.e.,
for problem J 2//Cmax). Our aim is to answer the question when this pair
of permutations remains optimal for problem J 2,NCoff/pmtn/Cmax with
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w ≥ 1 given non-availability intervals and with operation processing times
being the same as in problem J 2//Cmax. In the proofs of the sufficient
conditions, we shall use the following obvious claim.

Lemma 3.9 If the main machine Mj in schedule s(π′, π′′) is completely
filled in the closed interval [0, cj(s)] by operations on machine Mj and by
non-availability intervals of this machine (in this case, we say that machine
Mj works without idles), then the pair of permutations (π′, π′′) is optimal
for problem J 2,NCoff/pmtn/Cmax.

It should be noted that in the above schedule s(π′, π′′), the pair of per-
mutations (π′, π′′) may be not only a Jackson pair of permutations for
problem J 2//Cmax. Nevertheless, if the conditions of Lemma 3.9 hold for
some pair of permutations (π′, π′′), then schedule s(π′, π′′) would be opti-
mal for problem J 2,NCoff/pmtn/Cmax without fail. So, the conditions of
Lemma 3.9 are sufficient for the optimality of schedule s(π′, π′′) for problem
J 2,NCoff/pmtn/Cmax regardless whether the permutation pair (π′, π′′) is a
Jackson pair of permutations or not.

Let us assume that for a Jackson pair of permutations (π′, π′′), the main
machine for schedule s(π′, π′′) works with idle. W.l.o.g. we can assume
that it is machine M2 since in a two-machine job shop problem, there is a
machine symmetry. The main machine M2 processes the jobs of set J(2) ∪
J(12) ∪ J(21) with respect to sequence π′′ = (π21, π2, π12). It is easy to
see that all jobs from the sequences π21 and π2 have to be processed on
machine M2 without idles in any semiactive schedule. Therefore, an idle
time on machine M2 may arise only due to the operations of the jobs from
set J(12). Hence, the jobs of the set J(12) define the makespan for problem
J 2,NCoff/pmtn/Cmax.

Therefore, in what follows, we can mainly concentrate on the processing
of only this set J(12) of jobs. Note that the set J(12) of jobs forms a special
case of a flow shop problem generated by the original job shop problem
J 2,NCoff/pmtn/Cmax under consideration. Namely, we shall consider the
following problem F2,NCoff/pmtn/Cmax (we call it problem A) of processing
n12 jobs of set J(12) with the same machine route (M1, M2). Problem A

has the same non-availability intervals of machine M1 and includes all the
non-availability intervals of machine M2 as the original job shop problem
J 2,NCoff/pmtn/Cmax has. Furthermore, problem A has one additional non-
availability interval on machine M2 as follows: [0, c2(π21, π2)).

Thus, the job shop problem J 2,NCoff/pmtn/Cmax under consideration
may be reduced to a flow shop problem A in the sense as problem J 2//Cmax
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was reduced to problem F2//Cmax in [168]. Therefore, a lot of results ob-
tained for problem F2,NCoff/pmtn/Cmax so far may be transformed to those
for problem J 2,NCoff/pmtn/Cmax. Next, we demonstrate how to use the re-
sults for the flow shop problem presented in Section 3.4 for solving problem
J 2,NCoff/pmtn/Cmax. If the jobs of set J(12) are processed on the ma-
chines M1 and M2 with respect to the same sequence π12 which is a Johnson
permutation of these jobs, then the schedule defined by permutation π12 is
optimal for problem F2//Cmax. The next question is whether permutation
π12 is optimal for the new problem F2,NCoff/pmtn/Cmax or not.

Section 3.4 contains sufficient conditions for a Johnson permutation
π12 for problem F2//Cmax to be an optimal permutation for problem
F2,NCoff/pmtn/Cmax as well. More precisely, to answer the above question,
we can test sufficient conditions for the stability of an optimal permutation
σ = πv given in Theorem 3.26, Corollary 3.2 and Corollary 3.3 (see Sec-
tion 3.4, pages 245, 246 and 246, respectively). Let at least one of these suf-
ficient conditions hold for permutation σ = π12 of the jobs from set J(12) for
the flow shop problem A. Then this set J(12) of jobs defines the minimum
makespan value for the original job shop problem J 2,NCoff/pmtn/Cmax.
Hence, due to these conditions, the pair of permutations s(π′, π′′) remains
optimal for problem F2,NCoff/pmtn/Cmax. Next, we prove that in the semi-
active schedule s(π′, π′′), at least one machine has to work without idles, i.e.,
idle times (not caused by non-availability intervals) are only possible on one
of the two machines of set M in the semiactive schedule s(π′, π′′).

W.l.o.g., we can assume that machine M2 works with idles in the schedule
s(π′, π′′), and let t = s(N1,2) be the starting point of the first such idle
time of machine M2, i.e., the first idle time (not caused by non-availability
intervals) in the order from left to right at the numerical axis. Obviously,
such an idle time of machine M2 is only possible if some job Ji from set J(12)
is still in process on machine M1, while this job Ji could be processed on
machine M2 at the same time (i.e., machine M2 has already been completed
all jobs of sets J(21) and J(2), and machine M2 is available at this time).
Since schedule s(π′, π′′) is defined by the pair of permutations (π′, π′′) where
π′ = (π12, π1, π21), the following inequality must hold:

c2(π21, π2) < c1(π12). (3.44)

Analogously, such an idle time of machine M1 may arise only due to some
jobs from set J(21) being still in process by machine M2, while they could
be processed by machine M1 (i.e., machine M1 has already completed all
jobs of the sets J(12) and J(1), and machine M1 is available).
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Since inequality (3.44) holds, machine M1 can freely process jobs of set
J(21), and therefore, machine M1 has to work without idles. So, the follow-
ing claim has been proved.

Lemma 3.10 Under schedule s(π′, π′′), at least one of the two machines in
set M works without idles.

Lemma 3.10 implies the following claim.

Corollary 3.4 If under schedule s(π′, π′′), equality c1(s) = c2(s)
holds, then the pair of permutations (π′, π′′) is optimal for problem
J 2,NCoff/pmtn/Cmax.

Indeed, since at least one machine works without idles (due to Lemma
3.10), then due to equality c1(s) = c2(s), it is impossible to decrease the
makespan Cmax(s(π

′, π′′)).

Sufficient Conditions for the Optimality of a Permutation Pair

We say that problem J 2,NCoff/pmtn/Cmax corresponds to problem
J 2//Cmax (and vice versa), if equality w = 0 holds for the latter problem,
inequality w > 0 holds for the former problem, and all the other parameters
and conditions are the same for both problems. We want to answer the
following question. When would the pair of Jackson permutations (π′, π′′)
constructed for problem J 2//Cmax be optimal for the corresponding problem
J 2,NCoff/pmtn/Cmax?

Let (π′, π′′) be a Jackson pair of permutations constructed for problem
J 2//Cmax. W.l.o.g., we assume that machine M2 is the main machine in
schedule s(π′, π′′) for problem J 2//Cmax. In the following claim, the same
notation s(π′, π′′) is used twice but in a different sense: It is a schedule for
problem J 2,NCoff/pmtn/Cmax, and it is a schedule for problem J 2//Cmax.

Theorem 3.27 Let (π′, π′′) be a Jackson pair of permutations constructed
for problem J 2//Cmax. The schedule s(π′, π′′) is optimal for the corre-
sponding problem J 2,NCoff/pmtn/Cmax if for the corresponding problem
J 2//Cmax, the main machine M2 works without idles in schedule s(π′, π′′),
and the following two conditions hold:

w1∑
k=1

h(Nk1) ≤ c2(π
′′) − c1(π

′), (3.45)

s(N1,1) ≥
∑

Ji∈J(12)
pi1. (3.46)
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Proof. We shall show that, due to the above conditions, ma-
chine M2 remains the main machine for the corresponding problem
J 2,NCoff/pmtn/Cmax and works without idles. As a result, the conditions
of Lemma 3.9 will hold, and so schedule s(π′, π′′) will be optimal for problem
J 2,NCoff/pmtn/Cmax as well.

Indeed, from inequality (3.46), we obtain that the non-availability inter-
vals of machine M1 cannot increase the idle time of machine M2. Therefore,
machine M2 is completely filled in the closed interval [0, c′2(π

′′)] by process-
ing times of jobs from permutation π′′ and by non-availability intervals of
machine M2. Hence, machine M2 works without idles, and the following
equality holds:

c′2(π
′′) = c2(π

′′) +
w2∑
k=1

h(Nk2).

Next, we prove that machine M2 remains the main machine for the cor-
responding problem J 2,NCoff/pmtn/Cmax. Note, that the non-availability
intervals of machine M2 can increase the idle time of machine M1. This
additional idle time (IT ) of machine M1 (if it exists) is not greater than the
sum of the lengths of the non-availability intervals of machine M2:

IT ≤
w2∑
i=1

h(Ni2).

Thus, the completion times of the jobs in permutation π′ on machine
M1 cannot be increased by more than the sum of the lengths of the non-
availability intervals:

c′1(π
′) ≤ c1(π

′) + IT +
w1∑
l=1

h(Nl1) ≤ c1(π
′) +

w1∑
l=1

h(Nl1) +
w2∑
i=1

h(Ni2).

We obtain

c′2(π
′′) = c2(π

′′) +
w2∑
k=1

h(Nk2) = c2(π
′′) − c1(π

′) + c1(π
′) +

w2∑
k=1

h(Nk2)

≥
w1∑
l=1

h(Nl1) + c1(π
′) +

w2∑
k=1

h(Nk2) ≥ c′1(π
′).

Therefore, machine M2 remains the main machine for the corresponding
problem J 2,NCoff/pmtn/Cmax.

Thus, the conditions of Lemma 3.9 hold, and therefore, schedule s(π′, π′′)
is optimal for problem J 2,NCoff/pmtn/Cmax. This completes the proof.

�
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Next, we show that all the above conditions of Theorem 3.27 are essential.
In other words, if at least one condition of Theorem 3.27 does not hold, then
the Jackson pair of permutations (π′, π′′) mentioned in Theorem 3.27 may
be not optimal for the corresponding problem J 2,NCoff/pmtn/Cmax. We
consider the following three examples (one example for each condition of
Theorem 3.27 which is violated).

