|
||||
|
||||
|
The cluster density is nc,L(p) = N-1 ∑k ak pk (1-p)N-k with N=L2 (for site percolation) or N=2 L2 (for bond percolation) and the ak taken from the data files.
Exact cluster densities for site percolation on 2d lattices with periodic boundary conditions (see Physical Review E 96 (2017) 052119 for the method used):
triangular | 1×1 | 2×2 | 3×3 | 4×4 | 5×5 | 6×6 | 7×7 |
---|---|---|---|---|---|---|---|
square | 1×1 | 2×2 | 3×3 | 4×4 | 5×5 | 6×6 | 7×7 |
nnsquare(a) | 1×1 | 2×2 | 3×3 | 4×4 | 5×5 | 6×6 | 7×7 |
unionjack | 2×2 | 4×4 | 6×6 | ||||
hexagonal | 2×2 | 4×4 | 6×6 |
Exact cluster densities for site percolation on 2d lattices with open boundary conditions (computed with transfer matrix method):
triangular | 1×1 | 2×2 | 3×3 | 4×4 | 5×5 | 6×6 | 7×7 | 8×8 | 9×9 | 10×10 | 11×11 | 12×12 | 13×13 | 14×14 | 15×15 | 16×16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
square | 1×1 | 2×2 | 3×3 | 4×4 | 5×5 | 6×6 | 7×7 | 8×8 | 9×9 | 10×10 | 11×11 | 12×12 | 13×13 | 14×14 | 15×15 | 16×16 |
nnsquare(a) | 1×1 | 2×2 | 3×3 | 4×4 | 5×5 | 6×6 | 7×7 | 8×8 | 9×9 | 10×10 | 11×11 | 12×12 | 13×13 | 14×14 | 15×15 | 16×16 |
Rb is the probability that it wraps in both dimensions.
triangular | 1×1 | 2×2 | 3×3 | 4×4 | 5×5 | 6×6 | 7×7 |
---|---|---|---|---|---|---|---|
square | 1×1 | 2×2 | 3×3 | 4×4 | 5×5 | 6×6 | 7×7 |
nnsquare(a) | 1×1 | 2×2 | 3×3 | 4×4 | 5×5 | 6×6 | 7×7 |
unionjack | 2×2 | 4×4 | 6×6 | ||||
hexagonal | 2×2 | 4×4 | 6×6 |
Re is the probability that a configuration wraps in either dimension.
triangular | 1×1 | 2×2 | 3×3 | 4×4 | 5×5 | 6×6 | 7×7 |
---|---|---|---|---|---|---|---|
square | 1×1 | 2×2 | 3×3 | 4×4 | 5×5 | 6×6 | 7×7 |
nnsquare(a) | 1×1 | 2×2 | 3×3 | 4×4 | 5×5 | 6×6 | 7×7 |
unionjack | 2×2 | 4×4 | 6×6 | ||||
hexagonal | 2×2 | 4×4 | 6×6 |
Rv is the probability of wrapping around the vertical dimension:
square | 1×1 | 2×2 | 3×3 | 4×4 | 5×5 | 6×6 | 7×7 |
---|---|---|---|---|---|---|---|
nnsquare(a) | 1×1 | 2×2 | 3×3 | 4×4 | 5×5 | 6×6 | 7×7 |
triangular | 1×1 | 2×2 | 3×3 | 4×4 | 5×5 | 6×6 | 7×7 | 8×8 | 9×9 | 10×10 | 11×11 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
square | 1×1 | 2×2 | 3×3 | 4×4 | 5×5 | 6×6 | 7×7 | 8×8 | 9×9 | 10×10 | 11×11 | 12×12 | 13×13 | 14×14 | 15×15 | 16×16 | 17×17 | 18×18 | 19×19 | 20×20 | 21×21 | 22×22 |
nnsquare(a) | 1×1 | 2×2 | 3×3 | 4×4 | 5×5 | 6×6 | 7×7 | 8×8 | 9×9 | 10×10 | 11×11 | 12×12 | 13×13 | 14×14 | 15×15 | 16×16 | 17×17 | 18×18 | 19×19 | 20×20 | 21×21 | 22×22 |
(a) The nnsquare lattice is the square lattice with additional next nearest neighbor links (Moore neighborhood).
© by Stephan Mertens (Datenschutzerklärung)
Home |
Research |
Publications |
Teaching |
Smorgasbord
updated on Friday, October 06th 2023, 16:07:44 CET;