Faculty of Mathematics Institute of Mathematical Optimization Prof. Dr. F. Werner

Exercises 'Mathematical Economics'

Series 4

1. Solve the following problem by means of the KKT-conditions:

$$f(x_1, x_2) = x_1^2 + x_2 \to \min!$$

subject to $x_1^2 + x_2^2 \le 9$
 $x_1 + x_2 \le 1$

Is the solution obtained globally minimal?

2. Solve the following problem by means of the KKT-conditions: \rightarrow **Homework**

$$f(x_1, x_2) = (x_1 - 1)^2 + e^{x_2^2} - 1 \to \min!$$
 subject to
$$x_1^2 + x_2^2 \le 1$$

Why is the obtained solution a global minimum point?

3. Consider the following nonlinear programming problem:

$$f(x_1, x_2) = -x_1 - x_2 - 8 \to \min!$$
 subject to
$$2x_1^2 + x_2^2 \le 6$$

$$-x_1 + 3x_2 \ge 1$$

$$x_1, x_2 \ge 0$$

- (a) Set up the KKT-conditions and show that $x_1 = 0$ or $x_2 = 0$ is not compatible with them.
- (b) Compute the concrete solution (Hint: $\lambda_2^* = 0$).
- (c) Show by means of the saddle-point theorem that the solution obtained in (b) is indeed a global minimum point for the problem under consideration.
- 4. Consider the problem:

$$f(x_1, x_2) = \min\{x_1, 2x_2\} \to \max!$$

subject to
$$x_1 + x_2 \le 3$$

$$x_1, x_2 \ge 0$$

(a) Give a graphical representation of the problem and identify the solution for x_1 and x_2 .

1

- (b) Show by means of the saddle-point theorem that the point obtained in (a) is compatible with it and determine the value of λ^* (Hint: Treat the two half-spaces $x_1 \geq 2x_2$ and $x_1 \leq 2x_2$ separately).
- 5. Solve the following linear programming problem by means of the KKT-conditions:

$$ightarrow$$
 Homework

Ł

$$f(x_1, x_2) = 4x_1 + 3x_2 \to \max!$$
subject to
$$x_1 + 5x_2 \le 45$$

$$x_1 + 2x_2 \le 21$$

$$3x_1 + x_2 \le 33$$

$$x_1, x_2 \ge 0$$

(Hint: Show first that only $x_1 > 0$ and $x_2 > 0$ can be a solution. Then analyze the different possible constellations for the λ_i values, i.e. $\lambda_1, \lambda_2, \lambda_3 > 0$; $\lambda_1 = 0, \lambda_2, \lambda_3 > 0$; etc.)

6. Consider the following nonlinear programming problem:

$$f(x_1, x_2) = (x_1 - 5)^2 + 4(x_2 - 1)^2 - 14 \to \min!$$
subject to
$$x_1^2 - 4x_1 - x_2 \le -4$$

$$2x_1 + x_2 \le 7$$

$$x_1, x_2 \ge 0$$

- (a) Check whether the conditions are fulfilled which ensure that the KKT-conditions are sufficient and necessary for a global constrained minimum point.
- (b) Give a graphical representation of
 - the two constraints,
 - the resulting set of feasible solutions,
 - the level curves of the objective function and try to identify the solution.
- (c) Now verify that the solution found in (b) satisfies the KKT-conditions.
 - ightarrow Homework