Example 3.8 We consider problem J 2,NCoff/pmtn/Cmax with the process-
ing times of the four jobs given in Table 3.26, where the subset of jobs J(kl)
is indicated in the first column such that Ji ∈ J(kl) and {k, l} = {1, 2}. One
non-availability interval (5, 7) is given on machine M2.

Table 3.26: Processing times for Example 3.8

Job Ji i pi1 pi2

J(12) 1 5 4
2 4 3

J(21) 3 1 2
4 1 1

The following condition of Theorem 3.27 does not hold: The main ma-
chine M2 works with idle for the corresponding problem J 2//Cmax. A
Jackson pair of permutations for the corresponding problem J 2//Cmax

is ((J1, J2, J4, J3), (J4, J3, J1, J2)), and machine M2 works with idle from
time point 3 to time point 5. It is easy to see that for the original
problem J 2,NCoff/pmtn/Cmax, the pair of permutations ((J1, J2, J4, J3),
(J4, J3, J1, J2)) is not optimal. Namely, for problem J 2,NCoff/pmtn/Cmax,
an optimal pair of permutations is ((J2, J1, J4, J3), (J4, J3, J2, J1)) (by the
way, it is not a Jackson pair of permutations for the corresponding problem
J 2//Cmax).

Let now inequality (3.45) of Theorem 3.27 be violated, i.e., let the sum
of the non-availability intervals on machine M2 be larger than the difference
c2(π

′′) − c1(π
′). For such a case, an example exists (see Example 3.9) for

which there is no optimal schedule defined by a Jackson pair of permutations.

Example 3.9 Let the job processing times for this example be given in Ta-
ble 3.27, and let one non-availability interval (5, 7) be given on machine M1.
A Jackson pair of permutations for the corresponding problem J 2//Cmax is
((J1, J2, J3, J4), (J3, J4, J1, J2)). Here, we have c1(π

′) = 12, c2(π
′′) = 13 and

c2(π
′′) − c1(π

′) = 1 <
w1=1∑
i=1

h(Ni1) = h(N1,1) = 2.
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Table 3.27: Processing times for Example 3.9

Job Ji i pi1 pi2

J(12) 1 2 2
2 1 2

J(21) 3 4 5
4 3 4

It is easy to see that for the original problem J 2,NCoff/pmtn/Cmax,
the pair of permutations ((J1, J2, J3, J4), (J3, J4, J1, J2)) is not optimal.
(For problem J 2,NCoff/pmtn/Cmax, an optimal pair of permutations is
((J1, J2, J4, J3), (J4, J3, J1, J2)) which is certainly not a Jackson pair of per-
mutations.)

Example 3.10 Let now inequality (3.46) of Theorem 3.27 be violated, i.e.,
the starting point of the first non-availability interval of machine M1 is less
than the endpoint of the processing of all jobs of set J(12) on machine M1.

Let the processing times of the jobs be given in Table 3.28. We consider
two non-availability intervals: The first non-availability interval (2, 3) on
machine M1, and the second non-availability interval (4, 7) on machine M2.

Table 3.28: Processing times for Example 3.10

Job Ji i pi1 pi2

J12 1 3 2
2 2 1

J21 3 3 1
4 2 1

An optimal Jackson pair of permutations for the corresponding problem
J 2//Cmax is ((J1, J2, J4, J3), (J4, J3, J1, J2)). Here, we have c1(π12) = 5
while s(N1,1) = 2, and so the beginning of the first non-availability interval
of machine M1 is less than the endpoint of the processing of all jobs of set
J(12) on machine M1. For the original problem J 2,NCoff/pmtn/Cmax, the
pair of permutations ((J1, J2, J4, J3), (J4, J3, J1, J2)) is not optimal.

For problem J 2,NCoff/pmtn/Cmax, an optimal pair of permutations is
((J2, J1, J4, J3), (J4, J3, J2, J1)) which is not a Jackson pair of permutations.

In the following claim, the same notation s(π′, π′′) is used twice but in
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a different sense: First, it is a schedule for problem J 2,NCoff/pmtn/Cmax,
and then it is a schedule for problem J 2//Cmax.

Theorem 3.28 Let (π′, π′′) be a Jackson pair of permutations for problem
J 2//Cmax. Then schedule s(π′, π′′) is optimal for the corresponding problem
J 2,NCoff/pmtn/Cmax if for the corresponding problem J 2//Cmax, the main
machine M2 works without idles in schedule s(π′, π′′), and the following three
conditions hold:

w1∑
k=1

h(Nk1) ≥
w2∑
k=1

h(Nk2), (3.47)

s(N1,2) ≥
∑

Ji∈J(12)
pi1, (3.48)

s(N1,1) ≥
∑

Ji∈J(21)
pi2. (3.49)

Proof. Next, we show that, if all the above conditions hold in common,
then machine M2 remains the main machine for the corresponding problem
J 2,NCoff/pmtn/Cmax and works without idles. Therefore, the conditions
of Lemma 3.9 hold and therefore, schedule s(π′, π′′) has to be optimal for
problem J 2,NCoff/pmtn/Cmax.

Indeed, inequality (3.48) implies that the non-availability intervals of ma-
chine M1 cannot increase the idle time on machine M2. Hence, machine M2

is completely filled in the closed interval [0, c′2(π
′′)] with processing times of

all jobs from permutation π′′ and non-availability intervals of this machine.
So, machine M2 works without idles and we obtain equality

c′2(π
′′) = c2(π

′′) +
w2∑
k=1

h(Nk2).

Next, we show that machine M2 remains the main machine for problem
J 2,NCoff/pmtn/Cmax. Inequality (3.49) implies that the non-availability in-
tervals of machine M2 cannot increase the idle time on machine M1. There-
fore, the endpoint on machine M1 cannot be enlarged more than by the sum
of the lengths of all non-availability intervals on this machine, i.e., we have

c′1(π
′) ≤ c1(π

′) +
w1∑

k=1
h(Nk1).

We obtain

c′1(π
′) ≤ c1(π

′) +
w1∑
k=1

h(Nk1) ≤ c2(π
′′) +

w2∑
k=1

h(Nk2) = c′2(π
′′).
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Therefore, machine M2 is the main machine for problem
J 2,NCoff/pmtn/Cmax. Thus, the conditions of Lemma 3.9 hold and
hence, schedule s(π′, π′′) is optimal for problem J 2,NCoff/pmtn/Cmax. This
completes the proof.

�

Computational Results

Our computational study of the above sufficient conditions was performed
on a huge number of randomly generated problems J 2,NCoff/pmtn/Cmax.
For each randomly generated instance J 2,NCoff/pmtn/Cmax, we constructed
a Jackson pair of permutations for the corresponding job shop problem
J 2//Cmax (i.e., that with the same job processing times) and answered
the question: Is this pair of permutations optimal for the original prob-
lem J 2,NCoff/pmtn/Cmax? To this end, we tested the sufficient conditions
proven in Section 3.4 for problem F2,NCoff/pmtn/Cmax and those proven
in this section for problem J 2,NCoff/pmtn/Cmax. To minimize the running
time of the software, these sufficient conditions were tested in an increasing
order of their complexity up to the first positive answer (if any) to the above
question. More formally, the following algorithm was realized.

Algorithm for J 2,NCoff/pmtn/Cmax

Input: Processing times of the jobs J
and non-availability intervals of the machines M .

Output: An optimal schedule for problem J 2,NCoff/pmtn/Cmax

or a feasible schedule if the algorithm terminates in Step 6.

Step 1: Construct a Jackson pair of permutations
(π′, π′′) for problem J 2//Cmax

and a Johnson permutation σ for the flow shop problem A.
Step 2: IF schedule s(σ)=s(π12) for problem A satisfies

the condition of Corollary 3.2 THEN GOTO Step 7.
Step 3: IF schedule s(σ)=s(π12) for problem A satisfies

the condition of Corollary 3.3 THEN GOTO Step 7.
Step 4: Construct λ=min{λ∗, 2k} Johnson permutations σ1, σ2, . . . ,

σλ for problem A, and λ Jackson pairs of permutations
(π′

1, π
′′
1), (π

′
2, π

′′
2), . . . , (π

′
λ, π

′′
λ) for problem J 2//Cmax.

Step 5: FOR i = 1, 2, . . . , λ DO
BEGIN
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Set σ := σi.
IF schedule s(σ) for problem A satisfies
the condition of Corollary 3.2
THEN GOTO Step 7.
IF schedule s(σ) for problem A satisfies
the condition of Corollary 3.3
THEN GOTO Step 7.
IF schedule s(π′, π′′) satisfies the condition
of Theorem 3.27 THEN GOTO Step 7.
IF schedule s(π′, π′′) satisfies the condition
of Theorem 3.28 THEN GOTO Step 7.

END
Step 6: Optimality of the pairs of permutations (π′

i, π
′′
i ), i = 1, . . . , λ,

for problem J 2,NCoff/pmtn/Cmax is not proven STOP.
Step 7: The pair of permutations (π′, π′′) is optimal for problem

J 2,NCoff/pmtn/Cmax STOP.

Steps 4 and 5 of the above algorithm are realized since there may be
more than one Jackson pair of permutations (if equalities pij = pkj hold for
different jobs Ji ∈ J and Jk ∈ J). We tested up to min{λ∗, 2k} pairs of
Jackson permutations for each instance. In the experiments, we set λ∗ =
1024. For each combination of n and w, Tables 3.29 – 3.40 present the
percentage of instances in the series for which the calculation based on the
above algorithm found a Jackson pair of permutations which remains optimal
in spite of the given non-availability intervals.

Small and Moderate Problems

First, we tested problems similar to those considered in [195, 45], i.e.,
with

• 5, 10, 15, . . . , 100 jobs having integer processing times uniformly dis-
tributed in the range [1, 1000] and with

• 1, 2, 3, . . . , 10 non-availability intervals (of both machines) with integer
lengths uniformly distributed in the range [1, 1000].

