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1. Consider the following minimization problem:

f(x, y) = 3x2 + 2y2 → min!

s.t.

g(x, y) =
1

2
x+

1

3
y − 10 = t, t ∈ R; x, y ∈ R.

(a) Solve the problem in the usual way by means of the Lagrangian function and
the corresponding necessary and sufficient optimality conditions. After having
obtained the solution (x∗(t), y∗(t), λ∗(t)), determine

dx∗

dt
(t = 0),

dy∗

dt
(t = 0) and

dλ∗

dt
(t = 0).

(b) Let F (t) := f(x∗(t), y∗(t)). Determine F ′(t = 0) by a direct calculation and by
means of the envelope theorem.

2. Assume that a firm has a certain quantity y of a good y at its disposal, which can be
sold on two separated markets. The demand on the first market is given by

y1(p1) = −ap1 + b

and that on the second market by

y2(p2) = −cp2 + d

(a, b, c, d > 0), where it is assumed that b+ d > 2y. Let r = (a, b, c, d, y)T be the vector
of the parameters. The firm’s problem is now to choose the two prices p1 and p2 in
such a way that total revenue R is maximized, i.e.:

R(p1, p2) = −R(p1, p2) = −p1 · y1(p1)− p2 · y2(p2)→ min!

s.t.
y1(p1) + y2(p2) ≤ y, p1, p2 ≥ 0.

(Remark: In principle, one should also explicitly postulate the two non-negativity
constraints for y1(p1) and y2(p2), i.e. −ap1 + b ≥ 0 and −cp2 + d ≥ 0). However, if the
conditions

bc− ad− 2cy < 0 (1)
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and
bc− ad+ 2ay > 0 (2)

are satisfied, then y1(p
∗
1) > 0 and y2(p

∗
2) > 0 are satisfied so that one can drop the

corresponding non-negativity constraints - hereafter an asterisk denotes the values for
an optimal solution).

(a) Set up the KKT-conditions for this problem, assume directly that p1, p2, λ > 0
and determine an optimal solution.

(b) Now prove the two parts of the envelope theorem for this concrete problem, there-
by making use of the information obtained from part (a). Take b as the parameter
to be varied. Thus, show
- first that

∂L∗(r)

∂b
=
∂L(p1, p2, λ, r)

∂b

∣∣∣
p∗1(r),p

∗
2(r),λ

∗(r)

- second that
∂R∗(r)

∂b
=
∂L(p1, p2, λ, r)

∂b

∣∣∣
p∗1(r),p

∗
2(r),λ

∗(r)

(c) Now apply the second part above of the envelope theorem directly for the deter-
mination of

∂R∗(r)

∂y
and

∂R∗(r)

∂c
.

(d) Now verify that

∂R∗(r)

∂y
< 0,

∂R∗(r)

∂b
< 0 and

∂R∗(r)

∂c
> 0.

Try to give an economic explanation for these results.

3. → Homework -

Two resources x and y are to be allocated to two agents, each of them having a utility
function of the form

U(xi, yi) = xi yi, i = 1, 2.

Let α ∈ (0, 1) denote the weight of the welfare of agent 1 in the social planner’s utility
function and 1 − α the corresponding weight of agent 2. Assume that the maximum
amounts x and y of the two goods are given. Thus, the social planner’s optimization
problem can be formulated as follows:

F (x1, x2, y1, y2) = αx1y1 + (1− α)x2y2 → max!

subject to x1 + x2 ≤ x

y1 + y2 ≤ y

x1, x2, y1, y2 ≥ 0

(a) Since the optimum must be characterized by a full exploitation of the two re-
sources (for obvious reasons), the two inequality constraints can be replaced by
equalities. Now neglect in a first step the non-negativity constraints and solve

2



the problem in the usual way using the necessary optimality conditions for the
Lagrangian function. After having obtained a solution, check whether the non-
negativity constraints are fulfilled.

(b) Now solve the same problem by means of the KKT-conditions and compare the
solution with the previous one. How can the difference be explained?

4. Have a look at the following utility maximization problem:

U(x1, x2) = x
2/3
1 x

1/3
2 → max!

subject to p1x1 + p2x2 ≤ 12 (with p1 = 1 and p2 = 4)

x1, x2 ≥ 0 and additionally x1 ≥ C.

The last constraint can be interpreted, e.g., as the quantity of fuel oil needed to keep
the temperature in one’s flat above a certain minimum level.

(a) Let C = 4 and solve the problem by means of the KKT-conditions.
→ Homework -

(b) Try to give an economic interpretation of the Lagrangian multipliers.

(c) Now assume C = 8. Try to explain why the Lagrangian multiplier corresponding
to the constraint x1 ≥ 8 is zero here despite the fact that this constraint is active
at the optimum.

(d) Finally, consider the case C = 15.

3


