DOMINANCE RELATIONS ON THE SET OF
SCHEDULES FOR UNCERTAIN JOB-SHOP

NADEZHDA Y. SOTSKOVA!, FRANK WERNER!

TOtto-von-Guericke~Unive:rsity Magdeburg, Department of Mathematics, In-
stitute of Mathematical Optimization, Universitdtsplatz 2, PSF 4120, D-
39106, ~Magdeburg,  Germany, nadejda.sotskova@student.uni-magdeburg.de,
frank.werner@mathematik.uri-magdeburg.de .

Abstract. In the uncertain version of a job-shop problem J/a;; < p;; < bi;/ F only
lower and upper bounds of processing times (numerical input data) are assumed to be
known before scheduling. We discuss dominance relations which prove to be useful to
solve such a problem. A mixed graph is used for representing the structural input data
(i.e. the precedence and capacity constraints), the scheduling process and the final
solution. This mixed graph ¢ defines the set of all feasible schedules (i.e. circuit-free

digraphs) A(G) = {G,...,G,} via orienting all edges in (5. Since the optimality of

schedule G5 depends on the critical paths in Gy, in order to restrict the set of paths
which may be critical we consider a dominance relation on the set of paths. Although
this relation is based only on the structural input data, its use may considerably
reduce the set of paths and hence simplify the mixed graph G and the digraphs
Gs € A(G). To eliminate redundant schedules from the set A(G), we generalize also
the dominance relation duc to the consideration of the numerical input data.
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1. INTRODUCTION

In contrast to well-studied deterministic settings,
it is assumed that only the structural input da-
ta (i.e. the technological routes of all jobs) are
known in advance while the processing time of
each operation is uncertain and the probability
distribution functions of the random processing ti-
mes are unknown. Let n jobs J = {J,, J,, ..., JIn}
have to be processed on m machines M =
{My, My,...,M,,} with specific routes {machine
orders) of different jobs. Each machine can pro-
cess at most one job at a time. The route of
Jjob J; € J defines linearly ordecred operations
Oit, Oty ..., Oiny: At the stage j € {1.2,.. ,n;}
of job J;, operation 0y, has to be processed on ma-
chine My,. € M. It is assumed that preemptions
of an operation are forbidden: In any schedule,
operation U;; being started at time si; has to be
processed up to its completion time ¢, j = Sij +Dig,

where p;; denotes the processing time of operati-
on C)U

We examire an uncertain version of a job-shop
problem, where the structural input data, (i.e. pre-
cedence and capacity constraints) are fixed before
scheduling, but only a lower bound a;; > 0, and
an upper bound b;; > a;; of the processing time of
operation Oy;, J; € J; j = 1,2,... n,, are given:
The actual processing time of operation O;;j may
take any real value between these bounds. The
objective is to find such a schedule which mini-
mizes the given non-decreasing objective function
F(C,.Cy,...,Cy), where C; = Cin; 18 the com-
pletion time of job J; € J. Using the three-field
notation, this problem is denoted by J [ai; < pij <
b;;/F. The problem J/ai; < pi; < bij / F seems to
be more realistic than the deterministic problem
J//F: Even if there is no prior information on the
possible perturbations of the processing times p;;,
one can consider 0 as the lower bound and a suf-
ficiently large number as the upper bound of p;;.
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In [2, 3, 4] an approach for dealing with such ‘strict
uncertainty’ based on a stability analysis of an op-
timal semiactive schedule (optimal digraph) was
developed. In this paper we generalize this ap-
proach for any given regular criterion F'. ;

2. PROBLEM SETTING

In an uncertain environment, it is not possible to
determine a priori the starting times or completi-
on times of operations. Let Qi denote the set of
operations which have to be processed on machi-
ne My € M. So, the set of all operaticns Q may
be represented as the union of the sets Qx: Q =
UM, Qk, where Qp NQu = @ with & # L We de-
fine a set of m sequences (Oi,x, Ouk, -1 Oyq lk)
of operations Qk, k = 1,2,...,m, as a schedule.
If none of these sequences contradicrs others and
the given precedence constraints, then for each
fixed operation processing times these sequences
uniquely define the earliest starting and earliest
completion times of all operations (2, i.e. these
sequences define a unique semiactive schedule.

To present the structural input data for problem
J/ai; < pi; < bij/F, we use the mixed graph
G=(Q,A,E) with

o vertexset Q = {Oy; | Ji € J;j =1,2,...,n4},
o arcset A = {(0:,0ij4+1)| i€ J;j=12....,
n; — 1}, and

o edgeset E = {[0i;,0u] | My,; = Mg, ;i # u}.