The above algorithm was coded in C++. For the computational experi-
ments, we used an AMD 1200 MHz processor with 1024 MB main memory.
For the small and moderate instances similar to those considered in [195] and
in [45], we made 10000 tests in each series (i.e., for each combination of n and
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Table 3.29: Percentage of solved moderate (easy) instances with w1 > 0 and w2 > 0

|J | Number of non-availability intervals
1 2 3 4 5 6 7 8 9 10

5 86.2% 85.5% 87.8% 85.9% 85.7% 85.2% 85.0% 83.2% 83.4% 85.8%
10 92.1% 93.5% 93.3% 92.4% 92.8% 92.1% 92.6% 93.2% 93.0% 94.3%
15 95.0% 95.1% 95.7% 95.8% 96.2% 96.5% 95.7% 96.2% 95.2% 95.4%
20 97.3% 97.4% 97.2% 97.9% 97.6% 97.5% 96.7% 97.5% 96.4% 97.4%
25 97.7% 98.2% 98.5% 97.8% 99.1% 97.5% 98.5% 98.7% 98.6% 97.6%
30 99.1% 99.2% 98.9% 99.3% 99.0% 98.9% 99.0% 98.7% 98.5% 99.4%
35 99.3% 99.0% 99.4% 99.3% 98.6% 98.7% 99.6% 99.7% 99.7% 99.5%
40 99.6% 99.1% 99.2% 99.4% 99.0% 99.8% 99.2% 99.5% 99.4% 99.5%
45 99.1% 99.2% 99.3% 99.5% 99.8% 98.8% 99.6% 99.4% 98.7% 99.7%
50 99.3% 99.1% 99.7% 99.2% 99.6% 99.8% 99.9% 100.0% 99.7% 99.6%
55 99.6% 99.7% 99.5% 99.8% 99.8% 99.6% 99.8% 99.5% 99.4% 99.4%
60 99.7% 99.8% 99.9% 99.8% 99.9% 99.9% 99.7% 100.0% 99.8% 99.7%
65 99.6% 99.6% 99.8% 99.7% 99.9% 99.9% 99.7% 99.9% 99.6% 99.6%
70 99.7% 99.8% 99.7% 99.9% 99.6% 99.7% 99.8% 99.6% 100% 100%
75 100% 99.9% 100% 99.9% 99.8% 99.7% 99.6% 99.9% 100% 99.9%
80 99.8% 100% 99.9% 99.7% 99.9% 100.0% 99.9% 99.8% 99.9% 99.8%
85 99.9% 100% 99.9% 100% 99.4% 99.9% 100% 100% 99.8% 99.9%
90 100% 99.9% 99.8% 99.9% 99.9% 99.9% 99.8% 99.9% 100% 99.5%
95 100% 99.9% 99.9% 100.0% 99.9% 99.7% 100% 99.9% 100% 100%
100 99.7% 99.8% 99.8% 99.9% 99.9% 99.9% 100% 100% 99.9% 99.9%

w). For the large instances, we made 1000 tests in each series. We answer
the question of how many schedules following the Jackson order (constructed
for problem J 2//Cmax) remain optimal in spite of the non-availability in-
tervals of the machines (i.e., for problem J 2,NCoff/pmtn/Cmax). We tested
only the sufficient conditions and our algorithm does not guarantee to find
an optimal schedule for some problems J 2,NCoff/pmtn/Cmax (however, our
experiments showed that such instances arise rather seldom for most ran-
domly generated problems). We considered 10000 instances in each series of
small problems.

Tables 3.29 – 3.34 present the percentage of problem instances which were
(optimally) solved due to a stability analysis by the above algorithm. We
do not present the running times for the series of small instances, since the
running times were very close for different instances and very small: The
maximum running time of an instance in the series presented in Tables 3.29
– 3.34 was 0.001 seconds.

Along with the case when the non-availability intervals are on both ma-
chines: w1 > 0 and w2 > 0, we tested the cases (classes) of problems when
either w1 = 0 or w2 = 0.
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Table 3.30: Percentage of solved moderate (hard) instances with w1 > 0 and w2 > 0

|J | Number of non-availability intervals
1 2 3 4 5 6 7 8 9 10

5 64.9% 68.2% 69.0% 69.1% 70.0% 70.2% 69.6% 65.7% 67.7% 66.3%
10 81.3% 80.4% 80.8% 81.0% 81.8% 79.0% 80.4% 81.7% 81.5% 82.4%
15 87.9% 88.8% 87.8% 89.0% 88.2% 88.6% 89.1% 89.8% 88.6% 88.8%
20 91.1% 92.1% 92.3% 93.0% 91.0% 91.9% 92.2% 92.1% 90.3% 91.2%
25 95.3% 94.7% 93.9% 94.9% 92.5% 94.1% 95.3% 92.9% 94.0% 93.3%
30 94.8% 94.9% 95.7% 96.3% 96.1% 96.2% 95.2% 95.7% 96.0% 94.9%
35 96.4% 97.0% 97.4% 95.9% 95.9% 96.6% 96.9% 95.3% 95.4% 96.6%
40 96.6% 97.5% 96.6% 96.9% 97.4% 96.1% 95.0% 95.9% 96.5% 97.1%
45 97.8% 97.4% 98.1% 97.5% 96.3% 97.4% 97.4% 97.9% 96.9% 97.2%
50 98.4% 98.7% 97.7% 97.0% 97.7% 97.9% 97.2% 97.9% 97.5% 97.7%
55 97.8% 98.0% 97.6% 97.0% 98.0% 97.8% 97.9% 98.4% 97.6% 97.7%
60 98.1% 97.1% 97.9% 98.2% 98.7% 98.2% 97.7% 98.1% 98.5% 98.3%
65 98.4% 98.3% 98.2% 98.5% 97.7% 99.1% 97.8% 98.7% 98.3% 98.4%
70 98.1% 98.3% 98.9% 98.4% 98.8% 98.7% 97.6% 98.3% 98.0% 98.2%
75 97.5% 98.4% 98.3% 98.5% 98.9% 98.4% 98.7% 98.3% 98.4% 98.6%
80 99.1% 98.3% 98.2% 98.4% 98.3% 98.2% 98.7% 98.6% 99.3% 98.6%
85 98.5% 98.7% 98.7% 98.4% 98.7% 99.0% 98.8% 98.7% 98.5% 98.3%
90 99.0% 98.6% 98.8% 98.9% 98.6% 98.6% 99.0% 98.8% 98.7% 97.9%
95 98.5% 98.8% 99.0% 98.9% 98.8% 99.2% 98.9% 99.2% 98.9% 98.4%
100 98.4% 98.7% 98.5% 98.6% 99.4% 99.1% 98.7% 98.5% 98.4% 98.7%

Large Problems

Due to the small running time, we were able to investigate very
large instances (as in Section 3.4). We tested instances of problem
J 2,NCoff/pmtn/Cmax with

• 1000, 2000, . . . , 10000 jobs having integer processing times uniformly
distributed in the range [1, 1000] and with

• 10, 100, 500, 1000 non-availability intervals with integer lengths uni-
formly distributed in the range [1, 1000] on both machines.

The computational results for large instances of problem
J 2,NCoff/pmtn/Cmax are given in Tables 3.36 – 3.40 which are analo-
gous to Tables 3.29 – 3.34.

Tables 3.36 – 3.40 give the percentage of (optimally) solved instances due
to a stability analysis based on the above algorithm and the average running
time in seconds for each series of instances (in parentheses). The maximum
running time for one instance was 0.01000 seconds.
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Table 3.31: Percentage of solved moderate (easy) instances with w = w1

|J | Number of non-availability intervals
1 2 3 4 5 6 7 8 9 10

5 89.3% 89.7% 88.9% 90.6% 89.6% 89.5% 89.9% 89.9% 88.9% 90.0%
10 96.5% 96.0% 95.0% 96.8% 96.6% 95.8% 95.8% 96.1% 96.6% 95.3%
15 97.5% 98.7% 97.6% 97.3% 97.5% 98.5% 98.4% 98.8% 98.2% 97.4%
20 98.4% 98.6% 99.0% 98.6% 98.7% 99.1% 98.3% 98.6% 98.2% 98.4%
25 98.8% 99.4% 99.5% 99.5% 98.7% 98.7% 98.7% 99.3% 99.2% 99.3%
30 99.3% 99.6% 99.9% 99.1% 99.1% 99.1% 99.6% 99.3% 99.3% 99.3%
35 99.5% 99.4% 99.2% 99.6% 99.7% 99.8% 99.7% 99.6% 99.5% 99.5%
40 99.3% 99.6% 99.6% 99.8% 99.8% 99.4% 99.6% 99.6% 100% 98.9%
45 99.7% 99.7% 99.7% 99.7% 99.1% 100% 99.7% 99.7% 99.8% 99.8%
50 99.6% 99.9% 99.8% 99.8% 100% 99.8% 99.9% 99.7% 100% 99.8%
55 99.7% 99.7% 99.8% 99.7% 99.9% 99.8% 99.9% 99.7% 99.6% 99.6%
60 99.7% 99.7% 99.9% 99.8% 99.8% 99.8% 99.9% 99.6% 99.7% 99.8%
65 99.8% 99.9% 99.9% 99.9% 99.8% 99.8% 100% 99.9% 100% 99.9%
70 99.7% 99.5% 99.8% 99.7% 100.0% 99.9% 99.9% 99.8% 99.9% 99.9%
75 100% 99.4% 100% 99.9% 99.7% 99.7% 100% 99.8% 99.8% 100%
80 99.9% 99.9% 100% 100% 100% 99.9% 99.8% 99.9% 100% 100%
85 100% 99.9% 99.9% 99.8% 100% 99.8% 100% 99.8% 99.5% 99.9%
90 99.9% 99.7% 99.8% 99.8% 99.8% 99.7% 99.9% 100% 99.9% 100%
95 99.8% 100% 99.7% 99.8% 99.8% 99.9% 100% 100% 99.9% 100%
100 99.9% 100% 99.8% 99.8% 99.8% 99.8% 99.9% 100% 99.8% 100%

In this section, sufficient conditions have been proven for a Jackson pair of
permutations to be optimal in the case of w given non-availability intervals of
machines M1 and M2 in the two-machine job shop. Due to Theorems 3.27
and 3.28, Corollaries 3.2 and 3.3 (see Section 3.4), these conditions may
be tested in polynomial time in the number n of jobs and the number w
of non-availability intervals. However, there are instances of the problems
which cannot be solved exactly using these sufficient conditions. This is not
surprising since the problem is NP-hard even for w = 1 and a single machine
route (see Theorem 3.23 and Theorem 3.24 in Section 3.4 given on pages
236 and 238). However, it is worth noticing that the number of unsolved
instances decreases with the increase of the number n of jobs. In addition,
within the huge computational study, we did not find a type of combination
of numbers n and w and a type of the relation between the lengths of non-
availability intervals of machine M1 and machine M2 for which our sufficient
conditions in general give bad results. Note that such types of bad instances
exist for flow shop problems considered in Section 3.4.

