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1. Consider the following minimization problem:

f(x, y) = 3x2 + 2y2 → min!

s.t.

g(x, y) =
1

2
x +

1

3
y − 10 = t, t ∈ R; x, y ∈ R.

(a) Solve the problem in the usual way by means of the Lagrangian function and the
corresponding first-order and second-order conditions. After having obtained the
solution (x∗(t), y∗(t), λ∗(t)), determine

dx∗

dt
(t = 0),

dy∗

dt
(t = 0) and

dλ∗

dt
(t = 0).

(b) Now determine the three partial derivatives mentioned in (a) in an alternative
way, thereby making use of the ‘fundamental equation of comparative statics’.

(c) Let F (t) := f(x∗(t), y∗(t)). Determine F ′(t = 0) by a direct calculation and with
the aid of the envelope theorem.

2. Assume that a firm has a certain quantity y of a good y at its disposal, which can be
sold on two separated markets. The demand on the first market is given by

y1(p1) = −ap1 + b

and that on the second market by

y2(p2) = −cp2 + d

(a, b, c, d > 0), where it is assumed that b+d > 2y. The firm’s problem is now to choose
the two prices p1 and p2 in such a way that total revenue R∗ is maximized, i.e.:

R(p1, p2) = −R∗(p1, p2) = −p1 · y1(p1)− p2 · y2(p2) → min!

s.t.
y1(p1) + y2(p2) ≤ y, p1, p2 ≥ 0.

(Remark: In principle, one should also explicitly postulate the two non-negativity
constraints for y1(p1) and y2(p2), i.e. −ap1 + b ≥ 0 and −cp2 + d ≥ 0). However, if the
conditions

bc− ad− 2cy < 0 (1)
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and
bc− ad + 2ay > 0 (2)

are satisfied, then y1(p
∗
1) > 0 and y2(p

∗
2) > 0 are satisfied so that one can drop the

corresponding non-negativity constraints - hereafter an asterisk denotes the values for
an optimal solution).

Now apply the ‘fundamental equation of comparative statics’ (in matrix-vector form)
to this problem and determine the partial derivatives of λ∗, p∗1 and p∗2 with respect to
the following parameters:

• y (i.e. the consequences of a change in the firm’s capacity for the optimal values
of λ, p1 and p2 are considered here);

• b (here the partial derivatives to be determined mirror the effects of a shift of the
demand curve on market 1);

• (c) c (now the consequences due to a change of the inclination of the demand
curve on market 2 are considered).

3. Consider again the optimization problem in the second exercise.

(a) Set up the KKT conditions for this problem and assume directly that p1, p2, λ > 0
(but do not compute the solutions).

(b) Now prove the two parts of the envelope theorem for this concrete problem, there-
by making use of the information obtained from part (a). Take b as the parameter
to be varied. Thus, show
- first that

∂L∗

∂b
(p∗1(b), p

∗
2(b), λ

∗(b)) =
∂L

∂b
(p1, p2, λ)

∣∣∣
p∗1,p∗2,λ∗

- second that
∂R

∂b
(p∗1(b), p

∗
2(b)) =

∂L

∂b
(p1, p2, λ)

∣∣∣
p∗1,p∗2,λ∗

Try to follow the logic in the book of Takayama, i.e. apply the general procedure
outlined there to the concrete problem given here.

(c) Now apply the second part above of the envelope theorem directly for the deter-
mination of

∂R

∂y
(p∗1(y), p∗2(y), λ∗(y)) and

∂R

∂c
(p∗1(c), p

∗
2(c), λ

∗(c)).

(d) Now compute the solutions for p∗1, p
∗
2 and λ∗ from the KKT conditions derived in

(a) and verify that

∂R

∂y
< 0,

∂R

∂b
< 0 and

∂R

∂c
> 0.

[Do not forget conditions (1) and (2)!] Try to give an economic explanation for these
results.
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4. (a) Consider the following general cost-minimization problem:

C(x1, x2, . . . , xn) =
n∑

i=1

wixi → min!

s.t.
f(x1, . . . , xn) = y

and derive Samuelson’s reciprocity relation:

∂xi

∂wj

=
∂xj

∂wi

, i, j = 1, . . . , n and
∂xi

∂y
=

∂λ

∂wi

, i = 1, . . . , n.

(b) Assume a cost function

C(w, y) = wα
1 w1−α

2 yβ, 0 < α < 1, β > 0

and show that the underlying production function is

f(x1, x2) =

(
xα

1 x1−α
2

αα(1− α)1−α

)1/β

.

(Hint: Apply Shephard’s lemma to the cost function).
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