Let RY denote the space of non-negative g-
dimensional real vectors. Hereafter, q denotes the
number of operations: ¢ = |Q] = Y.l n =
w, 1Qk|. Let 7 denote the polytope in the
space RY of all feasible vectors of processing times,
ie. T = {z = (11, T12,- -, Tan,) | Gij < Tij <
bij; i =1,2,...,n; j=1,2,...,n;}. We define a
solution to problem J/a;; < pij < by /F as aset of
schedules containing at least one optimal schedu-
le for each feasible vector p = (p11, P12, - s Prn.)
of processing times, i.e. for each vector p € T.
Thus, the whole set A{G) is an obvicus soluti-
on to problem J/a;; < pi; < by/F for each
pair of vectors a = (@11, @12, .., @un,) € R} and
b= (bi1,b12; ..., ban,) € RL, where a;; < byj; i =
1,2,...,n; 7=1,2,...,n;. However, to construct
the whole set A(() is only possible for a small pro-
blem size (since the cardinality A of the set A(G)
could be equal to QIEIZ). Therefore, it is practi-
cally important to look for a minimal solution of
problem J/a;j < pi; < by;/F, ie. for a minimal
subset of set A(G) containing at least one optimal
schedule for each fixed vector p € T of processing
times. We combine these definitions as follows.

DEFINITION 1: A set of schedules A*(G) C A(G)
is a solution to problem J/a;; < pi; < by;/Fif for
each fixed vector p € T of processing times the
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set A*(G) contains an optimal schedule. If any
proper subset of the set A*(G) is no longer a solu-
tion to problem J/a;; < pi; < bij/F, it is called a_
minimal solution and we shall denote it by A7 (G).

3. DOMINANCE RELATIONS

Let H! denote the set of all paths in the di-
graph G, = (Q,A U A,,0) ending in the fized
vertex Oj,, and starting from different vertices
Oj1,j = 1,2,...,n. The set of vertices (opera-
tions) which are contained in path p will be de-
noted by < g >. Obviously, the value C; for
a schedule G, is equal to the maximal length
of a path from the set H!, and hence, to sol-
ve problem J//F, we must find a schedule G,
such that F? = min{F} | k = 1,2,..., A}, whe-
re F? = F(max [P(v), max [P(v),..., max [*(v))
' vEH] veH} veH?

is the value of the objective function of job com-
pletion times for schedule Gy € A{G) with fixed
processing times p € RY and [P(p) is the length of
path He lp(l‘*‘) = ZO;,€<u> Pij-

For a problem J/a;; < pi; < byj/F, we introduce
the following transitive dominance relation which
defines a partial ordering on the set of schedu-

les A(G).

DEFINITION 2: Schedule G, dominates (stron-
gly dominates) schedule G in domain D C R{ if
inequality F? < FP (inequality FP < F}, respec-
tively) holds for any vector p € D of processing
times, and we shall denote the dominance relation
by G, <p Gy, {and the strong dominance relation
by Gs <p G k)

If a;; = by, for each operation O;; € Q (1.e. if
T turns into a point which implies that problem
J/ai; < pi; < bij/F turns into a deterministic
problem J//F'), dominance relation <7 defines a
total ordering on the set of schedules A(G) and
consequently the set AT(G) consists of a single
schedule: AT(G) = {G,}, where G, is any opti-
mal schedule for problem J//F with processing ti-
mes p;; being equal to a;; = by; for cach operation
0;; € Q. In other words, schedule G5 dominates
all schedules Gy € A(G) in the point « € R, ie.
Gy <o Gi. Moreover, if the strong dominance re-
lation holds for each schedule Gy € A{G) in the
point a = b, i.e. if Gy <, Gy, then schedule G, is
the uniquely optimal one for the. processing times
Dij equal to ay; = by;.