The above computational results show that our sufficient conditions are
very efficient in computational time and effective (in the number of problems
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Table 3.32: Percentage of solved moderate (hard) instances with w = w1

|J | Number of non-availability intervals
1 2 3 4 5 6 7 8 9 10

5 69.3% 65.7% 68.3% 65.6% 69.7% 69.8% 69.0% 70.8% 68.9% 70.5%
10 79.4% 79.2% 79.2% 79.4% 79.6% 79.6% 79.3% 77.9% 79.5% 79.1%
15 84.8% 86.3% 84.8% 85.3% 85.0% 83.6% 86.2% 83.4% 84.5% 85.4%
20 90.6% 88.9% 90.3% 89.4% 91.7% 89.5% 90.6% 88.9% 90.3% 90.3%
25 91.9% 95.1% 93.5% 92.0% 93.2% 93.2% 93.0% 93.4% 92.1% 92.2%
30 95.1% 96.2% 95.4% 95.0% 94.8% 95.8% 94.9% 93.8% 95.5% 95.1%
35 96.2% 96.6% 96.4% 96.3% 95.4% 95.7% 96.2% 96.6% 95.9% 95.6%
40 97.1% 95.9% 96.1% 96.8% 95.7% 97.2% 96.4% 96.2% 96.5% 97.6%
45 96.0% 97.1% 97.4% 97.9% 97.3% 97.6% 97.1% 98.1% 97.3% 96.5%
50 97.0% 97.2% 96.9% 97.4% 98.5% 98.2% 98.6% 97.5% 97.0% 97.0%
55 98.0% 98.1% 97.6% 97.8% 97.9% 98.2% 97.8% 97.6% 97.9% 96.8%
60 97.9% 97.9% 98.1% 97.8% 98.0% 97.7% 97.4% 98.6% 97.7% 97.8%
65 98.7% 98.8% 97.8% 98.4% 98.0% 98.1% 98.1% 98.9% 98.8% 98.5%
70 98.5% 98.2% 97.5% 98.3% 98.8% 98.7% 99.0% 98.7% 98.8% 98.5%
75 98.9% 99.1% 98.2% 98.7% 98.8% 98.6% 98.6% 98.1% 98.8% 98.7%
80 98.9% 98.9% 99.0% 99.3% 98.7% 98.9% 98.4% 98.6% 98.3% 98.3%
85 98.8% 98.9% 98.8% 98.2% 98.2% 98.7% 98.6% 98.6% 98.7% 98.6%
90 99.2% 98.8% 99.2% 99.1% 98.8% 99.1% 98.5% 98.5% 98.9% 98.9%
95 98.9% 99.1% 98.3% 99.2% 98.8% 98.6% 98.6% 99.1% 98.8% 99.0%
100 98.7% 99.2% 99.2% 99.0% 99.0% 98.9% 98.7% 98.9% 98.7% 99.1%

solved) for small problems (n ≤ 100 and w ≤ 10) and especially for large
problems (1000 ≤ n ≤ 10000 and 10 ≤ w ≤ 1000). For most classes
of randomly generated problems, only a few instances were not optimally
solved within a few seconds of running time.

In Section 3.4, analogous sufficient conditions have been proven and used
for the case of a flow shop problem. Such sufficient conditions may also
be used for other scheduling problems with limited machine availability if
an optimal schedule for the corresponding pure setting of the problem (i.e.,
when all machines are continuously available during the whole planning
horizon) can be constructed by applying a priority rule to the jobs such as
SPT, LPT and so on. Moreover, one can use some of the above results for
some type of online settings of scheduling problems when there is no prior
information about the exact location of the non-availability intervals on the
time axis. Another topic for future research may be connected with the
use of the above sufficient conditions in the framework of an exact solution
algorithm like a branch-and-bound one.
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Table 3.33: Percentage of solved moderate (easy) instances with w = w2

|J | Number of non-availability intervals
1 2 3 4 5 6 7 8 9 10

5 83.7% 86.3% 86.7% 87.4% 86.6% 83.9% 86.7% 83.9% 85.0% 86.1%
10 93.2% 93.9% 93.0% 92.8% 91.5% 93.6% 93.5% 91.4% 93.6% 92.8%
15 96.2% 95.3% 96.1% 96.6% 96.7% 95.3% 94.4% 95.3% 95.9% 96.1%
20 97.5% 98.0% 96.6% 97.3% 97.3% 97.9% 98.1% 96.8% 97.3% 97.1%
25 98.8% 98.4% 98.2% 98.9% 98.7% 98.3% 97.6% 98.5% 98.3% 98.4%
30 98.6% 99.2% 99.5% 98.4% 99.2% 98.5% 99.0% 98.6% 99.0% 99.1%
35 99.3% 99.4% 99.2% 99.2% 99.2% 99.4% 99.7% 99.4% 99.5% 99.1%
40 99.5% 99.4% 99.1% 99.5% 99.4% 99.1% 98.9% 99.4% 99.3% 99.5%
45 99.6% 99.6% 99.7% 99.6% 99.5% 99.0% 99.9% 99.7% 99.5% 99.2%
50 99.8% 99.1% 99.6% 99.2% 99.6% 99.7% 99.4% 99.8% 99.3% 99.6%
55 99.8% 99.5% 99.8% 99.9% 99.8% 99.6% 99.7% 99.8% 99.7% 99.5%
60 99.4% 99.6% 100.0% 99.8% 99.7% 99.9% 99.6% 99.6% 99.9% 99.5%
65 99.6% 99.6% 99.8% 99.6% 99.5% 99.8% 99.8% 99.5% 99.7% 99.8%
70 99.6% 99.8% 99.4% 99.9% 99.7% 99.7% 99.9% 99.9% 99.8% 99.9%
75 99.9% 99.9% 99.5% 99.7% 99.7% 99.9% 99.9% 99.9% 99.8% 99.7%
80 99.9% 99.8% 99.7% 99.9% 99.8% 100% 99.6% 99.9% 99.6% 99.9%
85 99.9% 99.9% 99.9% 100.0% 99.7% 99.7% 100% 99.8% 99.8% 99.9%
90 99.9% 99.8% 100% 99.9% 99.5% 99.9% 99.9% 99.8% 99.9% 99.8%
95 99.9% 99.8% 99.8% 99.8% 99.8% 99.8% 99.8% 99.9% 99.8% 100%
100 100% 100% 100% 99.9% 99.9% 99.9% 100% 99.7% 99.9% 99.9%

3.6. Comments and References

Most real-life sequencing and scheduling problems involve some forms of
uncertainty. Several approaches complementing one another are available
for dealing with sequencing and scheduling under uncertainty. In a stochas-
tic approach, uncertain scheduling parameters (processing times and others)
are assumed to be random variables with specific probability distributions
(see the second part of monograph [269]). There are two types of stochas-
tic shop scheduling problems traditionally addressed in the OR literature,
where one is concerned with a stochastic job and the other is concerned with
a stochastic machine. In a stochastic job problem, the job processing time is
assumed to be a random variable following a certain (and given) probability
distribution. For the objective of stochastically minimizing the makespan
(i.e., minimizing the expected schedule length), the flow shop problem was
considered in the articles [108, 178, 194], among others. In a stochastic ma-
chine problem, the job processing time is fixed, while the job completion
time is a random variable due to machine breakdowns or other reasons of
machine non-availability. In the articles [274, 275] (in [10, 11, 14], respec-
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Table 3.34: Percentage of solved moderate (hard) instances with w = w2

|J | Number of non-availability intervals
1 2 3 4 5 6 7 8 9 10

5 68.0% 68.8% 69.3% 70.8% 70.8% 69.2% 69.1% 71.0% 70.2% 70.5%
10 78.5% 76.9% 80.2% 78.2% 79.1% 78.4% 78.5% 76.6% 77.6% 78.9%
15 84.2% 85.4% 85.8% 85.0% 86.2% 83.0% 86.6% 85.1% 83.7% 84.3%
20 90.5% 90.9% 91.5% 90.3% 89.1% 88.3% 91.2% 90.6% 90.9% 90.4%
25 93.0% 94.0% 93.0% 92.9% 93.1% 93.7% 93.5% 89.7% 93.2% 93.8%
30 94.2% 93.7% 94.7% 94.3% 95.3% 95.4% 94.5% 95.2% 94.9% 94.6%
35 96.6% 96.2% 96.4% 95.7% 96.8% 97.1% 96.0% 96.4% 96.5% 96.6%
40 96.6% 96.7% 96.4% 96.5% 97.6% 95.7% 96.2% 96.4% 97.7% 96.3%
45 96.4% 96.7% 98.3% 96.9% 97.3% 97.0% 96.7% 96.4% 96.4% 97.3%
50 97.1% 96.8% 98.0% 97.8% 97.2% 98.0% 97.7% 97.3% 97.5% 98.2%
55 98.4% 96.5% 98.0% 97.9% 98.1% 97.8% 98.2% 98.4% 97.8% 98.0%
60 97.3% 97.8% 97.1% 98.6% 97.7% 98.6% 97.8% 97.9% 97.8% 98.6%
65 98.1% 98.1% 97.6% 97.9% 98.7% 98.1% 98.3% 98.1% 98.4% 97.1%
70 98.4% 98.1% 98.7% 99.2% 97.9% 99.0% 98.5% 98.2% 98.2% 98.8%
75 97.9% 98.1% 99.2% 98.5% 98.7% 98.5% 99.1% 98.1% 98.5% 98.9%
80 98.8% 98.6% 98.5% 98.9% 98.5% 98.3% 98.3% 98.2% 98.3% 99.2%
85 97.9% 98.7% 99.0% 99.1% 98.7% 98.7% 99.0% 98.0% 98.8% 99.0%
90 98.4% 98.4% 98.1% 98.4% 98.8% 98.5% 99.2% 98.7% 98.7% 98.0%
95 98.8% 99.0% 99.0% 98.4% 99.4% 98.5% 98.7% 99.1% 98.5% 99.5%
100 99.1% 99.1% 98.6% 99.4% 99.0% 98.2% 98.6% 98.9% 98.5% 99.3%

tively), a flow shop problem to stochastically minimize the makespan (the
total completion time) was considered. A couple of researchers [10, 14] con-
sidered flow shops with machine breakdowns. Article [4] was addressed to
the so-called group shop (which is a generalization of the flow shop, the job
shop and the open shop) with random processing and release times having
known probability distributions. The objective is to find a schedule which
stochastically minimizes the total weighted completion time.

