greenline
rgstripes
Otto-Bild Stephan Mertens - Teaching
Home | Research | Publications | Teaching | Smorgasbord
greenline

Wissenschaftliche Präsentation

Feynman Teaching Man sollte einen schlechten Vortrag augenblicklich so zurückweisen können wie einen Wein, der nach Korken schmeckt.
Christian Meier

Es erfordert außerordentlich viel Talent, einem vernünftigen Manne etwas Neues und Wichtiges so leicht vorzutragen, daß er sich freut, es jetzt zu wissen.
Georg Christoph Lichtenberg

If you are teaching a class, you can think about the elementary things that you know very well. These things are kind of fun and delightful. It doesn't do any harm to think them over again. Is there a better way to present them?
Richard Feynman

Wissenschaftliche Präsentation
Hörerkreis: Studierende des Studienganges Physik (Bachelor)
Umfang: 2 SWS
Ort und Zeit:
LSF

Für das Seminar gilt Belegpflicht im LSF.

Vortragsthemen für das Sommersemester 2024

Klick auf den Titel führt zum Artikel. Zugriff auf den Volltext nur über die Uni-Bibliothek (elektronische Zeitschriften) und ihren Account.

  1. Ehrenfest paradox: A careful examination
    Jitendra Kumar Am. J. Phys. 92 140 (2024)
  2. Concepts in Monte Carlo sampling
    Gabriele Tartero and Werner Krauth Am. J. Phys. 92 65 (2024)
  3. Voronoi cell analysis: The shapes of particle systems
    Emanuel A. Lazar, Jiayin Lu and Chris H. Rycroft Am. J. Phys. 90 469 (2022)
  4. Tidal effects in a spacecraft
    Ugo Besson Am. J. Phys. 89 909 (2021)
  5. Three ways to obtain flat rotation curves: A problem in undergraduate computational physics
    M. E. Bacon and Amber Sharrar Am. J. Phys. 78 708 (2010)
  6. An instructive derivation of d’Alembert’s paradox
    Caio Vinícius Schurgelies de Sá and André von Borries Lopes Eur. J. Phys. 43 015004 (2022)
  7. An introduction to gravitational waves through electrodynamics: a quadrupole comparison
    Glauber Carvalho Dorsch, Lucas Emanuel Antunes Porto Eur. J. Phys. 43 025602 (2022)
  8. The size of the Sun
    M. A. Fardin and M. Hautefeuille Am. J. Phys. 90 914 (2022)
  9. Perihelion precession in power-law potentials: Hénon's theorem
    V. Dmitrašinović and Marija R. Janković Am. J. Phys. 90 580 (2022)
  10. Spin–orbit gravitational locking—an effective potential approach
    Christopher Clouse, Andrea Ferroglia and Miguel C N Fiolhais Eur. J. Phys. 43 035602 (2022)
  11. Long-term changes in the Earth’s climate: Milankovitch cycles as an exercise in classical mechanics
    R. C. T. Rainey Am. J. Phys. 90 848 (2022)
  12. Equilibria and stability of the two-balloon system
    Don S Lemons and Trevor C Lipscombe Eur. J. Phys. 44 015004 (2023)
  13. How energy is conserved in Newtonian gravity
    Vytenis M. Vasyliūnas Am. J. Phys. 90 416 (2022)
  14. Energy-mass equivalence from Maxwell equations
    Alejandro Perez and Salvatore Ribisi Am. J. Phys. 90 305 (2022)
  15. Singular Lagrangians and the Dirac–Bergmann algorithm in classical mechanics
    J. David Brown Am. J. Phys. 91 214 (2023)
  16. A shorter path to some action variables
    Juan F. Zanella Béguelin Am. J. Phys. 91 177 (2023)
  17. Peculiarities in the gravitational field of a filamentary ring
    Dániel Schumayer and David A. W. Hutchinson Am. J. Phys. 87 384 (2019)
    siehe dazu auch den Kommentar
    Comment on “Peculiarities in the gravitational field of a filamentary ring”
    J. West Am. J. Phys. 87 679 (2019)
  18. Seven formulations of the kinematics of special relativity
    W. N. Mathews Am. J. Phys. 88 269 (2020)
  19. On the linearity of the generalized Lorentz transformation
    Frank Verheest Am. J. Phys. 90 425 (2022)
  20. Velocity reciprocity and the relativity principle
    Patrick Moylan Am. J. Phys. 90 126 (2022)
  21. Huygens’ cycloidal pendulum: an elementary derivation
    Riccardo Borghi Eur. J. Phys. 43 055001 (2022)
  22. Factors of 2 in magnetic moments, spin–orbit coupling, and Thomas precession
    Herbert C. Cohen Am. J. Phys. 61 551 (1993)
  23. Interception and rendezvous: An intuition-building approach to orbital dynamics
    Eric M. Edlund Am. J. Phys. 89 559 (2021)
  24. Modeling a falling slinky
    R.C. Cross and M.S. Wheatland Am. J. Phys. 80 1051 (2012)
  25. Aberration and Doppler shift: The cosmic background radiation and its rest frame
    T. Greber and H. Blatter Am. J. Phys. 58 942 (1990)
  26. Relativistic velocity space, Wigner rotation, and Thomas precession
    John A. Rhodes and Mark D. Semon Am. J. Phys. 72 943 (2004)
  27. The delicate dance of orbital rendezvous
    Bradley W. Carroll Am. J. Phys. 87 627 (2019)
  28. Stars and statistical physics: A teaching experience
    Roger Balian and Jean-Paul Blaizot Am. J. Phys. 67 1189 (1999)
  29. Introducing fluid dynamics using dimensional analysis
    J. H. Jensen Am. J. Phys. 81 688 (2013)
  30. Advance of perihelion
    Kin-Ho Lo, Kenneth Young and Benjamin Y.P.Lee Am. J. Phys. 81 695 (2013)
  31. Elementary theory of perihelion precession
    B.Davies Am. J. Phys. 51 909 (1983)
  32. Random walks: A pedestrian approach to polymers, critical phenomena, and field theory
    E. P. Raposo et. al. Am. J. Phys. 59 633 (1991)
  33. Rayleigh scattering revisited: From gases to crystals
    Alberto G. Rojo and P. R. Berman Am. J. Phys. 78 94 (2010)
  34. Causality and dispersion relations
    Tejas Dethe et al Am. J. Phys. 87 279 (2019)
  35. Simultaneity in cylindrical spacetime
    Chunghyoung Lee Am. J. Phys. 88 131 (2020)
  36. Einstein's perihelion formula and its generalization
    Maurizio M. D'Eliseo Am. J. Phys. 83 324 (2015)
  37. Thermodynamics of Benford's first digit law
    Don S. Lemons Am. J. Phys. 87 787 (2019)
  38. Some insights from total collapse in the N-body problem
    Sergio B. Volchan Am. J. Phys. 76 1034 (2008)
  39. Relativistic aberration for accelerating observers
    Robert Beig and J. Mark Heinzle Am. J. Phys. 76 663 (2008)

Seminarplan

greenline
rgstripes
top Home | Research | Publications | Teaching | Smorgasbord
greenline

© by Stephan Mertens (Datenschutzerklärung)
updated on Sunday, April 14th 2024, 13:32:58 CET;