For a problem J/a;; < pi; < by /F, the ope-
ration processing times may vary between given
lower and upper bounds and therefore it is a prio-
ri unknown which path from set H; will have the
maximal length in a practical realization of sche-
dule G. Thus, we have to consider the who-




le set 2} of representatives of the family of sets
(H;)s.es. Each of these sets 0} includes exact-
ly one path from each set H}, J; € J. Since
Hin H = 0 for any pair of different jobs J; and
Jj, we have the equality |Q¥ = n and so there
exist wy = []1., |Hi| different sets of representa-
tives for digraph Gy, namely: QF, 0%, ... Qe

Next, we show how to restrict the number of sets of
representatives which have to be considered whi-
le solving problem J/ay; < pi; < b;/F. Let
O, v e {1,2,...,wx}, denote the critical set
in Gy € A(G) if the objective function value Flis
reached on this set of paths. For different vec-
tors p € R} of processing times, different sets
W, ue {1,2,...,w}, may be critical, however
path v € H}, J; € J, may belong to a critical set
only if IP(v) = max, e i [P(1). Therefore, while
solving problem J/a;; < p;; < b;;/F, it is suffi-
cient to consider only paths from the set, H} which
may have the maximal length for at least one vec-
tor p € T' of processing times. Morecover, if the-
re are two or more paths in H; which have the
maximal length for the same vector p € T, it is
sufficient to consider only one of thern. Thus, it is
sufficient to consider only dominant paths which
are defined as follows.

DEFINITION 3: Path uw e H,i)', < J, is domi-
nant with respect to polytope T if for any path
v € H} system

) <1%(v), (1)
0ij S x5 < by, O €Q, ’

is inconsistent, where = (2,1, 219, . ..  Tnn, )-
4. SOLUTION CHARACTERIZATION

Using the simple criterion for the consistency of
system (1), which has been derived in [2], we
can simplify digraph G, while solving prcblem
Jlai; < piy < bij/F. Let HYT) denote the
set of all dominant paths in H I with respect to
polytope T'. We denote by GT = (97 AT ¢)
the minimal subgraph of digraph G, such that if
p€ UL Hy(T), then digraph G7 contains path p.
To construct digraph GT', one can use a modifica-
tion of CPM [1].

A characterization of a solution A of problem
Iaij < pi; < bij/F which is a proper subset of
set A(G), A C A(G), may be obtained on the basis
of the dominance relation <, (see Definition 2).

THEOREM 1: The set A C A(G) is a solution of
problem J/a;; < p;; < bi;/F if and only if shere
exists a finite covering of polytope T by convex
closed domains D; ¢ R, T C U‘JileJ, d < |A],
such that for any schedule G € A(G) and for any

domain D;, j =1,2,...,d, there exists a schedule
G € A such that dominance relation G <p, Gy
holds.

Theorem 1 implies the following claim which cha-
racterizes a single-element solution of problem
J/a; < pij < bi;/F, which is necessarily a mi-
nimal solution.

COROLLARY 1: The equality AT(G) = {Gs}
holds if and only if G5 <1 Gy for any schedule
G € A(G).

LEMMA 1: Schedule G4 & B dominates schedule
Gr € B in polytope T if (only if) the following
inequality (2) holds (inequalities (3) hold, respec-
tively):

F} < F} (2)
(Fe <F¢, FY < F) (3)

A minimal solution which includes more than one
schedule may be characterized as follows.

THEOREM 2: Let set A*(G) be a solution of pro-
blem J/rz.ij <pij < bij/F with |A*(G)! > 1. This
solution is minimal if and only if for each sche-
dule G5 € A*(G) there exists a vector pt*) € T

such that inequality F?P* < Ff(\') holds for each
schedule G¢ € A*(G) \ {G,}.

In this paper, we focus on two types of dominance
relations between feasible schedules (digraphs),
which are useful for shop scheduling problems un-
der strict uncertainty and regular criteria. Note
that similar results for the Cines Criterion have
been derived in {2, 3, 4].

5. REFERENCES

1. Dijkstra E'W. A note on two problems in
connection with graph, Numerische Mathematik,
No. 1, 1959, pp. 269-271.
2. Lai T-C., Sotskov Yu.N., Sotskova N.Y., Wer-
ner I. Optimal Makespan Scheduling with Given
Bounds of Processing Times, Mathematical and
Computer Modelling, vol. 26, No. 3, 1997, pp.
67-865.
3. Sotskova N.Y. Optimal makespan schedules
for a job-shop with uncertain processing times, in
Carvalho MLF., Miiller F.M., editors, Proc. of the
15th International Conference on CAD JCAM, Ro-
botics & Factories of the Future CARS & FOF 99,
1999, vol. 1, pp. MW4:7-MW4:12.
4. Sotskova N.Y. Optimization in a Jjob shop with
given bounds of processing times, in J. Soldek J.,
Pejas J., editors, Proc. of the 6th Internatio-
nal Conference on Advanced Computer Systems
ACS’99, 1999, pp. 462-467.

101