Unfortunately, in many real-life situations, one may have no sufficient
information to characterize the probability distribution of each random pa-
rameter. In such situations, other approaches are needed [24, 283]. For the
uncertain problem α/pL

ij ≤ pij ≤ pU
ij/γ, there usually does not exist a single

schedule (a job permutation for each machine) that remains optimal for all
scenarios of set T , where a scenario denotes a possible realization of all the
uncertain processing times. So, an additional criterion is often introduced
for dealing with the uncertain problem α/pL

ij ≤ pij ≤ pU
ij/γ.

In particular, in the approach of seeking a robust schedule [19, 88, 187,
189, 205, 293, 371], the decision-maker prefers a schedule that hedges against
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Table 3.35: Average running time and percentage of solved instances with w1 > 0 and
w2 > 0

Number Number of non-availability intervals
of jobs 10 100 500 1000
1000 100% (0.004 s) 100% (0.004 s) 100% (0.004 s) 100% (0.004 s)
2000 100% (0.016 s) 100% (0.016 s) 100% (0.016 s) 100% (0.016 s)
3000 100% (0.036 s) 100% (0.034 s) 100% (0.036 s) 100% (0.036 s)
4000 100% (0.064 s) 100% (0.062 s) 100% (0.059 s) 100% (0.062 s)
5000 100% (0.101 s) 100% (0.102 s) 100% (0.097 s) 100% (0.100 s)
6000 100% (0.144 s) 100% (0.144 s) 100% (0.145 s) 100% (0.155 s)
7000 100% (0.196 s) 100% (0.201 s) 100% (0.203 s) 100% (0.212 s)
8000 100% (0.263 s) 100% (0.282 s) 100% (0.272 s) 100% (0.281 s)
9000 100% (0.348 s) 100% (0.359 s) 100% (0.334 s) 100% (0.347 s)
10000 100% (0.444 s) 100% (0.416 s) 100% (0.434 s) 100% (0.425 s)

Table 3.36: Average running time and percentage of solved instances with pi,2 = 2pi,1, Ji ∈
J(12), pk,1 = 2pk,2, Jk ∈ J(21)), w1 > 0 and w2 > 0

Number Number of non-availability intervals
of jobs 10 100 500 1000
1000 99.9% (0.008 s) 99.9% (0.008 s) 99.8% (0.008 s) 100% (0.008 s)
2000 99.9% (0.030 s) 100% (0.030 s) 100% (0.031 s) 99.8% (0.029 s)
3000 100% (0.069 s) 99.9% (0.070 s) 100% (0.068 s) 100% (0.069 s)
4000 100% (0.125 s) 100% (0.118 s) 99.8% (0.118 s) 100% (0.123 s)
5000 100% (0.206 s) 100% (0.191 s) 99.9% (0.191 s) 99.8% (0.191 s)
6000 100% (0.269 s) 100% (0.273 s) 100% (0.284 s) 99.9% (0.294 s)
7000 100% (0.387 s) 100% (0.377 s) 99.9% (0.398 s) 99.9% (0.382 s)
8000 100% (0.486 s) 100% (0.549 s) 100% (0.520 s) 100% (0.515 s)
9000 100% (0.700 s) 100% (0.644 s) 100% (0.654 s) 100% (0.677 s)
10000 100% (0.812 s) 100% (0.866 s) 100% (0.853 s) 100% (0.823 s)

the worst scenario among all scenarios T . Kouvelis et al. [187] focused on a
scheduling problem, where the job processing times are uncertain. In their
problem setting, the scheduling decision-maker is exposed to the risk that
an optimal schedule with respect to a deterministic or stochastic model will
perform poorly when evaluated relative to the actual processing times. A
robust schedule was relatively insensitive to the potential realizations of the
job processing times. The paper [187] focused on a two-machine flow shop
problem with the makespan criterion. A measure of schedule robustness that
explicitly considers the risk of poor system performance over all potential
realizations of the job processing times was presented.

A similar robust schedule was constructed for a single machine problem
by Daniels and Kouvelis [88]. In the robust scheduling approach the scenario



3.6. COMMENTS AND REFERENCES 277

Table 3.37: Average running time and percentage of solved instances with w = w1

Number Number of non-availability intervals
of jobs 10 100 500 1000
1000 100% (0.004 s) 100% (0.005 s) 100% (0.004 s) 100% (0.004 s)
2000 100% (0.016 s) 100% (0.016 s) 100% (0.016 s) 100% (0.016 s)
3000 100% (0.036 s) 100% (0.035 s) 100% (0.035 s) 100% (0.036 s)
4000 100% (0.063 s) 100% (0.061 s) 100% (0.060 s) 100% (0.061 s)
5000 100% (0.098 s) 100% (0.099 s) 100% (0.097 s) 100% (0.101 s)
6000 100% (0.152 s) 100% (0.142 s) 100% (0.151 s) 100% (0.141 s)
7000 100% (0.195 s) 100% (0.205 s) 100% (0.196 s) 100% (0.201 s)
8000 100% (0.257 s) 100% (0.273 s) 100% (0.285 s) 100% (0.267 s)
9000 100% (0.345 s) 100% (0.331 s) 100% (0.344 s) 100% (0.347 s)
10000 100% (0.430 s) 100% (0.427 s) 100% (0.432 s) 100% (0.424 s)

Table 3.38: Average running time and percentage of solved instances with pi,2 = 2pi,1, Ji ∈
J(12), pk,1 = 2pk,2, Jk ∈ J(21), w = w1

Number Number of non-availability intervals
of jobs 10 100 500 1000
1000 100% (0.008 s) 99.8% (0.008 s) 99.9% (0.008 s) 99.9% (0.008 s)
2000 99.9% (0.031 s) 100% (0.030 s) 100% (0.029 s) 100% (0.028 s)
3000 100% (0.067 s) 99.9% (0.067 s) 100% (0.069 s) 100% (0.068 s)
4000 100% (0.123 s) 99.9% (0.118 s) 100% (0.119 s) 100% (0.118 s)
5000 100% (0.205 s) 100% (0.191 s) 100% (0.205 s) 100% (0.196 s)
6000 100% (0.280 s) 100% (0.269 s) 100% (0.293 s) 100% (0.286 s)
7000 100% (0.383 s) 100% (0.410 s) 100% (0.393 s) 100% (0.410 s)
8000 100% (0.519 s) 100% (0.544 s) 100% (0.533 s) 100% (0.526 s)
9000 100% (0.689 s) 100% (0.693 s) 100% (0.659 s) 100% (0.666 s)
10000 100% (0.847 s) 100% (0.848 s) 100% (0.861 s) 100% (0.830 s)

set T could contain a continuum of scenarios (i.e., T is the Cartesian prod-
uct of the n closed intervals as defined in (4) on page 15) or just contains a
finite number of m discrete scenarios (i.e., T = {pj =(pj

1, p
j
2, . . . , p

j
n) : pj ∈

Rn
+, j ∈ {1, 2, . . . , m}}). A robust schedule minimizing the worst-case abso-

lute or relative deviation from optimality has been used in [88, 189] to hedge
against data uncertainty. For a scenario p ∈ T , let γt

p denote the optimal
value of the objective function γ = f(C1, C2, . . . , Cn) for the deterministic
single machine problem 1//γ with the fixed scenario p. Permutation πt ∈ S
is optimal, if f(C1(πt, p), C2(πt, p), . . . , Cn(πt, p)) = γt

p = minπk∈S γk
p =

minπk∈S f(C1(πk, p), C2(πk, p), . . . , Cn(πk, p)). For any permutation πk ∈ S
and any scenario p ∈ T , the difference γk

p − γt
p = r(πk, p) is called the regret

for permutation πk with the objective function equal to γk
p under scenario p.
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Table 3.39: Average running time and percentage of solved instances with w = w2

Number Number of non-availability intervals
of jobs 10 100 500 1000
1000 100% (0.004 s) 100% (0.004 s) 100% (0.005 s) 100% (0.004 s)
2000 100% (0.016 s) 100% (0.016 s) 100% (0.016 s) 100% (0.016 s)
3000 100% (0.036 s) 100% (0.035 s) 100% (0.035 s) 100% (0.036 s)
4000 100% (0.062 s) 100% (0.063 s) 100% (0.059 s) 100% (0.063 s)
5000 100% (0.098 s) 100% (0.100 s) 100% (0.101 s) 100% (0.100 s)
6000 100% (0.145 s) 100% (0.142 s) 100% (0.141 s) 100% (0.142 s)
7000 100% (0.200 s) 100% (0.199 s) 100% (0.204 s) 100% (0.205 s)
8000 100% (0.267 s) 100% (0.285 s) 100% (0.265 s) 100% (0.268 s)
9000 100% (0.331 s) 100% (0.357 s) 100% (0.346 s) 100% (0.356 s)
10000 100% (0.422 s) 100% (0.430 s) 100% (0.439 s) 100% (0.428 s)

Table 3.40: Average running time and percentage of solved instances with pi,2 = 2pi,1, Ji ∈
J(12), pk,1 = 2pk,2, Jk ∈ J(21)), w = w2

Number Number of non-availability intervals
of jobs 10 100 500 1000
1000 99.9% (0.008 s) 100% (0.008 s) 100% (0.008 s) 99.8% (0.008 s)
2000 100% (0.029 s) 100% (0.030 s) 100% (0.029 s) 100% (0.030 s)
3000 100% (0.070 s) 99.9% (0.064 s) 100% (0.062 s) 100% (0.068 s)
4000 100% (0.124 s) 99.9% (0.116 s) 99.9% (0.118 s) 100% (0.123 s)
5000 100% (0.193 s) 100% (0.189 s) 100% (0.197 s) 100% (0.196 s)
6000 100% (0.265 s) 100% (0.296 s) 100% (0.261 s) 100% (0.291 s)
7000 100% (0.393 s) 100% (0.399 s) 100% (0.391 s) 100% (0.410 s)
8000 100% (0.495 s) 100% (0.543 s) 100% (0.550 s) 100% (0.505 s)
9000 100% (0.678 s) 100% (0.675 s) 100% (0.666 s) 100% (0.676 s)
10000 100% (0.836 s) 100% (0.864 s) 100% (0.855 s) 100% (0.846 s)

For permutation πk ∈ S, the value Z(πk) = max{r(πk, p) : p ∈ T} is called
the worst-case absolute regret while the worst-case relative regret is defined
as

Z ′(πk) = max

⎧⎨⎩r(πk, p)

γt
p

: p ∈ T

⎫⎬⎭
provided that γt

p �= 0.

In [19, 20, 88, 205, 221, 222, 223, 371], a finite number of discrete scenarios
have been considered. In [88, 205, 371], problem 1/pL

i ≤ pi ≤ pU
i /

∑ Ci of
minimizing total flow time was considered. While the deterministic problem
1//

∑ Ci is polynomially solvable in O(n log2 n) time due to Smith [301],
finding a permutation πt ∈ S of minimizing the worst-case absolute regret
Z(πt) (see [88]) and the relative regret Z ′(πt) (see [371]) are both binary
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NP-hard even for two possible scenarios. The latter problem becomes unary
NP-hard in the case of an unbounded number of discrete scenarios [371].

In [20], it was demonstrated by an example that there is no direct re-
lationship between a given finite set of discrete scenarios and a set with a
continuum of scenarios regarding the complexity of the uncertain problem.
In [205], it was proven that minimizing the worst-case absolute regret Z(πk)
for problem 1/pL

i ≤ pi ≤ pU
i /

∑ Ci is binary NP-hard even if the closed in-
tervals [pL

i , pU
i ] for all jobs Ji ∈ J have the same center in the real axis.

In [187], binary NP-hardness was proven for finding a permutation πt ∈ S

that minimizes the worst-case absolute regret Z(πt) for the uncertain two-
machine flow-shop problem with the Cmax criterion (i.e., with minimizing
the makespan max{Cmax(πt, p) : Ji ∈ J}) even for two possible scenarios.

Only a few special cases are known to be polynomially solvable for mini-
mizing the worst-case regret for the uncertain scheduling problems. Namely,
an O(n4) algorithm was developed [180] for minimizing the worst-case re-
gret for problem 1/pL

i ≤ pi ≤ pU
i , dL

i ≤ di ≤ dU
i /Lmax with the criterion

Lmax of minimizing the maximum lateness: max{Ci(πt, p) − di : Ji ∈ J} =
minπk∈S{max{Ci(πk, p) − di : Ji ∈ J}} when both the intervals of the pro-
cessing times and the intervals of the due dates di are given as input data. In
[205], it was proven that minimizing Z(πk) for problem 1/pL

i ≤ pi ≤ pU
i /

∑ Ci

can be realized in O(n log2 n) time, if all intervals [pL
i , pU

i ], Ji ∈ J , of the sce-
narios have the same center provided that the number n of jobs is even. In
[21], an O(m) algorithm was proposed for minimizing the worst-case regret
for the m-machine two-job flow shop problem Fm/pL

i ≤ pi ≤ pU
i , n = 2/Cmax

provided that each of the m machines processes the jobs J = {J1, J2} in the
same order, i.e., only two semiactive schedules exist.

Bertsimas and Sim [31, 32] limited the conservatism of a robust solu-
tion by arguing that it is unlikely that all input data assume their worst
possible values simultaneously whereas both absolute robustness and rela-
tive robustness seek solutions for such an assumption. In most practical
situations, it is unlikely that all numerical parameters simultaneously take
their worst values from the set T of possible scenarios. In [31, 32, 369], a
restricted version of absolute robustness was introduced in order to make
the robustness measure more useful for practice. In [369], it was proven
that the r-restricted robust deviation version of the maximization problem
on a uniform matroid is polynomially solvable. Computational experiments
reported in [369] demonstrated that an r-restricted robust measure did not
lead to a decrease in robustness and they have shown a superior behavior to
the previously used robust measure.
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Other robust decision-making formulations were presented by Artigues et
al. [18], Briand et al. [49], Chen et al. [69], Daniels and Carrillo [86], Goren
and Subuncuoglu [142], James and Buchanan [170], Jensen [175], Hall and
Potts [156], Rosenblatt and Lee [281], Kouvelis et al. [188], Kutanoglu and
Wu [197], Liu et al. [234], Mulvey et al. [252], Penz et al [265] and Wu et al.
[367]. In particular, Daniels and Carrillo [86] considered β-robust scheduling
as finding the job sequence which maximizes the probability of the flow time
being less than the given limit. It is assumed that the probability distribu-
tion of the job processing times is known in advance. The same robustness
measure was used in [367] for a single-machine scheduling problem, where
the random processing times are normally distributed. Leon et al. [214] con-
sidered robustness measures and robust scheduling methods that generate
job shop schedules that maintain a high performance over a range of system
disturbances. James and Buchanan [170] studied the minimization of the
weighted sum of early and tardy penalties for each job, each penalty being
proportional to the amount of time the job is early or tardy. The authors
examine the sensitivity of a schedule to errors in estimating the penalties.
In [175], two robustness measures for a job shop were introduced. The first
one was based on the idea of minimizing the makespan of a set of schedules
instead of that of a single schedule. The second robustness measure was
defined as an estimate of the first one in order to reduce the computational
time. By computational experiments, it was demonstrated that, using a
genetic algorithm, it is possible to find a rather robust schedule. Such a
schedule performs better in rescheduling after a machine breakdown. In the
experiments, it was assumed that the breakdown duration was known when
the breakdown started. Hall and Potts [156] considered different scheduling
problems, where a subset of the given jobs is already scheduled to mini-
mize the objective function when a new set of jobs arrives and so creates
a disruption. The scheduler has to insert the new jobs into the existing
schedule without excessively disrupting it. Two questions were considered
by the authors. How to minimize the objective function, subject to a limit
on the disruption caused to the original schedule? How to minimize both the
objective function and the cost of disruption. For all scheduling problems
considered in [156], Hall and Potts provided either a polynomial algorithm
or a proof that such an algorithm does not exist unless P = NP . Liu et al.
[234] considered both robustness and stability when generating a predictive
schedule for a single machine scheduling problem with minimizing the total
weighted tardiness of the jobs. When generating the predictive schedule,
all data are known exactly, except the machine breakdown occurring time
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and the duration. The probability distribution and the mean duration of
a breakdown are also available for the scheduler. The stability of the pre-
dictive schedule is measured by the sum of the absolute deviations of the
job completion times between the realized schedule and the predictive one.
In [213], a game-like approach was proposed for rescheduling in a job shop
after a machine breakdown. A game tree was constructed to evaluate the
consequences of the decisions on the future performance. The rescheduling
decisions in the game tree were evaluated in order to find the decisions lead-
ing to the lowest expected makespan (provided that the tree holds a random
sample of the possible scenarios).

Wu et al. [368] studied the weighted tardiness job shop problem. A
basic thesis of the latter paper is that “global scheduling performance is
determined primarily by a subset of the scheduling decisions to be made”.
Wu et al. [368] proposed a solution approach to the problem as follows. First,
to identify a critical subset of the scheduling decisions at the beginning of
the planning horizon and to relegate the rest of the scheduling decisions to
future points in time. The above research presents a philosophy of great
practical importance: Local scheduling should be allowed to be sufficiently
flexible without losing a global view of the system. Note that our approach
to scheduling problems with uncertainty considered in Chapters 2 and 3 uses
a similar philosophy but in a formal way.

Article [7] (and many other articles published in the proceedings of in-
ternational conferences on parallel and distributed computer systems) ad-
dressed different measures of robustness of a resource allocation with respect
to desired computer system performance features against multiple perturba-
tions in a multiple system and the environment condition. The robustness
measure introduced and studied in [7] is close to the philosophy of the stabil-
ity radius introduced in Chapter 1 and 2 of this book but it is more general
since it is applied to a more general processing system.

The approach under consideration in Chapters 2 and 3 was originally
proposed in [200, 201] for the makespan criterion and was developed in
[203] for the total completion time criterion

∑ Ci. In particular, the formula
for calculating the stability radius of an optimal schedule (i.e., the largest
value of simultaneous independent variations of the job processing times
such that this schedule remains optimal) has been provided in [201]. In
paper [203], a stability analysis of a schedule minimizing total completion
time was involved in a branch and bound method for solving the job shop
problem Jm/pL

ij ≤ pij ≤ pU
ij/

∑ Ci with m machines and different techno-
logical routes of n jobs. In [16], for the two-machine flow shop problem
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F2/pL
ij ≤pij ≤pU

ij/
∑ Ci, sufficient conditions have been found when a trans-

position of two jobs minimizes the makespan. The total completion time
in a flow shop with uncertain processing times was studied in [318, 330].
In particular, a geometrical algorithm has been developed for solving the
flow shop problem Fm/pL

ij ≤pij ≤pU
ij, n = 2/

∑ Ci with m machines and two
jobs [330]. For a flow shop problem with two machines and one with three
machines, sufficient conditions have been found when a transposition of two
jobs minimizes total completion time. Paper [13] was devoted to the case
of separate setup times to minimize the makespan Cmax or the total comple-
tion time

∑ Ci. Namely, the processing times are fixed while the setup times
are relaxed to be distribution-free random variables with only the lower and
upper bounds for the setup times being given before scheduling. In [16],
local and global dominance relations were found for an uncertain flow shop
problem with two machines. The two-machine job shop scheduling problem
with bounded processing times was studied in [328].

Minimizing total weighted flow time of n jobs with interval processing
times on a single machine was investigated in [323], where a minimal dom-
inant set S(T ) of permutations of the n jobs was characterized. Necessary
and sufficient conditions have been proven for the case |S(T )| = 1 and for
the case |S(T )| = n!. Computational experiments have shown that the es-
tablished precedence-dominance relations are useful in reducing the total
weighted flow time.

The results of Section 3.1 were originally published in [219, 220, 237,
238, 258], the results of Section 3.2 in [106, 217, 220, 218, 216, 237], the
results of Section 3.3 in [219, 331]. It should be noted that the uncertainties
of the processing times in the problems α/pL

ij ≤ pij ≤ pU
ij/γ considered in

Chapters 2 and 3 are due to external forces while in a scheduling problem
with controllable processing times of jobs in a shop or in a project, the
objective is both to set the processing times and find an optimal schedule
(see articles [70, 71, 72, 87, 128, 150, 165, 166, 172, 173, 185, 294, 296, 297,
345, 359, 360]). Most known results obtained for scheduling problems with
controllable processing times have been summarized in the monograph [129].

The stability analysis presented in Chapter 2 and used in Chapter 3
is a generalization of the irreducibility analysis developed by Bräsel et al.
[39, 40, 41, 42, 43] for a possible variation of a job processing time in the
range [0, +∞) (see [93] for a survey). Instead of the mixed (disjunctive)
graph model described in Section 1.1, Bräsel et al. used the block-matrices
model which allowed them to present the structural data of a shop scheduling
problem by means of a special latin rectangle, also called a sequence. A



3.6. COMMENTS AND REFERENCES 283

set of sequences is called a potentially optimal solution (irreducible set of
sequences) of a shop scheduling problem if it contains an optimal sequence
for each scenario (it is a minimal potentially optimal solution with respect
to inclusion). In [40, 41, 42, 43] (in [39, 41], respectively), an irreducible set
of sequences was investigated for the open (classical job) shop scheduling
problem with the makespan criterion.

Personal financial planning is the preparation of target-oriented decisions
concerning personal asserts, incomes and expenses. A part of comprehen-
sive personal financial planning consists of scheduling future incomes and
expenses during the planner’s lifetime. In [47], the authors adopted the
view on the realization of time points of extraordinary incomes and ex-
penses. They developed a model of personal financial scheduling and derived
a corresponding mathematical program. Solving the integer programming
problem gives an optimal financial schedule concerning personal goals and
preferences. Since some input data for personal financial scheduling are ran-
dom in nature, it was assumed that only lower and upper bounds for the
real value of the uncertain parameter are known before personal financial
scheduling. In particular, instead of using exact values for credit and in-
terest rates, a worst-case analysis for personal financial scheduling based on
lower and upper bounds of credit and interest rates was provided. Such an
analysis is useful to valuate a credibility of a personal financial schedule.

Several on-line models and algorithms have been proposed (see e.g. [22,
23, 66, 80, 85, 103, 105, 182, 283, 291]), and the main difference between these
models are the assumptions on the information that becomes available to the
scheduler. For a description of these on-line models, we refer to the survey
by Sgall [283]. According to [66], on-line means that jobs arrive over time,
and all job characteristics become known at their arrival time [66]. Jobs do
not have to be scheduled immediately upon arrival. At each time a machine
is idle and a job is available, the algorithm decides which one of the available
jobs is scheduled, if any. An on-line algorithm for the problem of scheduling
jobs on identical parallel machines with the objective of minimizing the
makespan was proposed and analyzed by Chen and Vestjens [66]. This
problem is NP-hard when the off-line version is considered, although it can
be solved in polynomial time by an on-line algorithm if preemption is allowed
[66]. Seiden [291] studied on-line scheduling of jobs with fixed starting and
completion times. Jobs must be scheduled on a single machine which runs at
most one job at a given time. The problem is on-line since jobs are unknown
until their starting times. Each job must be started or rejected immediately
when it becomes known. The goal is to maximize the sum of the value of
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the payoff (the sum of the values of those jobs which run to completion).

Edmonds [103] studied the on-line problem when the scheduler has no
information about the jobs (which have to be processed) except for know-
ing when a job arrives and when a job completes. A job can arrive at an
arbitrary time and may have an arbitrary number of phases. Moreover,
the execution characteristics of each job phase can be anywhere being fully
parallelizable or being completely sequential. The non-clairvoyant scheduler
makes scheduling decisions (continuously allocates and reallocates machines
to jobs as they arrive or complete) having no knowledge about the jobs.
The objective is to minimize the average response time, i.e., the time during
which a job has arrived but has not completed. The non-clairvoyant schedul-
ing is a model in a time-sharing operating system, where the scheduler must
provide a fast switch between machines without any knowledge of the future
behavior of jobs and machines. Edmonds called such an uncertain situation
as “scheduling in the dark”. He proved that the scheduler Equi-partition
performs within a constant factor as well as the optimal scheduler as long
as there are given at least twice as many machines. The extra machines are
enough to compensate for some machine being wasted on sequential jobs.
Equi-partition scheduling partitions the machines evenly among all the jobs
that are alive. The articles [103, 104, 105, 182] continued similar research
for some modification of “scheduling in the dark”. In [104], it was proven
that Equi-partition efficiently schedules batch jobs with different execution
characteristics when all the jobs arrive at the same time. In [182], it was
assumed that the weight of a job becomes known when the job arrives,
while its processing time remains unknown until it will be completed. The
objective is to minimize the total weighted flow time.

The articles [97, 98] were devoted to supply planning in an MRP environ-
ment. The main problem considered in these papers was to find the planned
lead time, which minimize expected backlogging and holding cost. Along
with demand uncertainty, lead time uncertainty was included into consider-
ation. In [97], supply planning was analyzed on the basis of a Markov model.
Yang [372] proposed to explore a modified single machine problem to max-
imize the job revenue. He noticed that products like chips and computers
are characterized by short life cycles and rapidly declining sales prices. This
implies that the total amount of revenue generated as a result of complet-
ing a job (product) is decreasing as its completion time is delayed. So, the
performance measure was to maximize the product revenues. Based on the
assumption that a decreasing rate of revenue is dependent on the jobs, Yang
[372] developed a branch-and-bound algorithm (and heuristics) to locate op-



3.6. COMMENTS AND REFERENCES 285

timal (near-optimal) job sequences and thereby to maximize the total job
revenue.

In most of the shop scheduling models, it was assumed that an individual
processing time incorporates all other time parameters (lags) attached to a
job or to an operation. In practice, however, such parameters often have to
be viewed separately from the actual processing times. For example, if for
an operation some pre-processing and/or post-processing is required, then
we obtain a scheduling model with set-up and/or removal times separated.
Strusevich [346] considered a two-machine open shop problem with involved
interstage transportation times. He assumed that there is a known time
lag (transportation time) between the completion of an operation and the
beginning of the next operation of the same job. Sequence-dependent setup
times in a two-machine job shop problem with minimizing the makespan
were investigated in [324]. In [10], Allahverdi considered a two-machine
flow shop problem with the objective to minimize the expected makespan,
where machines suffer breakdowns and the job set-up and removal times
were separated from the processing times. The same author [9] proposed
a dominance relation, where no assumption about the breakdown processes
was made. In some special cases (if certain assumptions about the distri-
butions of the breakdowns and counting processes hold), it is possible to
obtain an optimal schedule.

The approach presented in Chapter 3 of this book was implemented by
Allahverdi [12] for the two-machine flow shop problem with the total com-
pletion time objective, interval processing and setup times. In [99], a general
model motivated by a concrete industrial application has been developed.
The authors proposed a two-phase method based on solving a mixed-integer
programming problem and improving the initial schedule by a tabu search
heuristic. Such an approach may be used to handle various scheduling prob-
lems when there are sequence-dependent set-up times, the jobs have to be
processed in batches and the machines have non-availability intervals.

A number of papers have been devoted to makespan minimization in a
flow shop scheduling problem with two machines which have w ≥ 1 non-
availability intervals, see the survey [288]. The scheduling problem with an
availability constraint is very important, as it happens often in industry [99].
For example, a machine may not be available during the scheduling horizon
due to a breakdown (stochastic) or preventive maintenance (deterministic).
In an on-line setting, machine availabilities are not known in advance. Un-
expected machine breakdowns are a typical example of events that arise
on-line. Sometimes schedulers have a partial knowledge of the availabilities,
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i.e., they have some ‘look-ahead’ information. They might know the next
time interval when a machine requires a maintenance or they might know
when a broken machine will be available again [285]. In an off-line setting,
one assumes complete information, i.e., all machine availabilities are known
prior to the schedule generation [288]. In [195], it was proven that problem
F2,NCoff/pmtn/Cmax is unary NP-hard if an arbitrary number w of non-
availability intervals occurs on one of the two machines. In [206], it has
been shown that this problem is binary NP-hard even if there is a single
non-availability interval (w = 1) either of machine M1 or of machine M2

(these results have been presented in Theorems 3.23 and 3.24 on pages 236
and 238, respectively).

In [374], NP-hardness of the following problem was proven. A set of jobs
has to be processed using a single resource, where the availability of the re-
source varies over time. For each job Ji, ri denotes the resource requirement.
Once ri units of the resource are applied to job Ji, this job is completed.
The objective is to minimize the total weighted completion time.

In [206], a heuristic was provided with a makespan which is at most (3/2)
times larger than the minimal makespan if this non-availability interval is
on the first machine, and (4/3) times larger than the minimal makespan if
the non-availability interval is on the second machine. In [78], it was shown
that the error bound of (3/2) for the situation with a non-availability interval
of the first machine is tight. For the problem with availability constraints
imposed on each machine when the non-availability interval of one machine
is followed immediately by the non-availability interval of the other machine,
paper [77] provided a heuristic with a worst-case error bound of (5/3).

In [195], a branch-and-bound algorithm was developed which outper-
formed the dynamic programming algorithm proposed in [206]) for the case
of one non-availability interval. In [257], for problem F2,NCoff/pmtn/Cmax

with one non-availability interval, a fully polynomial approximation scheme
has been developed with complexity O(n5/ε4), where ε is an upper bound for
the amount of exceeding the minimal makespan in the approximate schedule
that may be obtained. Problem Fm,NCoff/pmtn/Cmax was considered in [3],
where a heuristic approach was developed on the basis of the geometrical
algorithm from [305, 308] for the two-job shop scheduling problem with any
regular criterion.

In [45], the stability of a Johnson schedule constructed for problem
F2//Cmax has been tested for the case of problem F2,NCoff/pmtn/Cmax.
Section 3.4 (except Theorems 3.23 and 3.24) was written on the basis of
article [45]. Section 3.5 was written on the basis of article [46]. Reviews in
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this area were given in [195, 207, 286, 288].
It is clear that a mass uncertain problem α/pL

ij ≤ pij ≤ pU
ij/γ cannot

be easier (in an asymptotical sense) than its deterministic counterpart α//γ
since the latter is a special case of the former (if pL

ij = pU
ij for each Ji ∈ J and

Mj ∈ M). So, the statement by Lenstra [210] about “the mystical power of
twoness” that a shop scheduling problem may be solved in polynomial time
only if at least one number of machines or jobs is restricted by two (and
P �= NP) is applicable to the uncertain problems α|pL

ij ≤ pij ≤ pU
ij|γ, too.

As it was proven in [308, 313], the deterministic problems F/n = 3/Cmax

and F/n = 3/
∑ Ci and all other deterministic flow shop scheduling problems

F/n = 3/Φ with a non-trivial regular criterion Φ are binary NP-hard. Even
the deterministic problems J 3/n = 3/Cmax and J 3/n = 3/

∑ Ci and so other
job shop scheduling problems F/n = 3/Φ are binary NP-hard [326]. The
complexity of deterministic shop scheduling problems with a fixed number
of jobs or (and) machines was surveyed in [54, 210, 295].
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Table 3.41: Notations for the two-machine flow shop and job shop

Symbols Description

πk Permutation of the set of jobs J = {1, 2, . . . , n}:
πk = {Jk1 , Jk2 , . . . , Jkn},

Sπ Set of all permutations Sπ = {π1, π2, . . . , πn!}
of n jobs J defining the set of all permutation schedules

Sπ(T ) Set of permutations Sπ(T ) ⊆ Sπ

which is a solution to the uncertain flow shop problem
N1 Set of jobs with pi1 ≤ pi2

N2 Set of jobs with pi1 ≥ pi2

NM1 Set of jobs with left intervals of job processing times on machine M1

NM2 Set of jobs with left intervals of job processing times on machine M2

J(ij) Subset of jobs of set J with machine route (Mi,Mj),
where {i, j} = {1, 2}

J(i) Subset of jobs of set J with one-machine route (Mi), where i ∈ {1, 2}
Ci(πk, p) Completion time of job Ji ∈ J in schedule πk ∈ Sπ provided that

the processing times are given by vector p ∈ T
Cmax(πk, p) Maximal completion time of schedule πk ∈ Sπ provided that the

processing times are given by vector p ∈ T :
Cmax(πk, p) = max{Ci(πk, p)

T J Set of feasible vectors of the job processing times in an uncertain job
shop problem: T J = T (1) ∪ T (2) ∪ T (12) ∪ T (21), where T (w)
defines the intervals of the feasible processing times of jobs J(k),
k ∈ {1, 2, 12, 21}

wj Number of non-availability intervals of machine Mj

w Total number of non-availability intervals: w = w1 + w2

Nkj kth non-availability interval of machine Mj

s(Nkj) Starting point of the kth non-availability interval of machine Mj

f(Nkj) Endpoint of the kth non-availability interval of machine Mj

h(Nkj) Length of the kth non-availability interval of machine Mj:
h(Nkj) = f(Nkj) − s(Nkj)

rij Maximal possible enlargement of the processing time of job Ji on
machine Mj such that a Johnson permutation is not changed

ρj Stability radius of a Johnson permutation on machine Mj

Akj kth availability interval of machine Mj

sj Earliest possible starting time of a job on machine Mj

cj Latest possible completion time of a job on machine Mj

dij Maximal possible enlargement of the scheduling time of operation
Oij forced by the non-availability intervals of machine Mj

δj Enlargement radius of the scheduling times of the operations on
machine Mj

sij(πk) Starting time of operation Oij in the schedule defined by
permutation πk

cij(πk) Completion time of operation Oij in the schedule defined by
permutation πk



Conclusion

It is difficult for us to write a conclusion since the work we reported in this
book is definitely not finished yet. Writing this book, we are forced to recog-
nize that we are only at the beginning of the road to develop mathematical
tools for dealing with scheduling problems with uncertain parameters. Next,
we summarize what we have learned from studying the scheduling paradigm
when the job processing times are uncertain before scheduling. We outline
also some topics for future research which follow from the above results.

In spite of a large number of papers and books published about schedul-
ing, the utilization of numerous results of scheduling theory in most produc-
tion environments is far from the desired volume. One of the reasons for such
a gap between scheduling theory and practice is connected with the usual
assumption that the processing times of the jobs are known exactly before
scheduling or that they are random values with a priori known probability
distributions. In this book, a model of one of the more realistic scheduling
scenarios was considered. It is assumed that in the realization of a schedule,
the job processing time may take any real value between given lower and
upper bounds (within the given polytope T ), and there is no prior informa-
tion about the probability distributions of the random processing times. For
such an uncertain scheduling problem, there does usually not exist a unique
schedule that remains optimal for all possible realizations of the processing
times and a set of schedules has to be considered which dominates all other
schedules for the given criterion. To find such a set of schedules, our idea
was to use a stability analysis of an optimal schedule with respect to the
perturbations of the processing times (Chapter 1).

In Chapter 2, we introduced the notion of the relative stability radius
of an optimal schedule s as the maximal value of the radius of a stability
ball within which schedule s remains the best among the given set B of
schedules (Definition 2.2 on page 95 for the makespan criterion Cmax and
Definition 2.6 on page 126 for the mean flow time criterion

∑ Ci). The
relativity was considered with respect to the polytope T of feasible vectors
of the processing times and with respect to the set B of semiactive schedules

289
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for which the superiority of a schedule s at hand has to be guaranteed.

In Chapters 1 and 2, we used the mixed (disjunctive) graph model which
is suitable for the whole scheduling process from the initial mixed graph G
representing the input data until a final digraph Gs representing a semiactive
schedule s. The mixed graph model may be used for different requirements
on the numerical input data (Table 2.1 on page 86). Most results of Chap-
ters 1 and 2 are formulated in terms of paths in the digraphs Gs.

In Chapter 2, we focused on dominance relations between feasible sched-
ules taking into account the given polytope T (Section 2.2). We established
necessary and sufficient conditions for the case of an infinitely large relative
stability radius of an optimal schedule s for the maximum flow time criterion
(Theorem 2.2 on page 101). Under such conditions, schedule s remains op-
timal for any feasible perturbations of the processing times. We established
also necessary and sufficient conditions for the case of a zero relative stabil-
ity radius of an optimal schedule s (Theorem 2.1 on page 98). Under such
conditions, the optimality of schedule s is unstable: There are some small
changes of the given processing times which imply that another schedule
from set B will be better (will have a smaller length) than schedule s.

Formulas for calculating the exact value of the relative stability radius
were based on a comparison of an optimal schedule s with other schedules
from set B (Theorem 2.3 on page 103), and we showed how it is possible
to restrict the number of schedules from set B examined for such a calcula-
tion of the relative stability radius (Lemma 2.4 on page 114). To this end,
we considered the schedules from set B in non-decreasing order of the val-
ues of the objective function until some inequalities hold (Corollary 2.4 on
page 116).

In Chapter 2, analogous results were obtained for the mean flow time cri-
terion, and the focus was on dominance relations between feasible schedules
taking into account the given criterion (Definition 2.5 on page 118). Formu-
las for calculating the exact value of the relative stability radius were given
in Theorem 2.6 on page 131. We established necessary and sufficient condi-
tions for an infinitely large relative stability radius of an optimal schedule for
the mean flow time criterion (Theorem 2.7 on page 131) and necessary and
sufficient conditions for a zero relative stability radius of an optimal schedule
(Theorem 2.8 on page 133). Using these results, we developed several exact
and heuristic algorithms for constructing a solution and a minimal solution
(Definition 2.1 on page 86) of a scheduling problem with uncertain process-
ing times. The developed software was tested on randomly generated job
shop problems. For the maximum and mean flow time criteria, we calculated
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the stability radii of the optimal schedules for more than 10,000 randomly
generated instances. For randomly generated uncertain scheduling problems
with the same criteria, we constructed G-solutions and minimal G-solutions.
The most critical parameter for the running time of the programs was the
number of edges in the mixed graph.

In conclusion, we present some topics for future research. The most
part of this book was devoted to the scheduling problem with uncertain
data for the criteria Cmax and

∑ Ci. Other criteria may be a subject of
further research. In Section 3.2, we introduced the on-line problem (when
an uncertain processing time becomes known after the realization of some
jobs), which follows after the scheduling problem. For the on-line problem,
only very preliminary results are known and it may be a subject for future
research.

The next important direction for further research is to construct more
efficient algorithms for the uncertain scheduling problem, in particular, to
use this approach for uncertain scheduling problems whose deterministic
counterpart have polynomial algorithms for constructing optimal schedules.

After carrying out computational experiments for the calculation of the
stability radii of an optimal schedule (see Chapter 1), we can select the
following topics for future research. It is useful to develop further a branch-
and-bound algorithm for constructing the k best schedules (instead of one,
which is usually constructed) and to combine such a calculation with a sta-
bility analysis. Another possible topic is to improve the bounds (2.34) on
page 114 and (2.63) on page 148 in order to restrict the number of digraphs
Gs, with which an optimal digraph has to be compared, while calculating
its stability radius. A more complex question is to find simpler (practical)
formulas for calculating the stability radius or at least lower and/or upper
bounds for it (without considering the paths of digraph Gs). The algorithms
used in Chapters 1 and 2 were based on an direct enumeration scheme for
calculating the stability radii, and an implicit enumeration scheme was used
before performing the stability analysis (i.e., for calculating optimal and near
optimal schedules). The application of the stability analysis within an im-
plicit enumeration framework should have a practical utility and it may be
a topic for future research. Finishing this book about scheduling under un-
certainty, we can certainly claim that uncertain scheduling problems remain
an interesting and challenging subject for future studies which may combine
different theoretical results with practical problems.
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